Occasional Papers

Total Page:16

File Type:pdf, Size:1020Kb

Occasional Papers ☆ ☆ SPECIAL 20 TH ANNIVERSARY EDITION NUMBER 117, 78 pages 18 June 2015 BISHOP MUSEUM OCCASIONAL PAPERS RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 2014 PART II: I NDEX NEAL L. E VENHUIS & SCOTT E. MILLER , EDITORS BISHOP MUSEUM PRESS HONOLULU Cover photo montage. Center: Happy-face spider. Photo William P. Mull. Clockwise from upper left: Saddle wrasse. Photo J.E. Randall; Ōhi‘a lehua. Photo Clyde Imada; Surveying in the Ko olaus, O ‘ahu: Photo HBS; Blind cave hopper; Photo Frank Howarth; Botanizing along the Konhuinui trail, O‘ahu. Photo Clyde Imada; Collecting aquatic insects. Photo HBS . Bishop Museum Press has been publishing scholarly books on the natu - ESEARCH ral and cultural history of Hawai‘i and the Pacific since 1892. The R Bishop Museum Occasional Papers (ISSN 0893-1348) is a series of UBLICATIONS OF short papers describing original research in the natural and cultural sci - P ences. BISHOP MUSEUM The Bishop Museum Press also publishes the Bishop Museum Bulletin series (ISSN 0005-9439). It was begun in 1922 as a series of mono - graphs presenting the results of research throughout the Pacific in many scientific fields. In 1987, the Bulletin series was separated into the Museum’s five current monographic series, issued irregularly: Bishop Museum Bulletins in Anthropology (ISSN 0893-3111) Bishop Museum Bulletins in Botany (ISSN 0893-3138) Bishop Museum Bulletins in Entomology (ISSN 0893-3146) Bishop Museum Bulletins in Zoology (ISSN 0893-312X) Bishop Museum Bulletins in Cultural and Environmental Studies (ISSN 1548-9620) To subscribe to any of the above series, or to purchase individual publi - cations, please write to: Bishop Museum Press, 1525 Bernice Street, Honolulu, Hawai‘i 96817-2704, USA. Phone: (808) 848-4135. Email: [email protected]. Institutional libraries interested in exchang - ing publications may also contact the Bishop Museum Press for more information. BERNICE PAUAHI BISHOP MUSEUM ISSN 0893-1348 (print) The State Museum of Natural and Cultural History ISSN 2376-3191 (online) 1525 Bernice Street Copyright © by Bishop Museum Honolulu, Hawai‘i 96817-2704, USA Published online: 5 June 2015 ISSN (online): 2376-3191 Records of the Hawaii Biological Survey for 2014. Part II: Index. 1 Edited by Neal L. Evenhuis & Scott E. Miller. Bishop Museum Occasional Papers 117: 1 –2 (2015) Twenty Years of the Records of the Hawaii Biological Survey 1 NeAl l. e veNHUIS Hawaii Biological Survey, Bishop Museum, 1525 Bernice Street, Honolulu, Hawai‘i 96817-2704; email: [email protected] SCott e. M IlleR 2 National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, D.C., 20013-7012, USA; email: [email protected] In 1992, the State of Hawaii designated the Hawaii Biological Survey (HBS) as a program of the Bishop Museum. the Survey is an ongoing natural history inventory of the Hawaiian Archipelago and was created to locate, identify, and evaluate all native and non- native species of flora and fauna within the state and maintain the reference collections of that flora and fauna for a wide range of uses. As the primary state repository for all spec - imens and objects, the Bishop Museum also maintains up-to-date databases of all groups of plants and animals that occur within the state boundaries. Additionally, as part of our effort in disseminating the latest information on updates to those databases, the Bishop Museum annually publishes the Records of the Hawaii Biological Survey . In 1995, we published the first of these Records (for the year 1994) in two volumes (Articles and Notes). those first Records contained a total of 29 papers by 32 authors. Some 105 species of plants and animals were newly recorded for the State, including 3 new species-group taxa. the success of those first Records bade well for the ensuing years, in which numerous observations have been published by our many colleagues in Hawai‘i, the nation, and worldwide. table 1 gives a snapshot summary of the state of the Records for the last 20 years. During those 20 years, some significant observations have been made. Sixty-three new species-group taxa have been discovered and described, including some surprising finds from well-travelled trails on o‘ahu (evenhuis, 2012: 9) 3 and from the Bishop Museum campus itself (Ismay 2003). there have been uplifting records of species thought to have been extinct or not seen for many years (e.g., Foote 2000; Haines & Foote 2004: 45), but sadly also records of species thought be not be extant any longer (e.g., Wood 2012: 91). Although most records deal with new additions to the Hawaiian biota, here have also been corrections to our inventory and deletions of species thought to be here but were misidentified (e.g., Hoffman 1997; Shelley 1998). In addition to the typical short reports of new introductions, there have been com - prehensive checklists of some groups (e.g., freshwater rotifers: Jerzabek 2003; starfish: Mah 1998; shallow-water stony corals: Maragos 1995; oribatid motes: Swift & Norton 1998; non-marine algae: Sherwood 2004). Not only extant taxa have been studied. there have been papers published on fossil cotton (Woodcock et al . 1998), fossil leaf galls (Woodcock & Webb 2006), and the first fossil record of the Hawaiian Hawk from Kaua‘i (olsen & James 1997). 1. Contribution No. 2015-010 the Hawaii Biological Survey. 2. Research Associate, Hawai Biological Survey, Bishop Museum, 1525 Bernice Street, Honolulu, Hawaii 96817- 2704, USA 3. Citations mentioned in the text can be found in the author index in this volume. 2 BISHOP MUSEUM OCCASIONAL PAPERS: No. 117, 2015 #%/?#-( *-#%)( !"#$ %"&'()#)" %"&'(**+ ),)#- %"&'()#)" %#).$#-/0"1 %"&'(**+ ),)#- 2$#%1'),)#- 3445 !" # 63 $$ !# 65 376 3446 $% & 38 $& ! 39 :: 3449 #' % 55 &% $ ;9 87 3448 "$ & <: !( % 63 3:5 344< &! ;5 " &) ;< 6; 3444 !! $ 56 ! " $ 3: 6< ;777 !# 5: * &! :3 85 ;773=;77; $%& &$ 38: &! &! 5< ;;3 ;77: $! $ 36 %# &# 89 43 ;775=;776 && ! ;9 ( !) 59 8; ;779 % " 3: & $& 35 ;8 ;778 $ 3 " &$ ;4 :7 ;77< & ; $' &! 5: 56 ;774=;737 ! ( 37 $$ ' ;7 :7 ;733 % % 37 $" '& 337 3;7 ;73; % % 37 ( " 35 ;5 ;73: $% 36 & $& 35 ;4 ;7=!"#$'),)#-( %$' (# 6<; &(& #*) $ 9:: 3;36 =%"&'(**+ =9; =3 =9: ),)#-'%,%=%#)/>" 6;7 9:; 3367 3 Table 1 . twenty-year summary of the Records of the Hawaii Biological Survey . During the last 20 years we have worked closely with state and federal agencies in reporting new introductions or new naturalized plants. We have also been proactive and recorded plant taxa that had potential to become naturalized, so that they could be moni - tored if any ever became naturalized and potentially threatened native species or ecosys - tems (Staples et al . 2000). In its creation by the Hawaii State legislature, the Hawaii Biological Survey was tasked with undertaking a complete inventory of Hawaii’s biota. As a result, a number of papers have been published giving summary accountings by taxonomic group including an initial count (eldredge & Miller 1995 [21,383 total species; 8,759 endemic]), subse - quent periodic updates and, in 2003, a detailed assessment of the numbers of species for every taxon in the State of Hawai‘i (eldredge & evenhuis 2003 [25,615 total species; 9,975 endemic]). At latest count we have a total of 26,608 species occurring in the State of Hawaii. Although some other state surveys in the nation are much older, we are still the only state in the country with an accurate accounting of every plant and animal (native and alien) within its borders. As we celebrate 20 years of the Records of the Hawaii Biological Survey , we take this opportunity to thank the many who have helped us in this endeavor. there is still much to be done and we welcome the assistance of our colleagues in our ongoing process of taking stock of what living things we have surrounding us every day in these Hawaiian Islands. Published online: 10 June 2015 ISSN (online): 2376-3191 Records of the Hawaii Biological Survey for 2014. Part II: Index. 3 Edited by Neal L. Evenhuis & Scott E. Miller. Bishop Museum Occasional Papers 117: 3 –76(2015) Twenty-Year Index to the Records of the Hawaii Biological Survey (1994 through 2013) 1 CoMPIleD By NeAl l. eveNHUIS Hawaii Biological Survey, Bernice Pauahi Bishop Museum, 1525 Bernice Street, Honolulu, Hawai‘i 96817-2704, USA; email: [email protected] the following is an index to articles and taxa appearing in the volumes of the Records of the Hawaii Biological Survey for the years 1994 through 2013. the articles are alphabet - ized by author. the taxa are in two parts: (1) alphabetized by genus within kingdoms; and (2) alphabetized by species within kingdoms. All pagination is given by a combination of volume number of the HBS Records and the first page upon which the article starts (author list) or the taxon appears (taxon lists). the Records of the Hawaii Biological Survey have been published in the Bishop Museum Occasional Papers (oP) series as follows: HBS Records for Year Date published OP Volume Number(s) 1994 1 March 1995 41, 42 1995 15 February 1996 45, 46 1996 25 February 1997 48, 49, 50 1997 28 May 1998 55, 56, 57 1998 30 September 1999 58, 59, 60 1999 15 September 2000 63, 64, 65 2000 25 March 2002 68, 69, 70 2001–2002 20 June 2003 73, 74, 75 2001–2002 17 December 2003 76 2003 27 July 2004 78, 79, 80, 81 2004–2005 18 April 2006 87 2004–2005 26 June 2006 88 2006 7 September 2007 95 2006 29 october 2007 96 2007 6 August 2008 100 2008 26 February 2010 107 2008 5 March 2010 108 2009–2010 28 February 2011 109 2009–2010 28 March 2011 110 2011 28 May 2012 112 2011 15 June 2012 113 2012 14 June 2013 114 2013 18 April 2014 115 1.
Recommended publications
  • Bibliography and Scientific Name Index to Amphibians
    lb BIBLIOGRAPHY AND SCIENTIFIC NAME INDEX TO AMPHIBIANS AND REPTILES IN THE PUBLICATIONS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BULLETIN 1-8, 1918-1988 AND PROCEEDINGS 1-100, 1882-1987 fi pp ERNEST A. LINER Houma, Louisiana SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 92 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The present alphabetical listing by author (s) covers all papers bearing on herpetology that have appeared in Volume 1-100, 1882-1987, of the Proceedings of the Biological Society of Washington and the four numbers of the Bulletin series concerning reference to amphibians and reptiles. From Volume 1 through 82 (in part) , the articles were issued as separates with only the volume number, page numbers and year printed on each. Articles in Volume 82 (in part) through 89 were issued with volume number, article number, page numbers and year.
    [Show full text]
  • NHBSS 061 1G Hikida Fieldg
    Book Review N$7+IST. BULL. S,$0 SOC. 61(1): 41–51, 2015 A Field Guide to the Reptiles of Thailand by Tanya Chan-ard, John W. K. Parr and Jarujin Nabhitabhata. Oxford University Press, New York, 2015. 344 pp. paper. ISBN: 9780199736492. 7KDLUHSWLOHVZHUHÀUVWH[WHQVLYHO\VWXGLHGE\WZRJUHDWKHUSHWRORJLVWV0DOFROP$UWKXU 6PLWKDQG(GZDUG+DUULVRQ7D\ORU7KHLUFRQWULEXWLRQVZHUHSXEOLVKHGDV6MITH (1931, 1935, 1943) and TAYLOR 5HFHQWO\RWKHUERRNVDERXWUHSWLOHVDQGDPSKLELDQV LQ7KDLODQGZHUHSXEOLVKHG HJ&HAN-ARD ET AL., 1999: COX ET AL DVZHOODVPDQ\ SDSHUV+RZHYHUWKHVHERRNVZHUHWD[RQRPLFVWXGLHVDQGQRWJXLGHVIRURUGLQDU\SHRSOH7ZR DGGLWLRQDOÀHOGJXLGHERRNVRQUHSWLOHVRUDPSKLELDQVDQGUHSWLOHVKDYHDOVREHHQSXEOLVKHG 0ANTHEY & GROSSMANN, 1997; DAS EXWWKHVHERRNVFRYHURQO\DSDUWRIWKHIDXQD The book under review is very well prepared and will help us know Thai reptiles better. 2QHRIWKHDXWKRUV-DUXMLQ1DEKLWDEKDWDZDVP\ROGIULHQGIRUPHUO\WKH'LUHFWRURI1DWXUDO +LVWRU\0XVHXPWKH1DWLRQDO6FLHQFH0XVHXP7KDLODQG+HZDVDQH[FHOOHQWQDWXUDOLVW DQGKDGH[WHQVLYHNQRZOHGJHDERXW7KDLDQLPDOVHVSHFLDOO\DPSKLELDQVDQGUHSWLOHV,Q ZHYLVLWHG.KDR6RL'DR:LOGOLIH6DQFWXDU\WRVXUYH\KHUSHWRIDXQD+HDGYLVHGXV WRGLJTXLFNO\DURXQGWKHUH:HFROOHFWHGIRXUVSHFLPHQVRIDibamusZKLFKZHGHVFULEHG DVDQHZVSHFLHVDibamus somsaki +ONDA ET AL 1RZ,DPYHU\JODGWRNQRZWKDW WKLVERRNZDVSXEOLVKHGE\KLPDQGKLVFROOHDJXHV8QIRUWXQDWHO\KHSDVVHGDZD\LQ +LVXQWLPHO\GHDWKPD\KDYHGHOD\HGWKHSXEOLFDWLRQRIWKLVERRN7KHERRNLQFOXGHVQHDUO\ DOOQDWLYHUHSWLOHV PRUHWKDQVSHFLHV LQ7KDLODQGDQGPRVWSLFWXUHVZHUHGUDZQZLWK H[FHOOHQWGHWDLO,WLVDYHU\JRRGÀHOGJXLGHIRULGHQWLÀFDWLRQRI7KDLUHSWLOHVIRUVWXGHQWV
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Cryptic Extinction of a Common Pacific Lizard Emoia Impar (Squamata, Scincidae) from the Hawaiian Islands
    Cryptic extinction of a common Pacific lizard Emoia impar (Squamata, Scincidae) from the Hawaiian Islands R OBERT F ISHER and I VAN I NEICH Abstract Most documented declines of tropical reptiles are Introduction of dramatic or enigmatic species. Declines of widespread species tend to be cryptic. The early (1900s) decline and xtinctions on islands are rampant and have many extinction of the common Pacific skink Emoia impar from Ecauses. For reptiles, particularly lizards, insular extinc- the Hawaiian Islands is documented here through an tions greatly exceed those of mainland species and the assessment of literature, museum vouchers and recent extinction of smaller lizard species is rarely documented 1991 fieldwork. This decline appears contemporaneous with the (Case et al., ). Incomplete knowledge of island fauna documented declines of invertebrates and birds across the hinders an understanding of the true loss of diversity from Hawaiian Islands. A review of the plausible causal factors these ecosystems, and the issue of morphologically cryptic fi indicates that the spread of the introduced big-headed ant species also masks quanti cation of these extirpations or 2007 fi Pheidole megacephala is the most likely factor in this lizard extinctions (Bickford et al., ). The Paci c Basin ’ decline. The introduction and spread of a similar skink contains the majority of the world s tropical islands. These Lampropholis delicata across the islands appears to are most often inhabited by lizards of the families Scincidae 1995 1996 temporally follow the decline of E. impar, although there and Gekkonidae (Adler et al., ; Allison, ; Fisher, 1997 is no evidence of competition between these species.
    [Show full text]
  • La Collezione Erpetologica Del Museo Civico Di Storia Naturale “G. Doria” Di Genova the Herpetological Collection of the Museo Civico Di Storia Naturale “G
    MUSEOLOGIA SCIENTIFICA MEMORIE • N. 5/2010 • 62-68 Le collezioni erpetologiche dei Musei italiani The herpetological collections of italian museums Stefano Mazzotti (ed.) La collezione erpetologica del Museo Civico di Storia Naturale “G. Doria” di Genova The herpetological collection of the Museo Civico di Storia Naturale “G. Doria” of Genoa Giuliano Doria Museo Civico di Storia Naturale “G. Doria”, Via Brigata Liguria 9. I-16121 Genova. E-mail: [email protected] RIASSUNTO Il primo nucleo della collezione erpetologica del Museo Civico di Storia Naturale “Giacomo Doria” di Genova è costituito dalle raccolte effettuate da Giacomo Doria, fondatore del Museo, nella zona di La Spezia, in Persia (oggi Iran) e in Borneo (insieme a Odoardo Beccari) negli anni 1862-1868. Successivamente la collezione viene incrementata col materiale di numerose spedizioni condotte in tutti i conti - nenti; i risultati di tali raccolte sono stati spesso pubblicati sugli “Annali” del Museo. Nella collezione sono pre - senti 593 specie di Anfibi e 1.456 di Rettili; 171 taxa, attualmente validi, sono rappresentati da tipi. Parole chiave: Anfibi, Rettili, Museo di Genova, annali, tipi. ABSTRACT The first nucleus of the herpetological collection of the Museo Civico di Storia Naturale “Giacomo Doria” (Italy, Genoa) was made up of the specimens collected in the years 1862-1868 near La Spezia (Italy, Liguria), in Persia (now Iran) and in Borneo (with Odoardo Beccari) by its founder, Giacomo Doria. Later, it was increased with thousands of specimens collected during several expeditions throughout all the continents. Many important studies about this rich material have been published in “Annali”, the museum’s journal.
    [Show full text]
  • Australasian Journal of Herpetology ISSN 1836-5698 (Print)1 Issue 12, 30 April 2012 ISSN 1836-5779 (Online) Australasian Journal of Herpetology
    Australasian Journal of Herpetology ISSN 1836-5698 (Print)1 Issue 12, 30 April 2012 ISSN 1836-5779 (Online) Australasian Journal of Herpetology Hoser 2012 - Australasian Journal of Herpetology 9:1-64. Available online at www.herp.net Contents on pageCopyright- 2. Kotabi Publishing - All rights reserved 2 Australasian Journal of Herpetology Issue 12, 30 April 2012 Australasian Journal of Herpetology CONTENTS ISSN 1836-5698 (Print) ISSN 1836-5779 (Online) A New Genus of Coral Snake from Japan (Serpentes:Elapidae). Raymond T. Hoser, 3-5. A revision of the Asian Pitvipers, referred to the genus Cryptelytrops Cope, 1860, with the creation of a new genus Adelynhoserea to accommodate six divergent species (Serpentes:Viperidae:Crotalinae). Raymond T. Hoser, 6-8. A division of the South-east Asian Ratsnake genus Coelognathus (Serpentes: Colubridae). Raymond T. Hoser, 9-11. A new genus of Asian Snail-eating Snake (Serpentes:Pareatidae). Raymond T. Hoser, 10-12-15. The dissolution of the genus Rhadinophis Vogt, 1922 (Sepentes:Colubrinae). Raymond T. Hoser, 16-17. Three new species of Stegonotus from New Guinea (Serpentes: Colubridae). Raymond T. Hoser, 18-22. A new genus and new subgenus of snakes from the South African region (Serpentes: Colubridae). Raymond T. Hoser, 23-25. A division of the African Genus Psammophis Boie, 1825 into 4 genera and four further subgenera (Serpentes: Psammophiinae). Raymond T. Hoser, 26-31. A division of the African Tree Viper genus Atheris Cope, 1860 into four subgenera (Serpentes:Viperidae). Raymond T. Hoser, 32-35. A new Subgenus of Giant Snakes (Anaconda) from South America (Serpentes: Boidae). Raymond T. Hoser, 36-39.
    [Show full text]
  • Impact of Tail Loss on the Behaviour and Locomotor Performance of Two Sympatric Lampropholis Skink Species
    Impact of Tail Loss on the Behaviour and Locomotor Performance of Two Sympatric Lampropholis Skink Species Gillian L. Cromie, David G. Chapple* School of Biological Sciences, Monash University, Clayton, Victoria, Australia Abstract Caudal autotomy is an anti-predator behaviour that is used by many lizard species. Although there is an immediate survival benefit, the subsequent absence of the tail may inhibit locomotor performance, alter activity and habitat use, and increase the individuals’ susceptibility to future predation attempts. We used laboratory experiments to examine the impact of tail autotomy on locomotor performance, activity and basking site selection in two lizard species, the delicate skink (Lampropholis delicata) and garden skink (L. guichenoti), that occur sympatrically throughout southeastern Australia and are exposed to an identical suite of potential predators. Post-autotomy tail movement did not differ between the two Lampropholis species, although a positive relationship between the shed tail length and distance moved, but not the duration of movement, was observed. Tail autotomy resulted in a substantial decrease in sprint speed in both species (28– 39%), although this impact was limited to the optimal performance temperature (30uC). Although L. delicata was more active than L. guichenoti, tail autotomy resulted in decreased activity in both species. Sheltered basking sites were preferred over open sites by both Lampropholis species, although this preference was stronger in L. delicata. Caudal autotomy did not alter the basking site preferences of either species. Thus, both Lampropholis species had similar behavioural responses to autotomy. Our study also indicates that the impact of tail loss on locomotor performance may be temperature-dependent and highlights that future studies should be conducted over a broad thermal range.
    [Show full text]
  • Standard Common and Current Scientific Names for North American Amphibians, Turtles, Reptiles & Crocodilians
    STANDARD COMMON AND CURRENT SCIENTIFIC NAMES FOR NORTH AMERICAN AMPHIBIANS, TURTLES, REPTILES & CROCODILIANS Sixth Edition Joseph T. Collins TraVis W. TAGGart The Center for North American Herpetology THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY www.cnah.org Joseph T. Collins, Director The Center for North American Herpetology 1502 Medinah Circle Lawrence, Kansas 66047 (785) 393-4757 Single copies of this publication are available gratis from The Center for North American Herpetology, 1502 Medinah Circle, Lawrence, Kansas 66047 USA; within the United States and Canada, please send a self-addressed 7x10-inch manila envelope with sufficient U.S. first class postage affixed for four ounces. Individuals outside the United States and Canada should contact CNAH via email before requesting a copy. A list of previous editions of this title is printed on the inside back cover. THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY BO A RD OF DIRE ct ORS Joseph T. Collins Suzanne L. Collins Kansas Biological Survey The Center for The University of Kansas North American Herpetology 2021 Constant Avenue 1502 Medinah Circle Lawrence, Kansas 66047 Lawrence, Kansas 66047 Kelly J. Irwin James L. Knight Arkansas Game & Fish South Carolina Commission State Museum 915 East Sevier Street P. O. Box 100107 Benton, Arkansas 72015 Columbia, South Carolina 29202 Walter E. Meshaka, Jr. Robert Powell Section of Zoology Department of Biology State Museum of Pennsylvania Avila University 300 North Street 11901 Wornall Road Harrisburg, Pennsylvania 17120 Kansas City, Missouri 64145 Travis W. Taggart Sternberg Museum of Natural History Fort Hays State University 3000 Sternberg Drive Hays, Kansas 67601 Front cover images of an Eastern Collared Lizard (Crotaphytus collaris) and Cajun Chorus Frog (Pseudacris fouquettei) by Suzanne L.
    [Show full text]
  • Determining the Probability of Hemiplasy in the Presence of Incomplete Lineage Sorting and Introgression Supplementary Materials and Methods
    Determining the probability of hemiplasy in the presence of incomplete lineage sorting and introgression Supplementary Materials and Methods Mark S. Hibbins*, Matthew J.S. Gibson*, and Matthew W. Hahn*† Department of Biology* and Department of Computer Science† Indiana University, Bloomington 1 Mutation probabilities on genealogies Each of the twelve possible genealogies under our parent tree model has a set of five branch lengths along which mutations can occur. l1, l2, and l3 denote the tip branches leading to species A, B, and C respectively; l4 denotes the internal branch, and l5 denotes the ancestral branch. As described in the supplement of Guerrero & Hahn (2018), the mu- tation probability on each of these branches has the general form R 1 − e−mx f (x)dx, where m is the mutation probability per 2N generations, x is the random variable for the branch length, and f(x) is the probability density function for x. We begin with the mutation probabilities for parent tree 1, which are found in the supple- ment of Guerrero & Hahn, and will be re-written here to be consistent with notation. In the following notation, parent tree 1 will be denoted as ”pt1”. Since many of the genealo- gies are identical in length, the mutation probabilities on their branches can be written with general expressions. We first consider the genealogies AB21, BC1, and AC1, which are all produced via incomplete lineage sorting in parent tree 1, and share the following set of mutation probabilities: 1 Z t3−t2 3 −m(t1+(t2−t1)+x) −x −3x n1[ILS, pt1] = (1 − e ) (e − e )dx (1) L 0 2 1 Z t3−t2 −m(t1+(t2−t1)+x) −3x −((t3−t2)−x) n2[ILS, pt1] = (1 − e )3e (1 − e )dx (2) L 0 t −t Z 3 2 Z (t −t )−y 1 −3y 3 2 −x −mx n4[ILS, pt1] = 3e ( e (1 − e )dx)dy (3) L 0 0 Z t3−t2 1 −m((t3−t2)−x) −3x n5[ILS, pt1] = (1 − e )3e dx (4) L 0 1 −3(t3−t2) 3 −(t3−t2) In each of the above, L = 1 + 2 e − 2 e is the probability of coalescence of A, B, and C in their ancestral population.
    [Show full text]
  • NSW REPTILE KEEPERS' LICENCE Species Lists 1006
    NSW REPTILE KEEPERS’ LICENCE SPECIES LISTS (2006) The taxonomy in this list follows that used in Wilson, S. and Swan, G. A Complete Guide to Reptiles of Australia, Reed 2003. Common names generally follow the same text, when common names were used, or have otherwise been lifted from other publications. As well as reading this species list, you will also need to read the “NSW Reptile Keepers’ Licence Information Sheet 2006.” That document has important information about the different types of reptile keeper licenses. It also lists the criteria you need to demonstrate before applying to upgrade to a higher class of licence. THESE REPTILES CAN ONLY BE HELD UNDER A REPTILE KEEPERS’ LICENCE OF CLASS 1 OR HIGHER Code Scientific Name Common Name Code Scientific Name Common Name Turtles Monitors E2018 Chelodina canni Cann’s Snake-necked Turtle G2263 Varanus acanthurus Spiney-tailed Monitor C2017 Chelodina longicollis Snake-necked Turtle Q2268 Varanus gilleni Pygmy Mulga Monitor G2019 Chelodina oblonga Oblong Turtle G2271 Varanus gouldii Sand Monitor Y2028 Elseya dentata Northern Snapping Turtle M2282 Varanus tristis Black-Headed Monitor K2029 Elseya latisternum Saw-shelled Turtle Y2776 Elusor macrurus Mary River Turtle E2034 Emydura macquarii Murray Short-necked Turtle Skinks T2031 Emydura macquarii dharra Macleay River Turtle A2464 Acritoscincus platynotum Red-throated Skink T2039 Emydura macquarii dharuk Sydney Basin Turtle W2331 Cryptoblepharus virgatus Cream-striped Wall Skink T2002 Emydura macquarii emmotti Emmott’s Short-necked Turtle W2375
    [Show full text]
  • Density of Three Skink Species on a Sub-Tropical Pacific Island Estimated with Hierarchical Distance Sampling
    Herpetological Conservation and Biology 13(3):507–516. Submitted: 20 May 2017; Accepted: 23 August 2018; Published: 16 December 2018. DENSITY OF THREE SKINK SPECIES ON A SUB-TROPICAL PACIFIC ISLAND ESTIMATED WITH HIERARCHICAL DISTANCE SAMPLING SARAH HAVERY1,3, STEFFEN OPPEL1, NIK COLE2, AND NEIL DUFFIELD1 1Centre for Conservation Science, Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire SG19 2DL, UK 2Durrell Wildlife Conservation Trust, Les Augrès Manor, Trinity, Jersey JE3 5BP, Channel Islands, UK 3Corresponding author, e-mail: [email protected] Abstract.—Henderson Island is an uninhabited island in the South Pacific Ocean with many native vertebrate and invertebrate species, but reptile populations are very poorly known. Reptile populations are typically quantified using simple count statistics, which may not allow robust population comparisons in time or space if detection probability changes. Here, we provide density estimates for three skink species on Henderson Island using repeated point counts and hierarchical distance sampling to estimate skink density while accounting for habitat associations and variation in detectability. Emoia cyanura had the highest density (Mean ± SE, 1,286 ± 225.3 individuals/ha; 95% confidence interval = 912.1–1,812.6), followed by Cryptoblepharus poecilopleurus (762.7 ± 108.3 individuals/ ha; 95% CI = 577.5–1,007.5) and Lipinia noctua (375.7 ± 125.4 individuals/ha; 95% CI = 195.4–722.6). The density of C. poecilopleurus varied by substrate and was higher on rock and gravel, and L. noctua density was higher in areas with larger trees or with less litter cover. We also recorded two gecko species that had not previously been recorded on Henderson Island.
    [Show full text]
  • 1 §4-71-6.5 List of Restricted Animals [ ] Part A: For
    §4-71-6.5 LIST OF RESTRICTED ANIMALS [ ] PART A: FOR RESEARCH AND EXHIBITION SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Hirudinea ORDER Gnathobdellida FAMILY Hirudinidae Hirudo medicinalis leech, medicinal ORDER Rhynchobdellae FAMILY Glossiphoniidae Helobdella triserialis leech, small snail CLASS Oligochaeta ORDER Haplotaxida FAMILY Euchytraeidae Enchytraeidae (all species in worm, white family) FAMILY Eudrilidae Helodrilus foetidus earthworm FAMILY Lumbricidae Lumbricus terrestris earthworm Allophora (all species in genus) earthworm CLASS Polychaeta ORDER Phyllodocida FAMILY Nereidae Nereis japonica lugworm PHYLUM Arthropoda CLASS Arachnida ORDER Acari FAMILY Phytoseiidae 1 RESTRICTED ANIMAL LIST (Part A) §4-71-6.5 SCIENTIFIC NAME COMMON NAME Iphiseius degenerans predator, spider mite Mesoseiulus longipes predator, spider mite Mesoseiulus macropilis predator, spider mite Neoseiulus californicus predator, spider mite Neoseiulus longispinosus predator, spider mite Typhlodromus occidentalis mite, western predatory FAMILY Tetranychidae Tetranychus lintearius biocontrol agent, gorse CLASS Crustacea ORDER Amphipoda FAMILY Hyalidae Parhyale hawaiensis amphipod, marine ORDER Anomura FAMILY Porcellanidae Petrolisthes cabrolloi crab, porcelain Petrolisthes cinctipes crab, porcelain Petrolisthes elongatus crab, porcelain Petrolisthes eriomerus crab, porcelain Petrolisthes gracilis crab, porcelain Petrolisthes granulosus crab, porcelain Petrolisthes japonicus crab, porcelain Petrolisthes laevigatus crab, porcelain Petrolisthes
    [Show full text]