Determining the Probability of Hemiplasy in the Presence of Incomplete Lineage Sorting and Introgression Supplementary Materials and Methods

Total Page:16

File Type:pdf, Size:1020Kb

Determining the Probability of Hemiplasy in the Presence of Incomplete Lineage Sorting and Introgression Supplementary Materials and Methods Determining the probability of hemiplasy in the presence of incomplete lineage sorting and introgression Supplementary Materials and Methods Mark S. Hibbins*, Matthew J.S. Gibson*, and Matthew W. Hahn*† Department of Biology* and Department of Computer Science† Indiana University, Bloomington 1 Mutation probabilities on genealogies Each of the twelve possible genealogies under our parent tree model has a set of five branch lengths along which mutations can occur. l1, l2, and l3 denote the tip branches leading to species A, B, and C respectively; l4 denotes the internal branch, and l5 denotes the ancestral branch. As described in the supplement of Guerrero & Hahn (2018), the mu- tation probability on each of these branches has the general form R 1 − e−mx f (x)dx, where m is the mutation probability per 2N generations, x is the random variable for the branch length, and f(x) is the probability density function for x. We begin with the mutation probabilities for parent tree 1, which are found in the supple- ment of Guerrero & Hahn, and will be re-written here to be consistent with notation. In the following notation, parent tree 1 will be denoted as ”pt1”. Since many of the genealo- gies are identical in length, the mutation probabilities on their branches can be written with general expressions. We first consider the genealogies AB21, BC1, and AC1, which are all produced via incomplete lineage sorting in parent tree 1, and share the following set of mutation probabilities: 1 Z t3−t2 3 −m(t1+(t2−t1)+x) −x −3x n1[ILS, pt1] = (1 − e ) (e − e )dx (1) L 0 2 1 Z t3−t2 −m(t1+(t2−t1)+x) −3x −((t3−t2)−x) n2[ILS, pt1] = (1 − e )3e (1 − e )dx (2) L 0 t −t Z 3 2 Z (t −t )−y 1 −3y 3 2 −x −mx n4[ILS, pt1] = 3e ( e (1 − e )dx)dy (3) L 0 0 Z t3−t2 1 −m((t3−t2)−x) −3x n5[ILS, pt1] = (1 − e )3e dx (4) L 0 1 −3(t3−t2) 3 −(t3−t2) In each of the above, L = 1 + 2 e − 2 e is the probability of coalescence of A, B, and C in their ancestral population. t3 denotes the total height of the tree, i.e. the time at the base of the tree. The difference between t3 and t2 determines the duration of the ancestral population of all three taxa, before speciation occurs. Equations 1 through 4 each represent the mutation probabilities for multiple branches, which are as follows: n1[ILS, pt1] = n(l3, AB21) = n(l1, BC1) = n(l2, AC1) (5) 1 n2[ILS, pt1] = n(l1, AB21) = n(l2, AB21) = n(l2, BC1) = n(l3, BC1) = n(l1, AC1) = n(l3, AC1) (6) n4[ILS, pt1] = n(l4, AB21) = n(l4, BC1) = n(l4, AC1) (7) n5[ILS, pt1] = n(l5, AB21) = n(l5, BC1) = n(l5, AC1) (8) The gene tree produced by lineage sorting in parent tree 1, AB11, has a different set of mutation probabilities, since the branches have different expected lengths. These are: 1 Z t2−t1 ( ) = ( ) = ( − −m(t1+x)) −x n l1, AB11 n l2, AB11 −( − ) 1 e e dx (9) 1 − e t2 t1 0 1 Z t3−t2 ( ) = ( − −m(t1+(t2−t1)+x)) −x n l3, AB11 −( − ) 1 e e dx (10) 1 − e t3 t2 0 Z t2−t1 − − e y Z t3−t2 e x −m((t2−t1)−y+x) n(l4, AB11) = ( (1 − e ) dx)dy (11) −(t2−t1) −(t3−t2) 0 1 − e 0 1 − e 1 Z t3−t2 ( ) = ( − −m((t3−t2)−x)) −x n l5, AB11 −( − ) 1 e e dx (12) 1 − e t3 t2 0 Now we consider introgression, starting with parent tree 2. Many of the mutation proba- bilities are symmetrical with parent tree 1 and therefore remain the same, and the remain- der have the same general form with different parameters. For the ILS genealogies BC22, AB2, and AC2, equations 1 and 2 have the time of A-B speciation (t1) replaced with the timing of B-C introgression (tm). This gives: Z t3−t2 1 −m(tm+(t2−tm)+x) 3 −x −3x n1[ILS, pt2] = (1 − e ) (e − e )dx (13) L 0 2 Z t3−t2 1 −m(tm+(t2−tm)+x) −3x −((t3−t2)−x) n2[ILS, pt2] = (1 − e )3e (1 − e )dx (14) L 0 n4[ILS, pt2] = n4[ILS, pt1] (15) n5[ILS, pt2] = n5[ILS, pt1] (16) These correspond to the following branch mutation probabilities: n1[ILS, pt2] = n(l1, BC22) = n(l3, AB2) = n(l2, AC2) (17) n2[ILS, pt2] = n(l2, BC22) = n(l3, BC22) = n(l1, AB2) = n(l2, AB2) = n(l1, AC2) = n(l3, AC2) (18) n4[ILS, pt2] = n(l4, BC22) = n(l4, AB2) = n(l4, AC2) (19) n5[ILS, pt2] = n(l5, BC22) = n(l5, AB2) = n(l5, AC2) (20) 2 For the genealogy produced by lineage sorting in parent tree 2, BC12, we have: 1 Z t2−tm ( ) = ( ) = ( − −m(tm+x)) −x n l2, BC12 n l3, BC12 −( − ) 1 e e dx (21) 1 − e t2 tm 0 1 Z t3−t2 ( ) = ( − −m(tm+(t2−tm)+x)) −x n l1, BC12 −( − ) 1 e e dx (22) 1 − e t3 t2 0 Z t2−tm − − e y Z t3−t2 e x −m((t2−tm)−y+x) n(l4, BC12) = ( (1 − e ) dx)dy (23) −(t2−tm) −(t3−t2) 0 1 − e 0 1 − e n(l5, BC12) = n(l5, AB11) (24) Finally, we consider parent tree 3. The mutation probabilities have the same formulation as parent tree 2, with two key changes: since parent tree 3 is shorter (Figure 2 of main text), t2 is replaced by t1. This also applies to the value of L, which we will denote for 1 −3(t3−t1) 3 −(t3−t1) parent tree 3 as L3 = 1 + 2 e − 2 e . For the ILS genealogies BC23, AB3, and AC3, this gives: 1 Z t3−t1 3 −m(tm+(t1−tm)+x) −x −3x n1[ILS, pt3] = (1 − e ) (e − e )dx (25) L3 0 2 1 Z t3−t1 −m(tm+(t1−tm)+x) −3x −((t3−t1)−x) n2[ILS, pt3] = (1 − e )3e (1 − e )dx (26) L3 0 t −t Z 3 1 Z (t −t )−y 1 −3y 3 1 −x −mx n4[ILS, pt3] = 3e ( e (1 − e )dx)dy (27) L3 0 0 1 Z t3−t1 −m((t3−t1)−x) −3x n5[ILS, pt3] = (1 − e )3e dx (28) L3 0 Where: n1[ILS, pt3] = n(l1, BC23) = n(l3, AB3) = n(l2, BC3) (29) n2[ILS, pt3] = n(l2, BC23) = n(l3, BC23) = n(l1, AB3) = n(l2, AB3) = n(l1, AC3) = n(l3, AC3) (30) n4[ILS, pt3] = n(l4, BC23) = n(l4, AB3) = n(l4, AC3) (31) n5[ILS, pt3] = n(l5, BC23) = n(l5, AB3) = n(l5, AC3) (32) Finally, for the genealogy BC13, the mutation probabilities are as follows: 1 Z t1−tm ( ) = ( ) = ( − −m(tm+x)) −x n l2, BC13 n l3, BC13 −( − ) 1 e e dx (33) 1 − e t1 tm 0 1 Z t3−t1 ( ) = ( − −m(tm+(t1−tm)+x)) −x n l1, BC13 −( − ) 1 e e dx (34) 1 − e t3 t1 0 Z t1−tm − − e y Z t3−t1 e x −m((t1−tm)−y+x) n(l4, BC13) = ( (1 − e ) dx)dy (35) −(t1−tm) −(t3−t1) 0 1 − e 0 1 − e 1 Z t3−t1 ( ) = ( − −m((t3−t1)−x)) −x n l5, BC13 −( − ) 1 e e dx (36) 1 − e t3 t1 0 3 2 When does introgression makes hemiplasy more likely than ILS alone? The probability of hemiplasy with C ! B introgression is Pe = (1 − d)Pe[BC1] + d(Pe[BC12] + Pe[BC22]) (37) From this, it can be seen that introgression makes hemiplasy more likely than ILS alone when: Pe[BC12] + Pe[BC22] > Pe[BC1] (38) When is this true? Substituting the relevant expressions from the main text gives: −(t2−tm) (1 − e )v(l4, BC12) ∏(1 − v(li, BC12))+ i6=4 1 −(t2−tm) ( e )v(l4, BC22) ∏(1 − v(li, BC22)) 3 i6=4 1 −(t2−t1) > ( e )v(l4, BC1) ∏(1 − v(li, BC1)) (39) 3 i6=4 −(t2−tm) (1 − e )v(l4, BC12) ∏(1 − v(li, BC12)) > i6=4 1 −(t2−t1) ( e )v(l4, BC1) ∏(1 − v(li, BC1))− 3 i6=4 1 −(t2−tm) ( e )v(l4, BC22) ∏(1 − v(li, BC22)) (40) 3 i6=4 The mutation probabilities on the right side of the inequality are equal since they are on the same topology with the same branch lengths. Therefore, equation 40 can simplified: −(t2−tm) (1 − e )v(l4, BC12) ∏(1 − v(li, BC12)) > i6=4 1 1 −(t2−t1) −(t2−tm) v(l4, BC1) ∏(1 − v(li, BC1))( e − e ) (41) i6=4 3 3 As the most conservative case, let us assume a hybrid speciation scenario where t1 = tm. This represents the most conservative introgression scenario, since Figure 4 in the main text shows that more recent introgression makes hemiplasy more likely. In this case, the right side of the inequality simplifies to 0, leaving −(t2−tm) (1 − e )v(l4, BC12) ∏(1 − v(li, BC12)) > 0 (42) i6=4 This is true whenever t2 > tm, which is true by definition in this model. Therefore, intro- gression always makes hemiplasy more likely than ILS alone. 4 3 Supplementary Figures and Tables Lygosoma sp Prasinohaema virens Lipinia longiceps Prasinohaema sp nov 2 Prasinohaema semoni Lipinia noctua Lipinia albodorsale Lobulia brongersmai Lobulia elegans Prasinohaema prehensicauda Prasinohaema sp nov 1 Prasinohaema flavipes Fojia bumui Lipinia pulchra Papuascincus sp nov Papuascincus stanleyanus 0.3 Supplementary Figure 1: Phylogeny of green-blooded lizards and an outgroup inferred from 3220 UCE gene trees using ASTRAL (data from Rodriguez et al.
Recommended publications
  • Cretaceous Fossil Gecko Hand Reveals a Strikingly Modern Scansorial Morphology: Qualitative and Biometric Analysis of an Amber-Preserved Lizard Hand
    Cretaceous Research 84 (2018) 120e133 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Cretaceous fossil gecko hand reveals a strikingly modern scansorial morphology: Qualitative and biometric analysis of an amber-preserved lizard hand * Gabriela Fontanarrosa a, Juan D. Daza b, Virginia Abdala a, c, a Instituto de Biodiversidad Neotropical, CONICET, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucuman, Argentina b Department of Biological Sciences, Sam Houston State University, 1900 Avenue I, Lee Drain Building Suite 300, Huntsville, TX 77341, USA c Catedra de Biología General, Facultad de Ciencias Naturales, Universidad Nacional de Tucuman, Argentina article info abstract Article history: Gekkota (geckos and pygopodids) is a clade thought to have originated in the Early Cretaceous and that Received 16 May 2017 today exhibits one of the most remarkable scansorial capabilities among lizards. Little information is Received in revised form available regarding the origin of scansoriality, which subsequently became widespread and diverse in 15 September 2017 terms of ecomorphology in this clade. An undescribed amber fossil (MCZ Re190835) from mid- Accepted in revised form 2 November 2017 Cretaceous outcrops of the north of Myanmar dated at 99 Ma, previously assigned to stem Gekkota, Available online 14 November 2017 preserves carpal, metacarpal and phalangeal bones, as well as supplementary climbing structures, such as adhesive pads and paraphalangeal elements. This fossil documents the presence of highly specialized Keywords: Squamata paleobiology adaptive structures. Here, we analyze in detail the manus of the putative stem Gekkota. We use Paraphalanges morphological comparisons in the context of extant squamates, to produce a detailed descriptive analysis Hand evolution and a linear discriminant analysis (LDA) based on 32 skeletal variables of the manus.
    [Show full text]
  • Bibliography and Scientific Name Index to Amphibians
    lb BIBLIOGRAPHY AND SCIENTIFIC NAME INDEX TO AMPHIBIANS AND REPTILES IN THE PUBLICATIONS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BULLETIN 1-8, 1918-1988 AND PROCEEDINGS 1-100, 1882-1987 fi pp ERNEST A. LINER Houma, Louisiana SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 92 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The present alphabetical listing by author (s) covers all papers bearing on herpetology that have appeared in Volume 1-100, 1882-1987, of the Proceedings of the Biological Society of Washington and the four numbers of the Bulletin series concerning reference to amphibians and reptiles. From Volume 1 through 82 (in part) , the articles were issued as separates with only the volume number, page numbers and year printed on each. Articles in Volume 82 (in part) through 89 were issued with volume number, article number, page numbers and year.
    [Show full text]
  • NHBSS 061 1G Hikida Fieldg
    Book Review N$7+IST. BULL. S,$0 SOC. 61(1): 41–51, 2015 A Field Guide to the Reptiles of Thailand by Tanya Chan-ard, John W. K. Parr and Jarujin Nabhitabhata. Oxford University Press, New York, 2015. 344 pp. paper. ISBN: 9780199736492. 7KDLUHSWLOHVZHUHÀUVWH[WHQVLYHO\VWXGLHGE\WZRJUHDWKHUSHWRORJLVWV0DOFROP$UWKXU 6PLWKDQG(GZDUG+DUULVRQ7D\ORU7KHLUFRQWULEXWLRQVZHUHSXEOLVKHGDV6MITH (1931, 1935, 1943) and TAYLOR 5HFHQWO\RWKHUERRNVDERXWUHSWLOHVDQGDPSKLELDQV LQ7KDLODQGZHUHSXEOLVKHG HJ&HAN-ARD ET AL., 1999: COX ET AL DVZHOODVPDQ\ SDSHUV+RZHYHUWKHVHERRNVZHUHWD[RQRPLFVWXGLHVDQGQRWJXLGHVIRURUGLQDU\SHRSOH7ZR DGGLWLRQDOÀHOGJXLGHERRNVRQUHSWLOHVRUDPSKLELDQVDQGUHSWLOHVKDYHDOVREHHQSXEOLVKHG 0ANTHEY & GROSSMANN, 1997; DAS EXWWKHVHERRNVFRYHURQO\DSDUWRIWKHIDXQD The book under review is very well prepared and will help us know Thai reptiles better. 2QHRIWKHDXWKRUV-DUXMLQ1DEKLWDEKDWDZDVP\ROGIULHQGIRUPHUO\WKH'LUHFWRURI1DWXUDO +LVWRU\0XVHXPWKH1DWLRQDO6FLHQFH0XVHXP7KDLODQG+HZDVDQH[FHOOHQWQDWXUDOLVW DQGKDGH[WHQVLYHNQRZOHGJHDERXW7KDLDQLPDOVHVSHFLDOO\DPSKLELDQVDQGUHSWLOHV,Q ZHYLVLWHG.KDR6RL'DR:LOGOLIH6DQFWXDU\WRVXUYH\KHUSHWRIDXQD+HDGYLVHGXV WRGLJTXLFNO\DURXQGWKHUH:HFROOHFWHGIRXUVSHFLPHQVRIDibamusZKLFKZHGHVFULEHG DVDQHZVSHFLHVDibamus somsaki +ONDA ET AL 1RZ,DPYHU\JODGWRNQRZWKDW WKLVERRNZDVSXEOLVKHGE\KLPDQGKLVFROOHDJXHV8QIRUWXQDWHO\KHSDVVHGDZD\LQ +LVXQWLPHO\GHDWKPD\KDYHGHOD\HGWKHSXEOLFDWLRQRIWKLVERRN7KHERRNLQFOXGHVQHDUO\ DOOQDWLYHUHSWLOHV PRUHWKDQVSHFLHV LQ7KDLODQGDQGPRVWSLFWXUHVZHUHGUDZQZLWK H[FHOOHQWGHWDLO,WLVDYHU\JRRGÀHOGJXLGHIRULGHQWLÀFDWLRQRI7KDLUHSWLOHVIRUVWXGHQWV
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • La Collezione Erpetologica Del Museo Civico Di Storia Naturale “G. Doria” Di Genova the Herpetological Collection of the Museo Civico Di Storia Naturale “G
    MUSEOLOGIA SCIENTIFICA MEMORIE • N. 5/2010 • 62-68 Le collezioni erpetologiche dei Musei italiani The herpetological collections of italian museums Stefano Mazzotti (ed.) La collezione erpetologica del Museo Civico di Storia Naturale “G. Doria” di Genova The herpetological collection of the Museo Civico di Storia Naturale “G. Doria” of Genoa Giuliano Doria Museo Civico di Storia Naturale “G. Doria”, Via Brigata Liguria 9. I-16121 Genova. E-mail: [email protected] RIASSUNTO Il primo nucleo della collezione erpetologica del Museo Civico di Storia Naturale “Giacomo Doria” di Genova è costituito dalle raccolte effettuate da Giacomo Doria, fondatore del Museo, nella zona di La Spezia, in Persia (oggi Iran) e in Borneo (insieme a Odoardo Beccari) negli anni 1862-1868. Successivamente la collezione viene incrementata col materiale di numerose spedizioni condotte in tutti i conti - nenti; i risultati di tali raccolte sono stati spesso pubblicati sugli “Annali” del Museo. Nella collezione sono pre - senti 593 specie di Anfibi e 1.456 di Rettili; 171 taxa, attualmente validi, sono rappresentati da tipi. Parole chiave: Anfibi, Rettili, Museo di Genova, annali, tipi. ABSTRACT The first nucleus of the herpetological collection of the Museo Civico di Storia Naturale “Giacomo Doria” (Italy, Genoa) was made up of the specimens collected in the years 1862-1868 near La Spezia (Italy, Liguria), in Persia (now Iran) and in Borneo (with Odoardo Beccari) by its founder, Giacomo Doria. Later, it was increased with thousands of specimens collected during several expeditions throughout all the continents. Many important studies about this rich material have been published in “Annali”, the museum’s journal.
    [Show full text]
  • Standard Common and Current Scientific Names for North American Amphibians, Turtles, Reptiles & Crocodilians
    STANDARD COMMON AND CURRENT SCIENTIFIC NAMES FOR NORTH AMERICAN AMPHIBIANS, TURTLES, REPTILES & CROCODILIANS Sixth Edition Joseph T. Collins TraVis W. TAGGart The Center for North American Herpetology THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY www.cnah.org Joseph T. Collins, Director The Center for North American Herpetology 1502 Medinah Circle Lawrence, Kansas 66047 (785) 393-4757 Single copies of this publication are available gratis from The Center for North American Herpetology, 1502 Medinah Circle, Lawrence, Kansas 66047 USA; within the United States and Canada, please send a self-addressed 7x10-inch manila envelope with sufficient U.S. first class postage affixed for four ounces. Individuals outside the United States and Canada should contact CNAH via email before requesting a copy. A list of previous editions of this title is printed on the inside back cover. THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY BO A RD OF DIRE ct ORS Joseph T. Collins Suzanne L. Collins Kansas Biological Survey The Center for The University of Kansas North American Herpetology 2021 Constant Avenue 1502 Medinah Circle Lawrence, Kansas 66047 Lawrence, Kansas 66047 Kelly J. Irwin James L. Knight Arkansas Game & Fish South Carolina Commission State Museum 915 East Sevier Street P. O. Box 100107 Benton, Arkansas 72015 Columbia, South Carolina 29202 Walter E. Meshaka, Jr. Robert Powell Section of Zoology Department of Biology State Museum of Pennsylvania Avila University 300 North Street 11901 Wornall Road Harrisburg, Pennsylvania 17120 Kansas City, Missouri 64145 Travis W. Taggart Sternberg Museum of Natural History Fort Hays State University 3000 Sternberg Drive Hays, Kansas 67601 Front cover images of an Eastern Collared Lizard (Crotaphytus collaris) and Cajun Chorus Frog (Pseudacris fouquettei) by Suzanne L.
    [Show full text]
  • Density of Three Skink Species on a Sub-Tropical Pacific Island Estimated with Hierarchical Distance Sampling
    Herpetological Conservation and Biology 13(3):507–516. Submitted: 20 May 2017; Accepted: 23 August 2018; Published: 16 December 2018. DENSITY OF THREE SKINK SPECIES ON A SUB-TROPICAL PACIFIC ISLAND ESTIMATED WITH HIERARCHICAL DISTANCE SAMPLING SARAH HAVERY1,3, STEFFEN OPPEL1, NIK COLE2, AND NEIL DUFFIELD1 1Centre for Conservation Science, Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire SG19 2DL, UK 2Durrell Wildlife Conservation Trust, Les Augrès Manor, Trinity, Jersey JE3 5BP, Channel Islands, UK 3Corresponding author, e-mail: [email protected] Abstract.—Henderson Island is an uninhabited island in the South Pacific Ocean with many native vertebrate and invertebrate species, but reptile populations are very poorly known. Reptile populations are typically quantified using simple count statistics, which may not allow robust population comparisons in time or space if detection probability changes. Here, we provide density estimates for three skink species on Henderson Island using repeated point counts and hierarchical distance sampling to estimate skink density while accounting for habitat associations and variation in detectability. Emoia cyanura had the highest density (Mean ± SE, 1,286 ± 225.3 individuals/ha; 95% confidence interval = 912.1–1,812.6), followed by Cryptoblepharus poecilopleurus (762.7 ± 108.3 individuals/ ha; 95% CI = 577.5–1,007.5) and Lipinia noctua (375.7 ± 125.4 individuals/ha; 95% CI = 195.4–722.6). The density of C. poecilopleurus varied by substrate and was higher on rock and gravel, and L. noctua density was higher in areas with larger trees or with less litter cover. We also recorded two gecko species that had not previously been recorded on Henderson Island.
    [Show full text]
  • 1 §4-71-6.5 List of Restricted Animals [ ] Part A: For
    §4-71-6.5 LIST OF RESTRICTED ANIMALS [ ] PART A: FOR RESEARCH AND EXHIBITION SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Hirudinea ORDER Gnathobdellida FAMILY Hirudinidae Hirudo medicinalis leech, medicinal ORDER Rhynchobdellae FAMILY Glossiphoniidae Helobdella triserialis leech, small snail CLASS Oligochaeta ORDER Haplotaxida FAMILY Euchytraeidae Enchytraeidae (all species in worm, white family) FAMILY Eudrilidae Helodrilus foetidus earthworm FAMILY Lumbricidae Lumbricus terrestris earthworm Allophora (all species in genus) earthworm CLASS Polychaeta ORDER Phyllodocida FAMILY Nereidae Nereis japonica lugworm PHYLUM Arthropoda CLASS Arachnida ORDER Acari FAMILY Phytoseiidae 1 RESTRICTED ANIMAL LIST (Part A) §4-71-6.5 SCIENTIFIC NAME COMMON NAME Iphiseius degenerans predator, spider mite Mesoseiulus longipes predator, spider mite Mesoseiulus macropilis predator, spider mite Neoseiulus californicus predator, spider mite Neoseiulus longispinosus predator, spider mite Typhlodromus occidentalis mite, western predatory FAMILY Tetranychidae Tetranychus lintearius biocontrol agent, gorse CLASS Crustacea ORDER Amphipoda FAMILY Hyalidae Parhyale hawaiensis amphipod, marine ORDER Anomura FAMILY Porcellanidae Petrolisthes cabrolloi crab, porcelain Petrolisthes cinctipes crab, porcelain Petrolisthes elongatus crab, porcelain Petrolisthes eriomerus crab, porcelain Petrolisthes gracilis crab, porcelain Petrolisthes granulosus crab, porcelain Petrolisthes japonicus crab, porcelain Petrolisthes laevigatus crab, porcelain Petrolisthes
    [Show full text]
  • Systematics of the Carlia “Fusca” Lizards (Squamata: Scincidae) of New Guinea and Nearby Islands
    Systematics of the Carlia “fusca” Lizards (Squamata: Scincidae) of New Guinea and Nearby Islands George R. Zug Bishop Museum Bulletin in Zoology 5 Bishop Museum Press Honolulu, 2004 Cover: Published by Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i 96817-2704, USA Copyright ©2004 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 0893-312X Zug — Carlia “fusca” Lizards from New Guinea and Nearby Islands v TABLE OF CONTENTS Acknowledgments ......................................................................................................................... vii Abstract ........................................................................................................................................ viii Introduction ................................................................................................................................... 1 Carlia: An Analysis for Species Relationships ........................................................................... 1 Characters and Taxa .................................................................................................................. 2 Phylogenetic Analysis................................................................................................................ 8 New Guinea Carlia “fusca” ....................................................................................................... 9 Materials and Methods.................................................................................................................
    [Show full text]
  • (Genus Lipinia Gray, 1845) from Northeastern Peninsular Malaysia
    Zootaxa 3821 (4): 457–464 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3821.4.4 http://zoobank.org/urn:lsid:zoobank.org:pub:7ADF6369-9512-4929-BB23-68CDDC56F256 A new species of lowland skink (genus Lipinia Gray, 1845) from northeastern Peninsular Malaysia L. LEE GRISMER1, LUKMAN H. B. ISMAIL2, MUHAMMAD TAUFIK AWANG2, SYED A. RIZAL2 & AMIRRUDIN B. AHMAD2 1Department of Biology, La Sierra University, 4500 Riverwalk Parkway, Riverside, California, 92515-8247 USA. E-mail: [email protected] 2School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia. E-mail: [email protected] Abstract A new species of scincid lizard, Lipinia sekayuensis sp. nov. from Hutan Lipur Sekayu, Terengganu State in northeastern Peninsular Malaysia is most similar to L. surda (Boulenger) but differentiated from it and all other species of Lipinia by having the combination of an adult SVL of 42.3 mm; six supralabials; five infralabials; four supraoculars; prefrontals widely separated; two loreals; fused frontoparietals; lower eyelids bearing a large, transparent disc; 21 midbody scale rows; 56 paravertertebral scale rows; 65 ventral scale rows; enlarged, precloacal scales; 10 subdigital lamellae on the third finger; 11, 15, and seven lamellae on the third, fourth, and fifth toes, respectively; distal subdigital lamellae keeled; a me- dian row of slightly enlarged, subcaudal scales present; a generally unicolor, dark-brown dorsum bearing nine very faint, diffuse, darker stripes; and an external ear opening replaced by a scaly, auditory depression.
    [Show full text]
  • Species Richness in Time and Space: a Phylogenetic and Geographic Perspective
    Species Richness in Time and Space: a Phylogenetic and Geographic Perspective by Pascal Olivier Title A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in The University of Michigan 2018 Doctoral Committee: Assistant Professor and Assistant Curator Daniel Rabosky, Chair Associate Professor Johannes Foufopoulos Professor L. Lacey Knowles Assistant Professor Stephen A. Smith Pascal O Title [email protected] ORCID iD: 0000-0002-6316-0736 c Pascal O Title 2018 DEDICATION To Judge Julius Title, for always encouraging me to be inquisitive. ii ACKNOWLEDGEMENTS The research presented in this dissertation has been supported by a number of research grants from the University of Michigan and from academic societies. I thank the Society of Systematic Biologists, the Society for the Study of Evolution, and the Herpetologists League for supporting my work. I am also extremely grateful to the Rackham Graduate School, the University of Michigan Museum of Zoology C.F. Walker and Hinsdale scholarships, as well as to the Department of Ecology and Evolutionary Biology Block grants, for generously providing support throughout my PhD. Much of this research was also made possible by a Rackham Predoctoral Fellowship, and by a fellowship from the Michigan Institute for Computational Discovery and Engineering. First and foremost, I would like to thank my advisor, Dr. Dan Rabosky, for taking me on as one of his first graduate students. I have learned a tremendous amount under his guidance, and conducting research with him has been both exhilarating and inspiring. I am also grateful for his friendship and company, both in Ann Arbor and especially in the field, which have produced experiences that I will never forget.
    [Show full text]
  • Competition Poorly Correlates with Morphological Niche Partitioning In
    Competition poorly correlates with morphological niche partitioning in a radiation of tropical lizards Alex Slavenko1, Allen Allison2, and Shai Meiri3 1The University of Sheffield 2Bishop Museum 3Tel Aviv University May 5, 2020 Abstract Morphology is expected to represent species' ecological niches, based on microhabitat and ecological selection pressures dictating morphological adaptations for efficient performance. However, the presence of competitor species is predicted to cause niches to contract. Therefore, an increase in species richness is expected to lead to narrower niches, and reduced overlap and distances between niches of different species. We tested these predictions on the skink fauna of New Guinea, the world's largest tropical island. We show that, while some morphospace metrics change predictably with species richness, elevation is a stronger predictor of morphospace occupancy. As elevation increases niches become narrower and closer to each other, and overall morphospace occupancy decreases. Highland skinks are, on average, smaller, thinner, and with shorter limbs than lowland species. We hypothesize that harsh climates in highland habitats impose strong selection on skinks to occupy specific areas of morphospace that facilitate efficient thermoregulation in sub-optimal thermal conditions. Competition poorly correlates with morphological niche partitioning in a radiation of tropical lizards Alex Slavenko1,2*, Allen Allison3, Shai Meiri2,4 1 { Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK 2 { School of Zoology, Tel Aviv University, Tel Aviv, Israel 3 { Bernice P. Bishop Museum, Honolulu, USA 4 { The Steinhardt Museum of Natural History, Tel Aviv, Israel * { Corresponding author; a.slavenko@sheffield.ac.uk Article type: Letters Short running title: Morphospace partitioning of tropical lizards Statement of Authorship: AS collected data and designed and performed the statistical analyses.
    [Show full text]