This Is Scott's BIBTEX File. References

This Is Scott's BIBTEX File. References

This is Scott's BIBTEX file. References [1] I. R. Aitchison and J. H. Rubinstein. Fibered knots and involutions on homotopy spheres. In Four-manifold theory (Durham, N.H., 1982), volume 35 of Contemp. Math., pages 1{74. Amer. Math. Soc., Providence, RI, 1984. MR780575. [2] Selman Akbulut. The Dolgachev surface, 2008. arXiv:0805.1524. [3] Selman Akbulut. Cappell-Shaneson homotopy spheres are standard, 2009. arXiv:0907.0136. [4] Selman Akbulut and Robion Kirby. A potential smooth counterexample in dimension 4 to the Poincar´econjecture, the Schoenflies conjecture, and the Andrews-Curtis conjecture. Topology, 24(4):375{390, 1985. MR816520 DOI:10.1016/0040-9383(85)90010-2. [5] A. Alexeevski and S. Natanzon. Noncommutative two-dimensional topological field theories and Hurwitz numbers for real algebraic curves. Selecta Math. (N.S.), 12(3-4):307{377, 2006. MR2305607,arXiv:math.GT/0202164. [6] Henning Haahr Andersen. Tensor products of quantized tilting modules. Comm. Math. Phys., 149(1):149{159, 1992. MR1182414 euclid.cmp/1104251142. [7] D. W. Anderson. Chain functors and homology theories. In Symposium on Algebraic Topol- ogy (Battelle Seattle Res. Center, Seattle, Wash., 1971), pages 1{12. Lecture Notes in Math., Vol. 249. Springer, Berlin, 1971. MR0339132. [8] Marta Asaeda. Galois groups and an obstruction to principal graphs of subfactors. Internat. J. Math., 18(2):191{202, 2007. MR2307421 DOI:10.1142/S0129167X07003996 arXiv:math.OA/ 0605318. [9] Marta Asaedap and Uffe Haagerup.p Exotic subfactors of finite depth with Jones in- dices (5 + 13)=2 and (5 + 17)=2. Comm. Math. Phys., 202(1):1{63, 1999. MR1686551 DOI:10.1007/s002200050574 arXiv:math.OA/9803044. [10] Marta Asaeda and Seidai Yasuda. On Haagerup's list of potential principal graphs of sub- factors, 2009. MR2472028 DOI:10.1007/s00220-008-0588-0 arXiv:0711.4144. [11] Marta Asaeda and Seidai Yasuda. On Haagerup's list of potential principal graphs of subfactors. Comm. Math. Phys., 286(3):1141{1157, 2009. MR2472028 DOI:10.1007/s00220-008-0588-0 arXiv:0711.4144. [12] Michael Atiyah. Topological quantum field theories. Inst. Hautes Etudes´ Sci. Publ. Math., (68):175{186 (1989), 1988. MR1001453. [13] Benjamin Audoux and Thomas Fiedler. A Jones polynomial for braid-like isotopies of ori- ented links and its categorification. Algebr. Geom. Topol., 5:1535{1553, 2005. arXiv:math. GT/0503080 MR2186108. [14] John Baez. lecture notes from the quantum gravity seminar (winter 2001, track 1, weeks 16 and 17), 2001. Online. [15] John C. Baez and James Dolan. Higher-dimensional algebra and topological quantum field theory. J. Math. Phys., 36(11):6073{6105, 1995. MR1355899 arXiv:q-alg/9503002 DOI:10.1063/1.531236. [16] F. Alexander Bais and Peter G. Bouwknegt. A classification of subgroup truncations of the bosonic string. Nuclear Phys. B, 279(3-4):561{570, 1987. DOI:10.1016/0550-3213(87)90010-1. [17] F.A. Bais and J.K. Slingerland. Condensate induced transitions between topologically or- dered phases, 2008. arXiv:0808.0627. [18] Bojko Bakalov and Alexander Kirillov, Jr. Lectures on tensor categories and modular func- tors, volume 21 of University Lecture Series. American Mathematical Society, Providence, RI, 2001. MR1797619. [19] Dror Bar-Natan. On the Vassiliev knot invariants. Topology, 34(2):423{472, 1995. MR1318886. [20] Dror Bar-Natan. On Khovanov's categorification of the Jones polynomial. Algebr. Geom. Topol., 2:337{370, 2002. MR1917056 arXiv:math.QA/0201043 DOI:10.2140/agt.2002.2.337. [21] Dror Bar-Natan. Khovanov homology for knots and links with up to 11 crossings. In Ad- vances in topological quantum field theory, volume 179 of NATO Sci. Ser. II Math. Phys. Chem., pages 167{241. Kluwer Acad. Publ., Dordrecht, 2004. MR2147420. [22] Dror Bar-Natan. Khovanov's homology for tangles and cobordisms. Geom. Topol., 9:1443{ 1499, 2005. arXiv:math.GT/0410495 MR2174270 DOI:10.2140/gt.2005.9.1443. 1 2 [23] Dror Bar-Natan. Fast Khovanov homology computations. J. Knot Theory Ramifications, 16(3):243{255, 2007. arXiv:math.GT/0606318 MR2320156. [24] Dror Bar-Natan and Scott Morrison. The Karoubi envelope and Lee's degeneration of Khovanov homology. Algebr. Geom. Topol., 6:1459{1469, 2006. arXiv:math.GT/0606542 MR2253455. [25] Dror Bar-Natan and Scott Morrison. The Karoubi envelope and Lee's degeneration of Kho- vanov homology, 2006. arXiv:math.GT/0606542 MR2253455. [26] John W. Barrett and Bruce W. Westbury. Spherical categories. Adv. Math., 143(2):357{375, 1999. MR1686423 arXiv:hep-th/9310164 DOI:10.1006/aima.1998.1800. [27] Arthur Bartels, Chris Douglas, and Andr´eHenriques. Local field theory and local fermions, may 2008. Topology seminar lecture by Chris Douglas, MIT. [28] Bruce Bartlett. Categorical aspects of topological quantum field theories, 2005. arXiv:math. QA/0512103. [29] Anna Beliakova and Christian Blanchet. Modular categories of types B, C and D. Com- ment. Math. Helv., 76(3):467{500, 2001. MR1854694 DOI:10.1007/PL00000385 arXiv:math. QA/0006227. [30] Anna Beliakova and Christian Blanchet. Skein construction of idempotents in Birman-Murakami-Wenzl algebras. Math. Ann., 321(2):347{373, 2001. MR1866492 DOI:10.1007/s002080100233 arXiv:math.QA/0006143. [31] Anna Beliakova and Stephan Wehrli. Categorification of the colored Jones polynomial and Rasmussen invariant of links. Canad. J. Math., 60(6):1240{1266, 2008. MR2462446 arXiv:math.QA/0510382. [32] Stephen Bigelow. Skein theory for the ADE planar algebras, 2009. arXiv:math.QA/0903. 0144. [33] Stephen Bigelow. Skein theory for the ADE planar algebras, 2009. arXiv:math.QA/0903. 0144. [34] Stephen Bigelow, Scott Morrison, Emily Peters, and Noah Snyder. Constructing the ex- tended haagerup planar algebra, 2009. arXiv:0909.4099, to appear Acta Mathematica. [35] Jocelyne Bion-Nadal. An example of a subfactor of the hyperfinite II1 factor whose principal graph invariant is the Coxeter graph E6. In Current topics in operator algebras (Nara, 1990), pages 104{113. World Sci. Publ., River Edge, NJ, 1991. MR1193933. [36] Dietmar Bisch. An example of an irreducible subfactor of the hyperfinite II1 factor with rational, noninteger index. J. Reine Angew. Math., 455:21{34, 1994. arXiv:MR1293872. [37] Dietmar Bisch. Bimodules, higher relative commutants and the fusion algebra associated to a subfactor. In Operator algebras and their applications (Waterloo, ON, 1994/1995), volume 13 of Fields Inst. Commun., pages 13{63. Amer. Math. Soc., Providence, RI, 1997. MR1424954 (preview at google books). [38] Dietmar Bisch. Principal graphs of subfactors with small Jones index. Math. Ann., 311(2):223{231, 1998. MR1625762 DOI:http://dx.doi.org/10.1007/s002080050185. [39] Dietmar Bisch. Subfactors and planar algebras. In Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pages 775{785, Beijing, 2002. Higher Ed. Press. MR1957084 arXiv:math.OA/0304340. [40] Dietmar Bisch, Paramita Das, and Shamindra Kumar Ghosh. The planar algebra of group- type subfactors, 2008. arXiv:0807.4134. [41] Dietmar Bisch and Uffe Haagerup. Composition of subfactors: new examples of infinite depth subfactors. Ann. Sci. Ecole´ Norm. Sup. (4), 29(3):329{383, 1996. MR1386923. [42] Dietmar Bisch and Vaughan Jones. Algebras associated to intermediate subfactors. Invent. Math., 128(1):89{157, 1997. MR1437496. [43] Dietmar Bisch and Vaughan F. R. Jones. Singly generated planar algebras of small dimen- sion. Duke Math. J., 101(1):41{75, 2000. MR1733737. [44] Dietmar Bisch, Remus Nicoara, and Sorin Popa. Continuous families of hyperfinite subfac- tors with the same standard invariant. Internat. J. Math., 18(3):255{267, 2007. MR2314611 arXiv:math.OA/0604460 DOI:10.1142/S0129167X07004011. [45] Christian Blanchet. Hecke algebras, modular categories and 3-manifolds quantum invariants. Topology, 39(1):193{223, 2000. MR1710999 DOI:10.1016/S0040-9383(98)00066-4. [46] J. M. Boardman and R. M. Vogt. Homotopy-everything H-spaces. Bull. Amer. Math. Soc., 74:1117{1122, 1968. MR0236922 DOI:10.1090/S0002-9904-1968-12070-1. 3 [47] J. M. Boardman and R. M. Vogt. Homotopy invariant algebraic structures on topological spaces. Lecture Notes in Mathematics, Vol. 347. Springer-Verlag, Berlin, 1973. MR0420609. [48] N. Bourbaki. El´ements´ de math´ematique. Fasc. XXXIV. Groupes et alg`ebres de Lie. Chapitre IV: Groupes de Coxeter et syst`emesde Tits. Chapitre V: Groupes engendr´espar des r´eflexions.Chapitre VI: syst`emesde racines. Actualit´esScientifiques et Industrielles, No. 1337. Hermann, Paris, 1968. MR0240238 (preview at google books). [49] Richard Brauer. On algebras which are connected with the semisimple continuous groups. Ann. of Math. (2), 38(4):857{872, 1937. MR1503378 DOI:10.2307/1968843. [50] William P. Brown. An algebra related to the orthogonal group. Michigan Math. J., 3:1{22, 1955. MR0072122 euclid.mmj/1031710528. n [51] William P. Brown. The semisimplicity of !f . Ann. of Math. (2), 63:324{335, 1956. MR0075931 DOI:10.2307/1969613. [52] Alain Brugui`eres.Cat´egoriespr´emodulaires, modularisations et invariants des vari´et´esde dimension 3. Math. Ann., 316(2):215{236, 2000. MR1741269 DOI:10.1007/s002080050011. [53] Doug Bullock, Charles Frohman, and Joanna Kania-Bartoszy´nska. Skein homology. Canad. Math. Bull., 41(2):140{144, 1998. arXiv:q-alg/9701019 MR1624157. [54] Frank Calegari, Scott Morrison, and Noah Snyder. Cyclotomic integers, fusion categories, and subfactors. With an appendix by Victor Ostrik. To appear in Communications in Math- ematical Physics. arXiv:1004.0665. [55] Sylvain E. Cappell and Julius L. Shaneson. There exist inequivalent knots with the same complement. Ann. of Math. (2), 103(2):349{353, 1976. MR0413117 DOI:10.2307/1970942. [56] Carmen Livia Caprau. sl(2) tangle homology with a parameter and singular cobordisms, 2008. MR2443094 arXiv:math/0707.3051 DOI:10.2140/agt.2008.8.729. [57] Carmen Livia Caprau. sl(2) tangle homology with a parameter and singular cobor- disms. Algebr. Geom. Topol., 8(2):729{756, 2008.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    14 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us