SERVIR Africa Biodiversity Project Report on Assessing Impacts Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
In Vitro Antibacterial Potential of Extracts of Sterculia Africana, Acacia Sieberiana,Andcassia Abbreviata Ssp
Hindawi International Journal of Zoology Volume 2018, Article ID 9407962, 6 pages https://doi.org/10.1155/2018/9407962 Research Article In Vitro Antibacterial Potential of Extracts of Sterculia africana, Acacia sieberiana,andCassia abbreviata ssp. abbreviata Used by Yellow Baboons (Papio cynocephalus) for Possible Self-Medication in Mikumi National Park, Tanzania Irene Kirabo ,1,2 Faith P. Mabiki,3 Robinson H. Mdegela,2 and Christopher J. D. Obbo4 1 Natural Chemotherapeutics Research Institute, Ministry of Health, Kampala, Uganda 2Faculty of Veterinary Medicine, Sokoine University of Agriculture, Morogoro, Tanzania 3Department of Chemistry and Physics, Solomon Mahlangu College of Science and Education, Sokoine University of Agriculture, P.O. Box 3038, Morogoro, Tanzania 4Department of Biological Sciences, Kyambogo University, P.O. Box 1, Kampala, Uganda Correspondence should be addressed to Irene Kirabo; [email protected] Received 12 July 2017; Revised 27 November 2017; Accepted 29 January 2018; Published 22 February 2018 Academic Editor: George A. Lozano Copyright © 2018 Irene Kirabo et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In the animals in general and nonhuman primates in particular self-medication has been widely reported; however, little is still known about the pharmacological activity of the extracts present in their daily diet. Te in vitro antibacterial activity of the stem, root bark, and leaf extracts of three selected plants on which yellow baboons feed in an unusual manner in Mikumi National Park, Tanzania, was evaluated. Crude plant extracts were tested against Gram positive and Gram negative bacteria of medical and veterinary importance employing a modifed agar well difusion method and Minimum Inhibitory Concentration (MIC) technique. -
Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work. -
Hemipiliopsis, a New Genus of Orchidaceae
Hemipiliopsis, a New Genus of Orchidaceae Yibo Luo and Singchi Chen (Xinqi Chen) Laboratory of Systematic & Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, People's Republic of China. [email protected] ABSTRACT. Hemipiliopsis, a monotypic new genus Hoc genus novum Hemipiliae et Habenariae simile, sed of Orchidaceae, is described based on H. purpureo- ab ambobus forma calcaris, a priore viscidiis plus minusve expositis, stigmatis lobulis duobus elongato-pulvinatis, a punctata (K. Y. Lang) Y. B. Luo & S. C. Chen (Ha- posteriore planta (cum caule, folio, pedunculis, rachidi, benaria purpureopunctata K. Y. Lang) from south- bracteis, pedicellis, ovariis, sepalis et petalis) purpureo- eastern Xizang (Tibet). Its possible relationships to punctata, stigmatis lobulis parieti postico cavitatis af®xis, Brachycorythis, Hemipilia, and Habenaria are dis- atque rostello magno differt. cussed. Terrestrial herb; tubers ellipsoid or subellipsoid, Key words: China, Hemipiliopsis, Orchidaceae. ¯eshy. Stem erect, usually with one leaf near the base. Leaf elliptic to ovate-oblong, acuminate or While the senior author worked on the genus acute, amplexicaul at base. In¯orescence loosely Hemipilia Lindley, he felt it dif®cult to treat a spe- several- to many-¯owered, spotted with purple on cies that is very similar in habit to Hemipilia but rachis and peduncle; bracts ovate-lanceolate, with was described by Lang (Lang & Tsi, 1978) as Ha- evident purple spots dorsally; pedicel and ovary benaria purpureopunctata K. Y. Lang. Moreover, with purple spots. Flowers spotted with purple ex- Lang mentioned that this generic placement was cept the lip; dorsal sepal erect, oblong, concave, based on the presence of a small rostellum, naked forming a hood together with petals; lateral sepals viscidia, and two protruding clavate stigmas (Lang obliquely ovate-elliptic, usually 6 re¯exed; petals & Tsi, 1978). -
Phylogenetics of Tribe Orchideae (Orchidaceae: Orchidoideae)
Annals of Botany 110: 71–90, 2012 doi:10.1093/aob/mcs083, available online at www.aob.oxfordjournals.org Phylogenetics of tribe Orchideae (Orchidaceae: Orchidoideae) based on combined DNA matrices: inferences regarding timing of diversification and evolution of pollination syndromes Luis A. Inda1,*, Manuel Pimentel2 and Mark W. Chase3 1Escuela Polite´cnica Superior de Huesca, Universidad de Zaragoza, carretera de Cuarte sn. 22071 Huesca, Spain, 2Facultade de Ciencias, Universidade da Corun˜a, Campus da Zapateira sn. 15071 A Corun˜a, Spain and 3Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK * For correspondence. E-mail [email protected] Received: 3 November 2011 Returned for revision: 9 December 2011 Accepted: 1 March 2012 Published electronically: 25 April 2012 † Background and aims Tribe Orchideae (Orchidaceae: Orchidoideae) comprises around 62 mostly terrestrial genera, which are well represented in the Northern Temperate Zone and less frequently in tropical areas of both the Old and New Worlds. Phylogenetic relationships within this tribe have been studied previously using only nuclear ribosomal DNA (nuclear ribosomal internal transcribed spacer, nrITS). However, different parts of the phylogenetic tree in these analyses were weakly supported, and integrating information from different plant genomes is clearly necessary in orchids, where reticulate evolution events are putatively common. The aims of this study were to: (1) obtain a well-supported and dated phylogenetic hypothesis for tribe Orchideae, (ii) assess appropriateness of recent nomenclatural changes in this tribe in the last decade, (3) detect possible examples of reticulate evolution and (4) analyse in a temporal context evolutionary trends for subtribe Orchidinae with special emphasis on pollination systems. -
Trade in Zambian Edible Orchids—DNA Barcoding Reveals the Use of Unexpected Orchid Taxa for Chikanda
G C A T T A C G G C A T genes Article Trade in Zambian Edible Orchids—DNA Barcoding Reveals the Use of Unexpected Orchid Taxa for Chikanda Sarina Veldman 1,* , Seol-Jong Kim 1 , Tinde R. van Andel 2 , Maria Bello Font 3, Ruth E. Bone 4, Benny Bytebier 5 , David Chuba 6, Barbara Gravendeel 2,7,8 , Florent Martos 5,9 , Geophat Mpatwa 10, Grace Ngugi 5,11, Royd Vinya 10, Nicholas Wightman 12, Kazutoma Yokoya 4 and Hugo J. de Boer 1,2 1 Department of Organismal Biology, Systematic Biology, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden; [email protected] (S.-J.K.); [email protected] (H.J.d.B.) 2 Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; [email protected] (T.R.v.A.); [email protected] (B.G.) 3 Natural History Museum, University of Oslo, Postboks 1172, Blindern, 0318 Oslo, Norway; [email protected] 4 Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK; [email protected] (R.E.B.); [email protected] (K.Y.) 5 Bews Herbarium, School of Life Sciences, University of KwaZulu-Natal, Pr. Bag X01, Scottsville 3209, South Africa; [email protected] (B.B.); fl[email protected] (F.M.); [email protected] (G.N.) 6 Department of Biological Sciences, University of Zambia, Box 32379 Lusaka, Zambia; [email protected] 7 Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands 8 University of Applied Sciences Leiden, Zernikedreef 11, 2333 CK Leiden, The Netherlands 9 Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’histoire naturelle, CNRS, Sorbonne Université, EPHE, CP50, 45 rue Buffon 75005 Paris, France 10 School of Natural Resources, The Copperbelt University, PO Box 21692 Kitwe, Zambia; [email protected] (G.M.); [email protected] (R.V.) 11 East African Herbarium, National Museums of Kenya, P.O. -
Flowering and Fruiting Phenology of Some Forest Plant Species in the Remnants of Combretum - Terminalia Woodlands of Western Ethiopia
ACTA SCIENTIFIC AGRICULTURE (ISSN: 2581-365X) Volume 3 Issue 11 November 2019 Research Article Flowering and Fruiting Phenology of Some Forest Plant Species in the Remnants of Combretum - Terminalia Woodlands of Western Ethiopia Dereje Mosissa* Ethiopian Biodiversity Institute, Assosa Biodiversity Center, Forest and Range Land Biodiversity Case Team, Ethiopia *Corresponding Author: Dereje Mosissa, Ethiopian Biodiversity Institute Assosa Biodiversity Center, Forest and Range Land Biodiversity Case Team, Ethiopia. Received: September 06, 2019; Published: October 28, 2019 DOI: 10.31080/ASAG.2019.03.0697 Abstract Phenological background information for Combretum-Terminalia wood land species is limited in particular from lower altitudes. Flowering and fruiting phenology was monitored for 24 plant species ranging between 610-1580 m.a.s.l. of the Benishangul Gumuz - Regional State North West Ethiopia. The dates of first flowering, peak flowering, end of flowering, first fruiting, peak fruiting and flow ering period were recorded. There was a wide variation in onset of flowering, long flowering duration, a relative synchrony between to the short growing season with limited resources and pollinators in this harsh environment at extremely lower elevations. With a the onset of flowering and fruiting. These results suggest that the species have evolved various phenological strategies as adaptations backgroundKeywords: Adaptation; of climate change, Combretum-Terminalia local plant species; Climate will represent Change; anPhenology; advancing Pollinators trend in onset of flowering and fruiting. Introduction cal climatic events or global warming. Third, phenological patterns Studies of tropical rain forests suggest that phenological pat- are linked to many processes governing forest function and struc- terns of trees are driven by a variety of factors including: abiotic ture including: population biology of pollinators, dispersers, seed characters such as rainfall, irradiance, and temperature; mode of and processes of primary production. -
2. Methods for Calculating Biomass and Carbon Stock
Carbon Stock Assessment and Modelling in Zambia A UNUN----REDDREDD programme study by Kewin Bach Friis Kamelarczyk country study UN-REDD PROGRAMME 2009 Food and Agriculture Organization of the United Nations UN-REDD Programme United Nations Development Programme MRV Working Paper 4 United Nations Environment Programme 2009 The UN-REDD Programme, implemented by FAO, UNDP and UNEP, has two components: (i) assisting developing countries prepare and implement national REDD strategies and mechanisms; (ii) supporting the development of normative solutions and standardized approaches based on sound science for a REDD instrument linked with the UNFCCC. The programme helps empower countries to manage their REDD processes and will facilitate access to financial and technical assistance tailored to the specific needs of the countries. The application of UNDP, UNEP and FAO rights-based and participatory approaches will also help ensure the rights of indigenous and forest-dwelling people are protected and the active involvement of local communities and relevant stakeholders and institutions in the design and implementation of REDD plans. The programme is implemented through the UN Joint Programmes modalities, enabling rapid initiation of programme implementation and channeling of funds for REDD efforts, building on the in-country presence of UN agencies as a crucial support structure for countries. The UN-REDD Programme encourage coordinated and collaborative UN support to countries, thus maximizing efficiencies and effectiveness of the organizations’ -
Bark Medicines Used in Traditional Healthcare in Kwazulu-Natal, South Africa: an Inventory
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector South African Journal of Botany 2003, 69(3): 301–363 Copyright © NISC Pty Ltd Printed in South Africa — All rights reserved SOUTH AFRICAN JOURNAL OF BOTANY ISSN 0254–6299 Bark medicines used in traditional healthcare in KwaZulu-Natal, South Africa: An inventory OM Grace1, HDV Prendergast2, AK Jäger3 and J van Staden1* 1 Research Centre for Plant Growth and Development, School of Botany and Zoology, University of Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa 2 Centre for Economic Botany, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, United Kingdom 3 Department of Medicinal Chemistry, Royal Danish School of Pharmacy, 2 Universitetsparken, 2100 Copenhagen 0, Denmark * Corresponding author, e-mail: [email protected] Received 13 June 2002, accepted in revised form 14 March 2003 Bark is an important source of medicine in South Overlapping vernacular names recorded in the literature African traditional healthcare but is poorly documented. indicated that it may be unreliable in local plant identifi- From thorough surveys of the popular ethnobotanical cations. Most (43%) bark medicines were documented literature, and other less widely available sources, 174 for the treatment of internal ailments. Sixteen percent of species (spanning 108 genera and 50 families) used for species were classed in threatened conservation cate- their bark in KwaZulu-Natal, were inventoried. gories, but conservation and management data were Vernacular names, morphological and phytochemical limited or absent from a further 62%. There is a need for properties, usage and conservation data were captured research and specialist publications to address the in a database that aimed to synthesise published infor- gaps in existing knowledge of medicinal bark species mation of such species. -
Rdna) Organisation
OPEN Heredity (2013) 111, 23–33 & 2013 Macmillan Publishers Limited All rights reserved 0018-067X/13 www.nature.com/hdy ORIGINAL ARTICLE Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation S Garcia1 and A Kovarˇı´k2 In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S–5.8S–26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (B30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S–18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S–5.8S–26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants. -
A Review and Analysis of the Research and Development Activities
Analysis of the Research and Development Activities Involving Underutilized Plant Species Carried Out by the CGIAR Centres Alessandra Giuliani Date: November 2007 Review and Analysis of the Research and Development Activities Involving Underutilized Plant Species Carried Out by the CGIAR Centres A report submitted to the Global Facilitation Unit for Underutilized Species (GFU) by Alessandra Giuliani1 26 November 2007 1 Hohgantweg 5, 3012 Bern, Switzerland. Phone: +41-79-6689066. Email: [email protected] Contents List of Acronyms 5 Acknowledgements 6 Executive Summary 6 Introduction 7 Background 8 Aim of the study and methodology 9 Target System Priorities 9 Results of the study: projects on underutilized plant species at each CG centre 10 Bioversity International 10 The projects and activities on underutilized plant species 10 Contribution to the System Priorities and identification of existing research gaps 14 Comparative advantages 16 International Centre for Tropical Agriculture (CIAT) 16 The projects and activities on underutilized plant species 16 Contribution to the System Priorities and identification of existing research gaps 17 Comparative advantages 17 International Potato Centre (CIP) 18 The projects and activities on underutilized plant species 18 Contribution to the System Priorities and identification of existing research gaps 19 Comparative advantages 19 International Center for Agricultural Research in Dry Areas (ICARDA) 19 The projects and activities on underutilized plant species 19 Contribution to the System Priorities -
Ethiopia: the State of the World's Forest Genetic Resources
ETHIOPIA This country report is prepared as a contribution to the FAO publication, The Report on the State of the World’s Forest Genetic Resources. The content and the structure are in accordance with the recommendations and guidelines given by FAO in the document Guidelines for Preparation of Country Reports for the State of the World’s Forest Genetic Resources (2010). These guidelines set out recommendations for the objective, scope and structure of the country reports. Countries were requested to consider the current state of knowledge of forest genetic diversity, including: Between and within species diversity List of priority species; their roles and values and importance List of threatened/endangered species Threats, opportunities and challenges for the conservation, use and development of forest genetic resources These reports were submitted to FAO as official government documents. The report is presented on www. fao.org/documents as supportive and contextual information to be used in conjunction with other documentation on world forest genetic resources. The content and the views expressed in this report are the responsibility of the entity submitting the report to FAO. FAO may not be held responsible for the use which may be made of the information contained in this report. THE STATE OF FOREST GENETIC RESOURCES OF ETHIOPIA INSTITUTE OF BIODIVERSITY CONSERVATION (IBC) COUNTRY REPORT SUBMITTED TO FAO ON THE STATE OF FOREST GENETIC RESOURCES OF ETHIOPIA AUGUST 2012 ADDIS ABABA IBC © Institute of Biodiversity Conservation (IBC) -
Eravikulam.Pdf
Camping for 4-5 day duration will be regularly carried out at Poovar and Varattukulam. At least 3 to 4 camps will be arranged in these areas each month to ensure proper protection. In other camps at Kolukkan, Eravikulam, Anamudy, Meenthotty and Pettymudy, camps of 3-4 day duration will be carried out. 2-3 camps will be arranged in these areas during a month. Camping and perambulation is to be done every month in Parappayar, Parakkudy and Nooradykudy to ensure protection and keep the boundaries free from illicit activities. This will also help in eco development initiatives and prevent the external interference in tribal settlements, especially in the light of latest challenges in the form of terrorism and nexalitism. The ganja combing operation will be carried out during these perambulations. Additional perambulations will be done in the areas adjoining the Park in the northern, eastern and western boundaries, where there are chances of ganja cultivation. The boundaries with the tea estates at Chattamunnar, Vaguvarai, Kadalar, Rajamala and Pettymudy will be regularly combed for nooses and illicit distillation of liquor. The camps at Poovar, Varattukulam, Kolukkan and Eravikulam will be managed by the staff at Chattamunnar and the camps at Anamudy, Meenthotty and Pettymudy will be managed by staff at Rajamala. The Forester at Chattamunnar will organise the perambulation at Poovar, Varattukulam, Kolukkan and Eravikulam. The Forester at Rajamala will organise camps at Anamudy, Meenthotty, Pettymudy and at Parappayar, Parakkudy and Nooradykudy. The Deputy Rangers will oversee the implementation of protection plan in Eravikulam National Park in areas under their jurisdiction.