L'altimétrie Planétaire

Total Page:16

File Type:pdf, Size:1020Kb

L'altimétrie Planétaire 1 / xx L’altimétrie planétaire G. Balmino , CNES-GRGS 7ème Ecole d’ été du GRGS Saint-Pierre d’Oléron " Altimétrie spatiale " 1-5 Septembre 2014 LE BUT Connaissance précise de : - la forme globale (moyenne) d’un corps - ses variations détaillées de forme : topographie Noyau de C-G (Rosetta, 23 juillet 2014) Pourquoi ? Comment ? Principales missions Pourquoi ? LES GRANDES QUESTIONS Formation Evolution Structure interne ... ... des corps du système solaire en particulier ceux dits de "type terrestre" … sont abordées avec les outils de : la mécanique céleste la géodésie spatiale la géologie la géophysique … et les données : - des télescopes : au sol, en orbite (HST) - des missions spatiales Structure ⇔ Histoire thermique DIFFERENCIATION D' UNE PLANETE, D' UN SATELLITE Existence, taille et nature de : noyau manteau Champ de gravité croûte CHRONOLOGIE DES EVENEMENTS EN SURFACE Caractères physiographiques et géologiques Distribution des cratères (type, taille, fréquence) Topographie → âges ~ relatifs "CLIMAT" Rotation, obliquité Atmosphère : Terre, Vénus, Mars, Titan... ⇔ Eau ? Océans : Terre, Europe, Encelade… Vie ??? Notre connaissance de la structure interne des planètes et satellites naturels provient essentiellement : de la mesure de la topographie (incluant forme globale et taille) du champ de gravité (dont la masse) Gouvernent la forme de la rotation globale des observations "géologiques" (imagerie multi-spectrale) PROPRIETES GLOBALES - Taille + Forme ⇒ Volume Masse volumique - Mouvement orbital + 3ème loi de Képler ⇒ Masse (densité) - Forme ⇒ Centre de figure - Centre de masse Écart ? (déterminé via un objet en orbite autour du corps) (structure interne) - Rotation propre : vitesse angulaire - Masse Aplatissement - Taille moyenne (rayon) dynamique - Coef. zonal J2 du potentiel de gravitation Moment d’inertie - Coef. J 2 polaire moyen - Constante de précession < 0.4 ? - Moment d’inertie polaire moyen Aplatissement - Vitesse angulaire de rotation hydrostatique Forme globale et potentiel gravitationnel (U ) : le problème direct Forme globale et potentiel gravitationnel (U ) : le problème inverse Stratification : surfaces limites ? sauts de densité ? ⇒ INVERSION : CHAMP DE DENSITE r0 A PARTIR DU CHAMP DE GRAVITE r 1 F(U) = ρ ∗ F(1/ r) r 2 ρ2 ρ0 ρ1 Observation Densité distance ρ : pas de solution unique (problème inverse singulier) F(U) + autres données (vitesses sismiques, ...) Mais : + hypothèses physico-chimiques ρ(r) + contraintes (relatives) sur ρ (sur Δρ) Exemples de modèles Problèmes régionaux / locaux Champ de gravité + topographie 1. Isostasie densité d ⇒ Etude des propriétés ex : modèle d'Airy 0 de la croûte (lithosphère) et du manteau supérieur d > d0 2. Flexure (visco-) élastique d1 d0 Vénus : les "pancakes" d > d0 EXEMPLE D'INVERSION D'UN PROBLEME REGIONAL Recherche des variations de densité Mesures - gravité (g) ou potentiel (U )en surface (ou en orbite), ou F(g,U) ...... (1) - vitesses sismiques VP , VS (avec λ , µ donnés) - cas de la Terre ...... (2) orbite mesure : F(g) g topo. discrétisée ρij décomposition en éléments finis Equations d'observation : correspondant à (1), (2) Inéquations de contrainte : ρ1 < ρij < ρ2 ; Δρ1 < ρij − ρi−n, j− p < Δρ2 Résolution : méthode des moindres carrés avec inégalités … mais problème récurrent Champ de gravité (g) + topographie (t) Inadéquation: résolution (g) vs. (t) (g) ç observ. des (t) ç photogram. perturbations altimétrie (D) orbitales 2 Klm ~ A / l S uˆ . Δρ ~0.05 – 0.1 mm/s r D T λmin ~ altitude station O TERRE è résolution ~200 km è résolution : ~ ou < km ! (MGS, ODY) ex : MOLA-MGS Comment ? Observations télescopiques terrestres Ex : La Lune - diamètres des cratères - altitude des reliefs (mesure des ombres) Obs. de Meudon, 1966 Observations télescopiques en orbite Vesta Observations radar depuis la Terre Goldstone – Mojave, USA, 1959 Pluton complex Yevpatoria, URSS, 1960 D Puissance du signal retour en 1/D4 Dist. max. détection ~ √taille de l’objet Observations radar depuis la Terre Radio-télescope d’Arecibo (Porto Rico, 1960-63), D = 305 m 20 TW @ 2380 MHz, 2.5 TW @ 430 MHz, et 300 MW @ 47 MHz Venus, 1974 Quelques "premières" radar d’Arecibo Maxwell Mt. images 216 Kleopatra, nov.1999 Mercure, pôle N, 1999 modèle Observations radar (ou autres) en orbite Navigation précise ⇒ radio-sciences : - champ de gravité - topographie imagerie altitudes nature du sol Observations en orbite S Il faut : uˆû - la position de S / (R) r D - l’attitude ⇒ û / (R) - mesurer D T surface du corps GO (R) lié au corps Alternative : on ne mesure pas de distances directement, mais : Ak, Bk dans Rk {xk, yk, zk} ûk , Rk dans (R) AB dans (R): (stéréo)-photogrammétrie O1O2 dans (R) z z1 2 x O1 2 O2 y1 y2 x1 û1 û2 (R) ⇒ Problème global de géodésie spatiale planétaire Réf: S quasars û T G obs. = f ( GS ou OS, û ) = F [ GS(t0 ), t , param.), û ] • O OS (t0 ) référentiels Terre ( & cinématique) déformations dynamique (forces) La précision dépend beaucoup de la finesse du traitement global ! Corps perturbateur ∼ SST-hl Mouvement de Plasma solaire & interplanétaire Mouvement de l'axe de rotation l'axe de rotation de la Terre du corps observé Station "Deep space" Orbite du corps observé Orbite Observation de la trajectoire de la Effets relativistes (retard, courbure) Terre • Position-vitesse de l'orbiteur (navigation) • Paramètres des modèles de perturbations : • Taille et forme de la planète ; topographie - gravitation : statique, marées solides, (+ océans) + - atmosphère (frottement), redistribution de masses • Paramètres rotationnels : (ex : océan/atmosphère/calottes polaires) angle ("temps") sidéral - pression solaire directe + albedo (surface, nuages) coord. du pôle (α,δ) et variations • Si lander, rover, ballon… : position (t) Géodésie dynamique Un altimètre mesure D … S uˆ r D T surface du corps O (R) lié au corps Différents types d’instruments Altimètre radar conventionnel, "pulse limited" Retour de l’impulsion Altimètre laser ~ few 100 meters Signal retour : D = c Δt / 2 Δt small Laser pulse Counts ~power sent from s/c footprint Essai d’un prototype de MOLA (altimètre laser pour les missions martiennes) Navette "Endeavour" (janvier 1996) Profil sur Mauna Kea SAR (radar à ouverture synthétique) Longueur "synthétique" du SAR L (1) Imagerie Développé dans les années 70 pour des besoins militaires de surveillance Le processeur stocke tous les signaux retours, amplitude et phase, pendant le temps T correspondant au déplacement de A en D. On reconstruit alors le signal qui aurait été obtenu par une antenne de longueur L = vT (v : vitesse du satellite) ⇒ résolution beaucoup plus grande Construction (théorique) pas à pas du (2) Mode altimètre signal retour (pour un faisceau unique). = "Delay Doppler/SAR altimeter" En mode altimètre on traite chaque cellule le long de la trace (tant qu’elle est illuminée). Chaque cellule est vue par une plus grande portion du lobe d’antenne que dans l’altimétrie classique ("pulse limited") ⇒ plus d’information Avantages : - utilisation optimale de la puissance du signal Contrairement à l’altimétrie radar classique, - résolution accrue la surface illuminée n’est pas un anneau de surface constante mais seulement une partie - mesure de distance le long ⇒ Forme plus « pointue » de l’écho. de la trace et orthogonalement ( et plusieurs faisceaux sont utilisés simultanément Les altimètres planétaires sont en majorité de type laser. Avantages : - très grande précision - pas de grande antenne - puissance requise bien adaptée Mais : - empreinte au sol petite - difficultés d’estimation des pentes (sauf instrument multi-faisceaux) - utilisation des écarts aux intersections de profils (X-overs) plus délicate (pentes topographiques de la surface solide : très variables) B C B 5 • A • 1 4 • t • 2 1 2 3 4 5 3 • • 3 X-O • 4 •2 C 1 D • 5 • D A 1 2 3 4 5 t Principales missions Lune Venus Mars Mercure Saturne (Titan) … et la Terre TERRE SRTM (Shuttle Radar Topography Mission) 11-22 fév. 2000 Navette : Endeavour (STS 99) Alt. ~233 km, I = 57° Résolution : 30 m (grilles à 30 m, 90 m, 900 m) Précision : planimétrique ~ 50 m altimétrique ~ 15 m 60 m Interférométrie radar 2 radards : bande C SAR bande X SRTM - Couverture : 60° N – 56° S Paris et sa région Ouest du Tibet Bali Tanzanie Volcan Meru Région de Los Angeles La LUNE Apollo 15, 16, 17 Clementine Chang’E 1, 2 Selene - Kaguya LRO (Lunar Reconnaissance Orbiter) (+ GRAIL) Apollo 15, 16, 17 A-15 : 26 juillet – 7 août 1971 A-16 : 16 avril – 27 avril 1972 A-17 : 7 déc. – 19 déc. 1972 + radar imageur (SAR) sur A- 17 Caractéristiques des altimètres laser d’Apollo 15, 16, 17 Faisceau pulsé à 694.3 nm (rubis) Flashes de 200 nJ pendant 10 ns Résolution ~2 m Distance entre mesures : 30 à 43 km Erreur absolue ~25 à 400 m Précision relative (le long de la même orbite) ~10 m Caractéristiques orbitales h(péri- h(apo- Incl. Période N.bre Lune) Lune) révol. Apollo 15 107 km 315 km 168.0° 120 mn 64 Apollo 16 101 km 120 km 23.0° 87 mn 72 Apollo 17 170 km 170 km 28.5° 108 mn 74 Apollo 15 : I = 168° (12° rétrogr.) Apollo 16 : I = 23° Apollo 15 Apollo 15 rev Apollo 17 Quelques profils sur la face cachée Apollo 17 Altimètre laser Face visible ⇒ Face cachée ⇒ Les apports des altimètres Apollo Recalage des altitudes de la face visible obtenues par photos télescopiques et les Lunar Orbiters H( "mers" ) < plusieurs km aux "highlands" environnantes Altitudes de la face cachée Face cachée : plus haute et plus rugueuse que la face visible Offset centre de masse / centre de figure : 2.5 km, direction 24°E Terre Cf. épaisseurs de croûte modélisées ultérieurement
Recommended publications
  • O Lunar and Planetary Institute Provided by the NASA Astrophysics Data System 1516 Lpscmv LARGE FLOOR-FRACTURED CRATERS: R.W
    LPSCXXIV 1515 LARGE FLOOR-FRACTURED CRATERS AND ISOSTATIC CRATER MODIFICATION: IMPLICATIONS FOR LITHOSPHERIC THICKNESS ON VENUS. R.W. Wichman, Dept. of Space Studies, Univ. of North Dakota, Grand Forks, ND 58202-7306 and P.H. Schultz, Dept. of Geological Sciences, Brown Univ., Providence RI 02912 Introduction: Several of the largest craters on Venus, including Mead, Meitner and Isabella, exhibit well-developed floor fracture patterns combining a central set of radial features with a peripheral set of concentric fractures. This pattern strongly resembles the fracture patterns observed in the largest floor- fractured craters on the Moon (eg. Humboldt, Gauss, Petavius). Although most lunar floor-fractured craters apparently reflect crater modification by igneous intrusions and volcanism [I,2,3], we propose that the fractures in these larger craters represent domical flexure events in response to post-impact isostatic uplift. Since the extent of uplift and surface failure in this model depends on both the size of the basin cavity and the local lithospheric thickness, this interpretation also provides a means for constraining lithospheric thicknesses on Venus. Based on the apparent onset diameter of isostatic crater modification, we derive lithospheric thickness estimates for the Moon of -80-100 km, and for Venus of -50-70 km. Large Floor-fractured Craters: As noted in a companion abstract [4], ten craters on Venus show patterns of concentric or polygonal fractures resembling failure patterns observed in lunar floor-fractured craters. These craters are comparable in size (-20-90 km) to most of the lunar examples, and three craters in particular contain well-defined, moat-like structures around a scarp-bounded central floor plate identical to features observed in the most extensively modified craters on the Moon [5].
    [Show full text]
  • Dynamical Erosion of the Asteroid Belt and Implications for Large Impacts in the Inner Solar System
    Icarus 207 (2010) 744–757 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Dynamical erosion of the asteroid belt and implications for large impacts in the inner Solar System David A. Minton *, Renu Malhotra Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721, United States article info abstract Article history: The cumulative effects of weak resonant and secular perturbations by the major planets produce chaotic Received 15 September 2009 behavior of asteroids on long timescales. Dynamical chaos is the dominant loss mechanism for asteroids Revised 2 December 2009 with diameters D J 10 km in the current asteroid belt. In a numerical analysis of the long-term evolution Accepted 3 December 2009 of test particles in the main asteroid belt region, we find that the dynamical loss history of test particles Available online 11 December 2009 from this region is well described with a logarithmic decay law. In our simulations the loss rate function that is established at t 1 Myr persists with little deviation to at least t ¼ 4 Gyr. Our study indicates that Keywords: the asteroid belt region has experienced a significant amount of depletion due to this dynamical erosion— Asteroids having lost as much as 50% of the large asteroids—since 1 Myr after the establishment of the current Asteroids, Dynamics Cratering dynamical structure of the asteroid belt. Because the dynamical depletion of asteroids from the main belt is approximately logarithmic, an equal amount of depletion occurred in the time interval 10–200 Myr as in 0.2–4 Gyr, roughly 30% of the current number of large asteroids in the main belt over each interval.
    [Show full text]
  • Artbook & Distributed Art Publishers Artbook D.A.P
    artbook & distributed art publishers distributed artbook D.A.P. SPRING 2017 CATALOG Matthew Ronay, “Building Excreting Purple Cleft Ovoids” (2014). FromMatthew Ronay, published by Gregory R. Miller & Co. See page 108. FEATURED RELEASES 2 Journals 77 CATALOG EDITOR SPRING HIGHLIGHTS 84 Thomas Evans Art 86 ART DIRECTOR Writings & Group Exhibitions 117 Stacy lakefield Photography 122 IMAGE PRODUCTION Maddie Gilmore Architecture & Design 140 COPY lRITING Janine DeFeo, Thomas Evans, Annabelle Maroney, Kyra Sutton SPECIALTY BOOKS 150 PRINTING Sonic Media Solutions, Inc. Art 152 Group Exhibitions 169 FRONT COVER IMAGE Photography 172 Kazimir Malevich, “Red House” (detail), 1932. From Revolution: Russian Art 1917–1932, published by Royal Academy of Arts. See page 5. Backlist Highlights 178 BACK COVER IMAGE Dorothy Iannone, pages from A CookBook (1969). Index 183 From Dorothy Iannone: A CookBook, published by JRP|Ringier. See page 51. CONTRIBUTORS INCLUDE ■ BARRY BERGDOLL Curator, Department of Architecture and Design, The Museum of Modern Art and Meyer Schapiro Professor of Art History and Archaeology, Department of Art History, Columbia University ■ JOHN MICHAEL DESMOND Professor, College of Art & Design, Louisiana State University ■ CAROLE ANN FABIAN Director, Avery Architectural & Fine Arts Library, Columbia University ■ JENNIFER GRAY Project Research Assistant, Department of Architecture and Design, The Museum of Modern Art ■ ELIZABETH S. HAWLEY PhD Candidate, The Graduate Center, City University of New York ■ JULIET KINCHIN Curator, Department of Architecture and Design, The Museum of Modern Art ■ NEIL LEVINE Emmet Blakeney Gleason Research Professor of History of Art and Architecture, Modern Architecture, Harvard University ■ ELLEN MOODY Assistant Projects Conservator, The Museum of Modern Art ■ KEN TADASHI OSHIMA Professor, Department of Architecture, University of Washington Frank Lloyd Wright: Unpacking the Archive ■ MICHAEL OSMAN Edited by Barry Bergdoll, Jennifer Gray.
    [Show full text]
  • VENUS Corona M N R S a Ak O Ons D M L YN a G Okosha IB E .RITA N Axw E a I O
    N N 80° 80° 80° 80° L Dennitsa D. S Yu O Bachue N Szé K my U Corona EG V-1 lan L n- H V-1 Anahit UR IA ya D E U I OCHK LANIT o N dy ME Corona A P rsa O r TI Pomona VA D S R T or EG Corona E s enpet IO Feronia TH L a R s A u DE on U .TÜN M Corona .IV Fr S Earhart k L allo K e R a s 60° V-6 M A y R 60° 60° E e Th 60° N es ja V G Corona u Mon O E Otau nt R Allat -3 IO l m k i p .MARGIT M o E Dors -3 Vacuna Melia o e t a M .WANDA M T a V a D o V-6 OS Corona na I S H TA R VENUS Corona M n r s a Ak o ons D M L YN A g okosha IB E .RITA n axw e A I o U RE t M l RA R T Fakahotu r Mons e l D GI SSE I s V S L D a O s E A M T E K A N Corona o SHM CLEOPATRA TUN U WENUS N I V R P o i N L I FO A A ght r P n A MOIRA e LA L in s C g M N N t K a a TESSERA s U . P or le P Hemera Dorsa IT t M 11 km e am A VÉNUSZ w VENERA w VENUE on Iris DorsaBARSOVA E I a E a A s RM A a a OLO A R KOIDULA n V-7 s ri V VA SSE e -4 d E t V-2 Hiei Chu R Demeter Beiwe n Skadi Mons e D V-5 S T R o a o r LI s I o R M r Patera A I u u s s V Corona p Dan o a s Corona F e A o A s e N A i P T s t G yr A A i U alk 1 : 45 000 000 K L r V E A L D DEKEN t Baba-Jaga D T N T A a PIONEER or E Aspasia A o M e s S a (1 MM= 45 KM) S r U R a ER s o CLOTHO a A N u s Corona a n 40° p Neago VENUS s s 40° s 40° o TESSERA r 40° e I F et s o COCHRAN ZVEREVA Fluctus NORTH 0 500 1000 1500 2000 2500 KM A Izumi T Sekhm n I D .
    [Show full text]
  • A Profile of Humanity: the Cultural Signature of Earth's Inhabitants
    International Journal of A profile of humanity: the cultural signature of Astrobiology Earth’s inhabitants beyond the atmosphere cambridge.org/ija Paul E. Quast Beyond the Earth foundation, Edinburgh, UK Research Article Abstract Cite this article: Quast PE (2018). A profile of The eclectic range of artefacts and ‘messages’ we dispatch into the vast expanse of space may humanity: the cultural signature of Earth’s become one of the most enduring remnants of our present civilization, but how does his pro- inhabitants beyond the atmosphere. tracted legacy adequately document the plurality of societal values and common, cultural heri- International Journal of Astrobiology 1–21. https://doi.org/10.1017/S1473550418000290 tage on our heterogeneous world? For decades now, this rendition of the egalitarian principle has been explored by the Search for Extra-Terrestrial Intelligence community in order to draft Received: 18 April 2018 theoretical responses to ‘who speaks for Earth?’ for hypothetical extra-terrestrial communica- Revised: 13 June 2018 tion strategies. However, besides the moral, ethical and democratic advancements made by Accepted: 21 June 2018 this particular enterprise, there remains little practical exemplars of implementing this gar- Key words: nered knowledge into other experimental elements that could function as mutual emissaries Active SETI; data storage; deep time messages; of Earth; physical artefacts that could provide accessible details about our present world for eternal memory archives; future archaeology; future archaeological observations by our space-faring progeny, potential visiting extrasolar long-term communication strategies; SETI; time capsules denizens or even for posterity. While some initiatives have been founded to investigate this enduring dilemma of humanity over the last half-century, there are very few comparative stud- Author for correspondence: ies in regards to how these objects, time capsules and transmission events collectively dissem- Paul E.
    [Show full text]
  • N94- 28306 5 E,Z-2---"
    t PI Contribution No. 825 81 N94- 28306 5 e,Z-2---" slightlyelevatedwesternmarginofthedepression.Fieldworkin SOME IMPLICATIONS OF LARGE IMPACT CRATERS 1989showedsandstoneoutcroppingonthiswesternmargin.Un- AND BASINS ON VENUS FOR TERRESTRIAL RINGED consolidatedsedimentsinthecenterofthestructureseemtobelake CRATERS AND PLANETARY EVOLUTION. W.B. deposits. McKinnon _ and J. S. Alexopoulos 2, 1Department of Earth and Plan- Site2: WelistthissiteimmediatelyaftersiteI becauseitis etary Sciences, Washington University, St. Louis MO 63130, USA, geographicallynear,buttheavailableevidenceforimpactoriginis 2McDonnell Center for the Space Sciences, Washington University, ambiguous.Thecenter is only 4 km east of site l ; a small airport, St. Louis MO 63130, USA. : : Sua Phra Camp, and the villages of Ban Nan Noi and Ban Nong Saena occupy elevated ground surrounding three sides of the Approximately 950 impact craters have been identified on the 0.8 radius, amphitheater-like depression that opens westward into " surface of Venus [e.g., I_,'rnainly in Magellan radar images. From : a small reservoir. The satellite image of the area is dominated by a combination of Earth-based Arecibo, Venera 15/16, and Magellan bleached ground indicating bare soil due possibly to grading or radar images, we have interpreted 72 as unequivocal peak-ring agriculture. craters and four as multiringed basins [2,3]. The morphological and Site 3: This site is located ~l 7 km southeast of Amphoe Det structural preservation of these craters is high, owing to the low Udom. The village of Ban Lup Lao is centered within a 3-kin-radius level of geologic activity on the venusian surface (which is in some partial bull's-eye pattern prominent on both the SPOT image and ways similar to the terrestrial benthic environment).
    [Show full text]
  • Spring 2021 Honor Roll
    Spring 2021 Honor Roll ADDISON BARTLETT Kelsey M Blackaller Roll of Excellence Roll of Honor Justin R Bogdan Shannel Davis Roxanne D Kuchta Donald J Bolger Michael J Bowe Justin B Brown ALSIP BEECHER Isabel Butler Roll of Merit Roll of Excellence Nicholas Campbell Breann R Moser Timothy Nelson II Maria C Castaneda Osvaldo Cerdas Roll of Merit Kourtney D Chapman APPLETON Elijah O Bamgbose Anya F Christian Roll of Excellence Catherine E Cronk Luke S Stovall Ravi A Daniel BELLWOOD Caleb Davis Roll of Merit Latavia R Davison AURORA Khadijah Sain Diana A Diaz Roll of Excellence Savanna B Dicostanzo Dennis Budde Emma M Dieckhaus Ulysses Chavez BELVIDERE Faith T Domercant Sarah E Hogan Roll of Excellence Thomas G Dynes Noah Hook Kristina M Sartori Curt Ederle Sydney D Moore Justin David I Escudero Marinna R Perez Brandon A Fagust James D Scott BENSENVILLE Syrena R Feustel Roll of Excellence Jalen C Fleming Roll of Honor Sean Heinz Raven R Fuqua Samara E Bosman Taha W Gabr Christopher Jules Matthew J Gahol Yuritzi Morales BOLINGBROOK Jose L Garcia Menelik Ramirez-rowe Roll of Excellence Emma R Geiger Raul Z Roman Jace Alexzander E Ancheta Gabrielle B Glees Amanda Selvaggio Adrienne R Andrews Moiz Habibi Sebastian S Wesley Nicole Antosik Aislin N Hargreaves Armando Armenta II Carson Harris Roll of Merit Kaitlynn R Barg Brycara J Hemmings Rianat M Adekola Kyle J Barg Katie Hernandez Brianna M Boccassini Christopher A Bayani Natalie M Hidalgo Parker Valek Nicole S Bebenov Donna Huang Emma K Beebe Alysa J Hyland Josie L Bell Keisha Bell Daphne A
    [Show full text]
  • Download Full Program (Pdf)
    Q COMMUNITY COLLEGE DISTRICT EIGHT BELLEVUE, WASHINGTON Commencement JUNE 25, 2021 BELLEVUE, WASHINGTON BLUE CEREMONY – 4:00 PM SILVER CEREMONY – 7:30 PM Class of 2021 Table of Contents O Board of Trustees & President ...................................................4 Program ...........................................................................................5 2021 Graduates: Bachelor of Applied Arts .....................................................6 Bachelor of Applied Science ..........................................7–9 Bachelor of Science ............................................................10 Associate in Applied Science .....................................11–13 Associate in Arts ...........................................................14–17 Associate in Arts & Sciences ......................................18–32 Associate in Business ...................................................33–34 Associate in Math Education ...........................................35 Associate in Music ..............................................................35 Associate in Occupational & Life Skills .........................35 Associate in Science .....................................................36–37 Certificate of Accomplishment .................................38–40 Certificate of Achievement .........................................41–42 High School Diploma .................................................43–44 Academic Regalia ........................................................................45 About the Speaker
    [Show full text]
  • View the 2021 Tufts University Commencement Program (PDF)
    165TH Commencement Tufts University Sunday, May 23, 2021 Commencement 2021 Commencement 2021 School of Arts and Sciences School of Engineering School of Medicine and Graduate School of Biomedical Sciences School of Dental Medicine The Fletcher School of Law and Diplomacy Cummings School of Veterinary Medicine The Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy Jonathan M. Tisch College of Civic Life University College #Tufts2021 commencement.tufts.edu Produced by Tufts Communications and Marketing Printed on recycled paper Table of Contents Welcome from the President 5 University Commencement 7 Dear Alma Mater 10 Tuftonia’s Day Academic Mace Academic Regalia Recipients of Honorary Degrees 11 School of Arts and Sciences 15 Graduate School of Arts and Sciences School of Engineering School of Medicine 43 Graduate School of Biomedical Sciences 48 Public Health and Professional Degree Programs 52 School of Dental Medicine 59 The Fletcher School of Law and Diplomacy 67 Cummings School of Veterinary Medicine 73 The Gerald J. and Dorothy R. Friedman 79 School of Nutrition Science and Policy Jonathan M. Tisch College of Civic Life 83 COMMENCEMENT 2021 3 Welcome from the President Commencement is the high point of the academic year and has always been a special day at Tufts. While this year’s virtual celebration makes us less anxious about the weather forecast, this moment is no less extraordinary and no less distinguished. After a period of rigorous study, intellectual pursuit, and personal growth, our students stand ready to graduate from their respective academic programs and this great university. Today, we celebrate their achievements and recognize all those who have helped make this day possible.
    [Show full text]
  • 1 : 45 000 000 E a CORONA D T N O M E Or E ASPASIA T Sa MM= KM S R
    N N 80° 80° 80° Dennitsa D. 80° Y LO S Sz um U N éla yn H EG nya -U I BACHUE URO IA D d P ANAHIT CHKA PLANIT ors Klenova yr L CORONA M POMONA a D A ET CORONA o N Renpet IS r I R CORONA T sa T Mons EG FERONIA ET L I I H A . Thallo O A U u Tünde CORONA F S k L Mons 60° re R 60° 60° R a 60° . y j R E e u M Ivka a VACUNA GI l m O k . es E Allat Do O EARHART o i p e Margit N OTAU nt M T rsa CORONA a t a D E o I R Melia CORONA n o r o s M M .Wanda S H TA D a L O CORONA a n g I S Akn Mons o B . t Y a x r Mokosha N Rita e w U E M e A AUDRA D s R V s E S R l S VENUS FAKAHOTU a Mons L E E A l ES o GI K A T NIGHTINGALE I S N P O HM Cleopatra M RTUN A VÉNUSZ VENERA CORONA r V I L P FO PLANITIA ÂÅÍÅÐÀ s A o CORONA M e LA N P N n K a IT MOIRA s UM . a Hemera Dorsa A Iris DorsaBarsova 11 km a E IA TESSERA t t m A e a VENUŠE WENUS Hiei Chu n R a r A R E s T S DEMETER i A d ES D L A o Patera A r IS T N o R s r TA VIRIL CORONA s P s u e a L A N I T I A P p nt A o A L t e o N s BEIWE s M A ir u K A D G U Dan Baba-Jaga 1 : 45 000 000 E a CORONA D T N o M e or E ASPASIA t sa MM= KM S r .
    [Show full text]
  • PDF Linkchapter
    Index [Italic page numbers indicate major references] A arsenic, 116, 143, 168 brecciation, shock, 225, 231 Ashanti crater, Ghana. See Bosumtwi Brent crater, Ontario, 321 Abitibi Subprovince, 305 crater, Ghana bromine, 137 Acraman depression, South Australia, A thy ris Broodkop Shear Zone, 180 211, 212, 218 gurdoni transversalis, 114 Budevska crater, Venus, 24 geochemistry, 216 hunanensis, 114 Bunyeroo Formation, 209, 210, 219, geochronology, 219 aubrite, 145 220, 221, 222 melt rock, 216, 218 augite, 159 Bushveld layered intrusion, 337 paleomagnetism, 219 Australasian strewn field, 114, 133, See also Acraman impact structure 134, 137, 138, 139, 140, 143, Acraman impact structure, South C 144, 146 Australia, 209 australite, 136, 141, 145, 146 Cabin-Medicine Lodge thrust system, Adelaid Geosyncline, 210, 220, 222 Austria, moldavites, 142 227 adularía, 167 Cabin thrust plate, 173, 225, 226, Aeneas on Dione crater, Earth, 24 227, 231, 232 aerodynamically shaped tektites, 135 B calcite, 112, 166 Al Umchaimin depression, western Barbados, tektites, 134, 139, 142, 144 calcium, 115, 116, 128 Iraq, 259 barium, 116, 169, 216 calcium oxide, 186, 203, 216 albite, 209 Barrymore crater, Venus, 44 Callisto, rings, 30 Algoman granites, 293 Basal Member, Onaping Formation, Cambodia, circular structure, 140, 141 alkali, 156, 159, 167 266, 267, 268, 271, 272, 273, Cambrian, Beaverhead impact alkali feldspar, 121, 123, 127, 211 289, 290, 295, 296, 299, 304, structure, Montana, 163, 225, 232 almandine-spessartite, 200 307, 308, 310, 311, 314 Canadian Arctic,
    [Show full text]
  • Fluid Outflows from Venus Impact Craters
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 97, NO. E8, PAGES 13,643-13,665 AUGUST 25, 1992 Fluid Outflows From Venus Impact Craters' AnalysisFrom Magellan Data PAUL D. A SIMOW1 Departmentof Earth and Planeta .rySciences, ttarvard Universi.ty,Cambridge, Massachusetts JOHN A. WOOD SmithsonianAstrophysical Observato .rv, Cambridge, Massachusetts Many impactcraters on Venushave unusualoutflow features originating in or underthe continuousejecta blanketsand continuing downhill into the surroundingterrain. Thesefeatures clearly resulted from flow of low- viscosityfluids, but the identityof thosefluids is not clear. In particular,it shouldnot be assumeda priori that the fluid is an impact melt. A numberof candidateprocesses by which impact eventsmight generatethe observedfeatures are considered,and predictionsare made concerningthe theologicalcharacter of flows producedby each mechanism. A sampleof outflowswas analyzedusing Magellan imagesand a model of unconstrainedBingham plastic flow on inclinedplanes, leading to estimatesof viscosityand yield strengthfor the flow materials. It is arguedthat at leasttwo different mechanismshave producedoutflows on Venus: an erosive,channel-forming process and a depositionalprocess. The erosivefluid is probablyan impactmelt, but the depositionalfluid may consistof fluidizedsolid debris, vaporized material, and/or melt. INTRODUCTION extremelydiverse in appearanceand may representmore than one distinctprocess and/or material. Recentlyacquired high-resolution radar images of Venusfrom the Magellan spacecraft have revealed surface features in unprecedenteddetail. In addition to new views of previously SETtING AND MORPHOLOGY OF VENUS CRATER OUTFLOW known features,a seriesof completelynew and often enigmatic FEATURES features have been discovered. Among the new phenomena Over 800 impactcraters were identifiedin imagesproduced by observed,the characterof ejecta depositsaround impact craters the Magellan missionduring its first cycle of orbital mapping, ranks as one of the most enigmatic.
    [Show full text]