A New Genus and New Species and New Subspecies of Skink from Victoria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
<I>Morethia</I> (Lacertilia: Scincidae)
A NEW SPECIES OF MORETHIA (LACERTILlA: SCINCIDAE) FROM NORTHERN AUSTRALIA, WITH COMMENTS ON THE BIOLOGY AND RELATIONSHIPS OF THE GENUS ALLEN E. GREER The Australian Museum, Sydney ABSTRACT Morethia is a genus of Iygosomine skinks endemic to Australia. This paper provides a description of a new species of Morethia from northern Australia, a diagonsis of the genus, and a discussion of its intra and intergeneric relationships. It also includes a key to the eight currently recognized species of Morethia and notes on their colour pattern, reproduction, behaviour, habitat and distribution. A NEW SPECIES OF MORETHIA In his revision of the Western Australian species of the endemic Australian genus Morethia, Storr (1972) noted that the form ruficauda was "replaced by an undescribed race" in the far north of the Northern Territory. A few years later while reviewing the genus, I "rediscovered" this undescribed form and interpreted it as a distinct species. Dr Storr has graciously allowed me to describe this species, and in appreciation of his original contribution to the taxonomy of the genus (Storr 1972), I take pleasure in naming it Marethia starri New Species Figs 1, 2 (top), and 9 HOLOTYPE: Northern Territory Museum R 1815 - 4.5 km. S. of Noonamah, Northern Territory (12°40' 5., 131°04' E.). Collected by Messrs G. F. Gow and R. W. Wells on 10 November 1975. PARATYPES: Unless speCifically mentioned otherwise, all localities are in the extreme northern part of the Northern Territory. Australian Museum: R 12384 - Yirrkala; R 17411 - Port Keats Mission; R 37225- Koongarra, Mt. Brockman Range; R 41960 - Maningrida Settlement; R 71991- Yirrkala; R 72862 - appox. -
Fowlers Gap Biodiversity Checklist Reptiles
Fowlers Gap Biodiversity Checklist ow if there are so many lizards then they should make tasty N meals for someone. Many of the lizard-eaters come from their Reptiles own kind, especially the snake-like legless lizards and the snakes themselves. The former are completely harmless to people but the latter should be left alone and assumed to be venomous. Even so it odern reptiles are at the most diverse in the tropics and the is quite safe to watch a snake from a distance but some like the Md rylands of the world. The Australian arid zone has some of the Mulga Snake can be curious and this could get a little most diverse reptile communities found anywhere. In and around a disconcerting! single tussock of spinifex in the western deserts you could find 18 species of lizards. Fowlers Gap does not have any spinifex but even he most common lizards that you will encounter are the large so you do not have to go far to see reptiles in the warmer weather. Tand ubiquitous Shingleback and Central Bearded Dragon. The diversity here is as astonishing as anywhere. Imagine finding six They both have a tendency to use roads for passage, warming up or species of geckos ranging from 50-85 mm long, all within the same for display. So please slow your vehicle down and then take evasive genus. Or think about a similar diversity of striped skinks from 45-75 action to spare them from becoming a road casualty. The mm long! How do all these lizards make a living in such a dry and Shingleback is often seen alone but actually is monogamous and seemingly unproductive landscape? pairs for life. -
Testing the Relevance of Binary, Mosaic and Continuous Landscape Conceptualisations to Reptiles in Regenerating Dryland Landscapes
Testing the relevance of binary, mosaic and continuous landscape conceptualisations to reptiles in regenerating dryland landscapes Melissa J. Bruton1, Martine Maron1,2, Noam Levin1,3, Clive A. McAlpine1,2 1The University of Queensland, Landscape Ecology and Conservation Group, School of Geography, Planning and Environmental Management, St Lucia, Australia 4067 2The University of Queensland, ARC Centre of Excellence for Environmental Decisions, St. Lucia, Australia 4067 3Hebrew University of Jerusalem, Department of Geography, Mt. Scopus, Jerusalem, Israel, 91905 Corresponding author: [email protected] Ph: (+61) 409 875 780 The final publication is available at Springer via http://dx.doi.org/10.1007/s10980-015-0157-9 Abstract: Context: Fauna distributions are assessed using discrete (binary and mosaic) or continuous conceptualisations of the landscape. The value of the information derived from these analyses depends on the relevance of the landscape representation (or model) used to the landscape and fauna of interest. Discrete representations dominate analyses of landscape context in disturbed and regenerating landscapes; however within-patch variation suggests that continuous representations may help explain the distribution of fauna in such landscapes. Objectives: We tested the relevance of binary, mosaic, and continuous conceptualisations of landscape context to reptiles in regenerating dryland landscapes. Methods: For each of thirteen reptile groups, we compared the fit of models consisting of one landscape composition and one landscape heterogeneity variable for each of six landscape representations (2 x binary, 2 x mosaic, and 2 x continuous), at three buffer distances. We used Akaike weights to assess the relative support for each model. Maps were created from Landsat satellite images. -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
Frogs & Reptiles NE Vic 2018 Online
Reptiles and Frogs of North East Victoria An Identication and Conservation Guide Victorian Conservation Status (DELWP Advisory List) cr critically endangered en endangered Reptiles & Frogs vu vulnerable nt near threatened dd data deficient L Listed under the Flora and Fauna Guarantee Act (FFG, 1988) Size: of North East Victoria Lizards, Dragons & Skinks: Snout-vent length (cm) Snakes, Goannas: Total length (cm) An Identification and Conservation Guide Lowland Copperhead Highland Copperhead Carpet Python Gray's Blind Snake Nobbi Dragon Bearded Dragon Ragged Snake-eyed Skink Large Striped Skink Frogs: Snout-vent length male - M (mm) Snout-vent length female - F (mm) Austrelaps superbus 170 (NC) Austrelaps ramsayi 115 (PR) Morelia spilota metcalfei – en L 240 (DM) Ramphotyphlops nigrescens 38 (PR) Diporiphora nobbi 8.4 (PR) Pogona barbata – vu 25 (DM) Cryptoblepharus pannosus Snout-Vent 3.5 (DM) Ctenotus robustus Snout-Vent 12 (DM) Guide to symbols Venomous Lifeform F Fossorial (burrows underground) T Terrestrial Reptiles & Frogs SA Semi Arboreal R Rock-dwelling Habitat Type Alpine Bog Montane Forests Alpine Grassland/Woodland Lowland Grassland/Woodland White-lipped Snake Tiger Snake Woodland Blind Snake Olive Legless Lizard Mountain Dragon Marbled Gecko Copper-tailed Skink Alpine She-oak Skink Drysdalia coronoides 40 (PR) Notechis scutatus 200 (NC) Ramphotyphlops proximus – nt 50 (DM) Delma inornata 13 (DM) Rankinia diemensis Snout-Vent 7.5 (NC) Christinus marmoratus Snout-Vent 7 (PR) Ctenotus taeniolatus Snout-Vent 8 (DM) Cyclodomorphus praealtus -
Cryptic Extinction of a Common Pacific Lizard Emoia Impar (Squamata, Scincidae) from the Hawaiian Islands
Cryptic extinction of a common Pacific lizard Emoia impar (Squamata, Scincidae) from the Hawaiian Islands R OBERT F ISHER and I VAN I NEICH Abstract Most documented declines of tropical reptiles are Introduction of dramatic or enigmatic species. Declines of widespread species tend to be cryptic. The early (1900s) decline and xtinctions on islands are rampant and have many extinction of the common Pacific skink Emoia impar from Ecauses. For reptiles, particularly lizards, insular extinc- the Hawaiian Islands is documented here through an tions greatly exceed those of mainland species and the assessment of literature, museum vouchers and recent extinction of smaller lizard species is rarely documented 1991 fieldwork. This decline appears contemporaneous with the (Case et al., ). Incomplete knowledge of island fauna documented declines of invertebrates and birds across the hinders an understanding of the true loss of diversity from Hawaiian Islands. A review of the plausible causal factors these ecosystems, and the issue of morphologically cryptic fi indicates that the spread of the introduced big-headed ant species also masks quanti cation of these extirpations or 2007 fi Pheidole megacephala is the most likely factor in this lizard extinctions (Bickford et al., ). The Paci c Basin ’ decline. The introduction and spread of a similar skink contains the majority of the world s tropical islands. These Lampropholis delicata across the islands appears to are most often inhabited by lizards of the families Scincidae 1995 1996 temporally follow the decline of E. impar, although there and Gekkonidae (Adler et al., ; Allison, ; Fisher, 1997 is no evidence of competition between these species. -
Fauna of Australia 2A
FAUNA of AUSTRALIA 26. BIOGEOGRAPHY AND PHYLOGENY OF THE SQUAMATA Mark N. Hutchinson & Stephen C. Donnellan 26. BIOGEOGRAPHY AND PHYLOGENY OF THE SQUAMATA This review summarises the current hypotheses of the origin, antiquity and history of the order Squamata, the dominant living reptile group which comprises the lizards, snakes and worm-lizards. The primary concern here is with the broad relationships and origins of the major taxa rather than with local distributional or phylogenetic patterns within Australia. In our review of the phylogenetic hypotheses, where possible we refer principally to data sets that have been analysed by cladistic methods. Analyses based on anatomical morphological data sets are integrated with the results of karyotypic and biochemical data sets. A persistent theme of this chapter is that for most families there are few cladistically analysed morphological data, and karyotypic or biochemical data sets are limited or unavailable. Biogeographic study, especially historical biogeography, cannot proceed unless both phylogenetic data are available for the taxa and geological data are available for the physical environment. Again, the reader will find that geological data are very uncertain regarding the degree and timing of the isolation of the Australian continent from Asia and Antarctica. In most cases, therefore, conclusions should be regarded very cautiously. The number of squamate families in Australia is low. Five of approximately fifteen lizard families and five or six of eleven snake families occur in the region; amphisbaenians are absent. Opinions vary concerning the actual number of families recognised in the Australian fauna, depending on whether the Pygopodidae are regarded as distinct from the Gekkonidae, and whether sea snakes, Hydrophiidae and Laticaudidae, are recognised as separate from the Elapidae. -
The Ecology of Lizard Reproductive Output
Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2011) ••, ••–•• RESEARCH The ecology of lizard reproductive PAPER outputgeb_700 1..11 Shai Meiri1*, James H. Brown2 and Richard M. Sibly3 1Department of Zoology, Tel Aviv University, ABSTRACT 69978 Tel Aviv, Israel, 2Department of Biology, Aim We provide a new quantitative analysis of lizard reproductive ecology. Com- University of New Mexico, Albuquerque, NM 87131, USA and Santa Fe Institute, 1399 Hyde parative studies of lizard reproduction to date have usually considered life-history Park Road, Santa Fe, NM 87501, USA, 3School components separately. Instead, we examine the rate of production (productivity of Biological Sciences, University of Reading, hereafter) calculated as the total mass of offspring produced in a year. We test ReadingRG6 6AS, UK whether productivity is influenced by proxies of adult mortality rates such as insularity and fossorial habits, by measures of temperature such as environmental and body temperatures, mode of reproduction and activity times, and by environ- mental productivity and diet. We further examine whether low productivity is linked to high extinction risk. Location World-wide. Methods We assembled a database containing 551 lizard species, their phyloge- netic relationships and multiple life history and ecological variables from the lit- erature. We use phylogenetically informed statistical models to estimate the factors related to lizard productivity. Results Some, but not all, predictions of metabolic and life-history theories are supported. When analysed separately, clutch size, relative clutch mass and brood frequency are poorly correlated with body mass, but their product – productivity – is well correlated with mass. The allometry of productivity scales similarly to metabolic rate, suggesting that a constant fraction of assimilated energy is allocated to production irrespective of body size. -
Code of Practice Captive Reptile and Amphibian Husbandry Nature Conservation Act 1992
Code of Practice Captive Reptile and Amphibian Husbandry Nature Conservation Act 1992 ♥ The State of Queensland, Department of Environment and Science, 2020 Copyright protects this publication. Except for purposes permitted by the Copyright Act, reproduction by whatever means is prohibited without prior written permission of the Department of Environment and Science. Requests for permission should be addressed to Department of Environment and Science, GPO Box 2454 Brisbane QLD 4001. Author: Department of Environment and Science Email: [email protected] Approved in accordance with section 174A of the Nature Conservation Act 1992. Acknowledgments: The Department of Environment and Science (DES) has prepared this code in consultation with the Department of Agriculture, Fisheries and Forestry and recreational reptile and amphibian user groups in Queensland. Human Rights compatibility The Department of Environment and Science is committed to respecting, protecting and promoting human rights. Under the Human Rights Act 2019, the department has an obligation to act and make decisions in a way that is compatible with human rights and, when making a decision, to give proper consideration to human rights. When acting or making a decision under this code of practice, officers must comply with that obligation (refer to Comply with Human Rights Act). References referred to in this code- Bustard, H.R. (1970) Australian lizards. Collins, Sydney. Cann, J. (1978) Turtles of Australia. Angus and Robertson, Australia. Cogger, H.G. (2018) Reptiles and amphibians of Australia. Revised 7th Edition, CSIRO Publishing. Plough, F. (1991) Recommendations for the care of amphibians and reptiles in academic institutions. National Academy Press: Vol.33, No.4. -
Australasian Journal of Herpetology ISSN 1836-5698 (Print)1 Issue 12, 30 April 2012 ISSN 1836-5779 (Online) Australasian Journal of Herpetology
Australasian Journal of Herpetology ISSN 1836-5698 (Print)1 Issue 12, 30 April 2012 ISSN 1836-5779 (Online) Australasian Journal of Herpetology Hoser 2012 - Australasian Journal of Herpetology 9:1-64. Available online at www.herp.net Contents on pageCopyright- 2. Kotabi Publishing - All rights reserved 2 Australasian Journal of Herpetology Issue 12, 30 April 2012 Australasian Journal of Herpetology CONTENTS ISSN 1836-5698 (Print) ISSN 1836-5779 (Online) A New Genus of Coral Snake from Japan (Serpentes:Elapidae). Raymond T. Hoser, 3-5. A revision of the Asian Pitvipers, referred to the genus Cryptelytrops Cope, 1860, with the creation of a new genus Adelynhoserea to accommodate six divergent species (Serpentes:Viperidae:Crotalinae). Raymond T. Hoser, 6-8. A division of the South-east Asian Ratsnake genus Coelognathus (Serpentes: Colubridae). Raymond T. Hoser, 9-11. A new genus of Asian Snail-eating Snake (Serpentes:Pareatidae). Raymond T. Hoser, 10-12-15. The dissolution of the genus Rhadinophis Vogt, 1922 (Sepentes:Colubrinae). Raymond T. Hoser, 16-17. Three new species of Stegonotus from New Guinea (Serpentes: Colubridae). Raymond T. Hoser, 18-22. A new genus and new subgenus of snakes from the South African region (Serpentes: Colubridae). Raymond T. Hoser, 23-25. A division of the African Genus Psammophis Boie, 1825 into 4 genera and four further subgenera (Serpentes: Psammophiinae). Raymond T. Hoser, 26-31. A division of the African Tree Viper genus Atheris Cope, 1860 into four subgenera (Serpentes:Viperidae). Raymond T. Hoser, 32-35. A new Subgenus of Giant Snakes (Anaconda) from South America (Serpentes: Boidae). Raymond T. Hoser, 36-39. -
Impact of Tail Loss on the Behaviour and Locomotor Performance of Two Sympatric Lampropholis Skink Species
Impact of Tail Loss on the Behaviour and Locomotor Performance of Two Sympatric Lampropholis Skink Species Gillian L. Cromie, David G. Chapple* School of Biological Sciences, Monash University, Clayton, Victoria, Australia Abstract Caudal autotomy is an anti-predator behaviour that is used by many lizard species. Although there is an immediate survival benefit, the subsequent absence of the tail may inhibit locomotor performance, alter activity and habitat use, and increase the individuals’ susceptibility to future predation attempts. We used laboratory experiments to examine the impact of tail autotomy on locomotor performance, activity and basking site selection in two lizard species, the delicate skink (Lampropholis delicata) and garden skink (L. guichenoti), that occur sympatrically throughout southeastern Australia and are exposed to an identical suite of potential predators. Post-autotomy tail movement did not differ between the two Lampropholis species, although a positive relationship between the shed tail length and distance moved, but not the duration of movement, was observed. Tail autotomy resulted in a substantial decrease in sprint speed in both species (28– 39%), although this impact was limited to the optimal performance temperature (30uC). Although L. delicata was more active than L. guichenoti, tail autotomy resulted in decreased activity in both species. Sheltered basking sites were preferred over open sites by both Lampropholis species, although this preference was stronger in L. delicata. Caudal autotomy did not alter the basking site preferences of either species. Thus, both Lampropholis species had similar behavioural responses to autotomy. Our study also indicates that the impact of tail loss on locomotor performance may be temperature-dependent and highlights that future studies should be conducted over a broad thermal range. -
NSW REPTILE KEEPERS' LICENCE Species Lists 1006
NSW REPTILE KEEPERS’ LICENCE SPECIES LISTS (2006) The taxonomy in this list follows that used in Wilson, S. and Swan, G. A Complete Guide to Reptiles of Australia, Reed 2003. Common names generally follow the same text, when common names were used, or have otherwise been lifted from other publications. As well as reading this species list, you will also need to read the “NSW Reptile Keepers’ Licence Information Sheet 2006.” That document has important information about the different types of reptile keeper licenses. It also lists the criteria you need to demonstrate before applying to upgrade to a higher class of licence. THESE REPTILES CAN ONLY BE HELD UNDER A REPTILE KEEPERS’ LICENCE OF CLASS 1 OR HIGHER Code Scientific Name Common Name Code Scientific Name Common Name Turtles Monitors E2018 Chelodina canni Cann’s Snake-necked Turtle G2263 Varanus acanthurus Spiney-tailed Monitor C2017 Chelodina longicollis Snake-necked Turtle Q2268 Varanus gilleni Pygmy Mulga Monitor G2019 Chelodina oblonga Oblong Turtle G2271 Varanus gouldii Sand Monitor Y2028 Elseya dentata Northern Snapping Turtle M2282 Varanus tristis Black-Headed Monitor K2029 Elseya latisternum Saw-shelled Turtle Y2776 Elusor macrurus Mary River Turtle E2034 Emydura macquarii Murray Short-necked Turtle Skinks T2031 Emydura macquarii dharra Macleay River Turtle A2464 Acritoscincus platynotum Red-throated Skink T2039 Emydura macquarii dharuk Sydney Basin Turtle W2331 Cryptoblepharus virgatus Cream-striped Wall Skink T2002 Emydura macquarii emmotti Emmott’s Short-necked Turtle W2375