International Nonproprietary Names

Total Page:16

File Type:pdf, Size:1020Kb

International Nonproprietary Names WHO Drug Information Vol 23, No. 3, 2009 World Health Organization WHO Drug Information Contents International Nonproprietary Regulatory Action and News Names Withdrawal of dextropropoxyphene 219 Besifloxacin: approved for bacterial Nomenclature for monoclonal antibodies 195 conjunctivitis 219 Prasugrel: approved for angioplasty Safety and Efficacy Issues patients 219 Mycophenolate mofetil: pure red cell Pemetrexed: approved for advanced aplasia 200 lung cancer 220 Swine flu ADR portal 200 Dronedarone: approved for heart rhythm Propylthiouracil: serious liver injury 201 disorder 220 Fosamprenavir: myocardial infarction 201 First advanced therapy medicinal TNF inhibitors and lupus erythematosus: product approved 221 an emerging association 202 Gemifloxacin: withdrawal of marketing Triamcinolone acetonide: serious ocular authorization application 221 reactions 202 Saxagliptin approved for diabetes 221 Safety updates on insulin glargine 203 Contusugene ladenovec: withdrawal of Fentanyl transdermal patches and application for marketing 222 accidental child exposure 204 Rotigotine transdermal patch: restrictions Clopidogrel interactions with proton lifted 222 pump inhibitors 205 Impact of European Clinical Trials Long-acting beta-agonists in chronic Directive 222 obstructive pulmonary disease 205 WHO list of recently prequalified Varenicline and bupropion: serious medicinal products 223 mental health events 206 Pain medications containing propoxy- Current Topics phene: overdose 207 Forum on international pharmaceutical Latanoprost and rosiglitazone: macular crime 225 edema 207 Illegal online medicine suppliers Metformin, dehydration and lactic targeted 225 acidosis 208 Elimination of river blindness in Mali Montelukast: suicidality and other and Senegal 226 psychiatric reactions 208 Moxidectin for river blindness in Duloxetine: serotonin syndrome 209 phase III clinical trials 226 Is it leflunomide lung? 210 Malaria: evaluation of rapid diagnostic Isotretinoin and acquired hearing tests 227 impairment 210 Pharmacovigilance Focus ATC/DDD Classification ATC/DDD (Temporary) 229 Safety of medicinal products 212 ATC/DDD (Final) 231 Continued/ 193 World Health Organization WHO Drug Information Vol 23, No. 3, 2009 Contents (continued) Recent Publications, Dengue: evaluation of immuno- globulin M tests 235 Information and Events WHO/HAI student manual on Good clinical laboratory practices 234 pharmaceutical promotion 235 Laboratory diagnostic tools for tuberculosis control 234 Recommended International WorldPharma2010: clinical pharmacology 234 Nonproprietary Names Ethical guidelines for epidemiology 235 List 62 237 Announcement The 14th International Conference of Drug Regulatory Authorities (ICDRA) will be hosted by the Health Sciences Authority, Singapore, in collaboration with the World Health Organization The ICDRA will take place in Singapore from 30 November to 3 December 2010 Updated information is available at: http://www.icdra2010.sg http://www.who.int/medicines/icdra 194 WHO Drug Information Vol 23, No. 3, 2009 International Nonproprietary Names Nomenclature for or four syllables. INNs are intended to provide information concerning mAbs to monoclonal antibodies scientists, physicians, pharmacists and other interested parties. In October 2008, the World Health Or- ganization’s (WHO) Programme on The linguistics concerning INNs for mAbs International Nonproprietary Names (INN) can be very problematic. Many groups of convened a Working Group meeting to INNs appear “overcrowded” and many discuss nomenclature for monoclonal have similarities in look or sound. This antibodies (mAbs). The objective of the situation is made more complex by the meeting was to review the current situa- need to include systems for pegylated tion in light of the challenges highlighted mAbs and for radiolabelled mAbs. Addi- during the 46th Consultation on Interna- tionally, mAb conjugates use a second tional Nonproprietary Names (INNs) for word for the non-mAb part. Pharmaceutical Substances in April 2008 (1, 2). The Working Group focused on The length and complexity of the words drafting recommendations for any neces- and stems has led to clumsy, long INNs sary modifications to the system to when compared to INNs for other classes facilitate development of INNs for mAbs. of biologicals and chemicals and the A report from that meeting has now been need to adopt INNs for an ever increasing published and is summarized below. number of mAb products is causing INNs to become ever longer. At present 52 The first INN for a monoclonal antibody names have 4 syllables, 99 have 5 (mAb), muromonab CD3, was adopted syllables and 5 have 6 syllables and this twenty years ago. Following this, the stem trend towards very long names is increas- –mab was proposed and adopted for all ing. The clinical success rate for mAbs is new INNs for mAbs. Between 1991 and relatively low compared with other prod- 1993, the basis of the INN system for ucts, which results in many adopted INNs mAbs was devised with the first infixes for finally remaining unused, at least as source and target of antibodies being names for approved products. formulated. Since 1998, 173 mAb INNs have been published and this class of Usage, stems and sub-stems products now represents a significant The stem -mab is well accepted and proportion of the total number of INNs for recognized as indicating a mAb. How- biologicals. This period also saw a move ever, several antibody products are away from rodent-sequence mAbs to fragments, such as Fab or F(ab’)2 while a humanized or human mAbs. range of other types of fragments (e.g., minibodies) are being developed. It would Requirements for INNs for mAbs be possible to adopt new stems for these, INNs for mAbs must be unique and e.g., -fab, but this would cause confusion unrelated to trade names/trademarks. since several Fab fragments have already They must be distinct and transposable been given an INN with the -mab stem. It into several languages. They need to be is also unclear if -fab would be used for convenient for users and it is preferable all fragments or whether further stems that they be limited to no more than three would also need to be adopted. 195 International Nonproprietary Names WHO Drug Information Vol 23, No. 3, 2009 Sub-stems (infixes) which indicate spe- also in the Fab part of the mAb. Differ- cies sequence/structure of mAbs are ences in glycosylation of mAbs can be widely understood and used. They may introduced deliberately (by glycoengineer- also include some information on how the ing) or occur unintentionally because of mAb may have been produced. Four differences in manufacturing processes. such sub-stems, -zu-,-o-,-u-,-xi- (human- Products are ‘mixtures’ containing differ- ized, mouse, human and chimeric) have ent glycoforms and are not all of one been used, but some e.g., -e- and -i- homogeneous glycoprotein structure. (hamster and primate mAbs), have never Different batches of a product can vary in been used. Nonetheless, it is possible microheterogeneity and, in addition, that this could change in the future: for modification to production processes can example, there is current interest in some result in changes in glycosylation pattern primate antibodies. It has been proposed (and other post-translational modifica- to discontinue the use of sub-stems and tions). Significant clinical effects of glyco- replace them with syllables indicating the sylation may need to be reflected in INNs. specific targets of the mAbs. However, Although most mAbs are glycosylated, this would cause discontinuity with their INNs have not been given terminal existing INNs and ignores any need to Greek letters as has been done for some consider the species origin of the se- other glycoproteins (e.g., hormones). The quence of mAbs. possibility exists that two or more mAbs could be produced which have the same Sub-stems for disease/target are less well amino acid sequence, but differ in glyco- known. The target sub-stems -li- (im- sylation. To introduce terminal Greek munomodulatory) and -tu- (tumour) have letters for all new INNs could cause been used mostly: 48 as -li(m)- and 50 as confusion and discontinuity with existing -tu(m)-, followed by -vi(r)-. Others have INNs. much lower usage. Specific tumour sub- stems (other than -tu(m)-) have been little At present all existing INNs for mAbs used and some have never been used. In relate to mAbs with different amino acid many cases it is possible to select more sequences. If future INN applications are than one sub-stem for a particular mAb. It received for mAbs with the same se- may be necessary to introduce new quence as an existing mAb, but different target-related sub-stems for some types glycosylation, the INN for the latter of antibodies such as bispecific mAbs. application could be the existing INN but with a terminal beta added. Subsequent Post-translational modifications Greek letters could be used for further and implications for INNs INNs for mAbs with this antibody se- MAbs undergo post-translational modifi- quence, as for other glycoproteins. cations which are dependent on the Concern was also raised that the use of expression system used for production. Greek letters to denote any difference in Most of these do not significantly affect glycosylation could lead to product clinical use but some can influence specific INNs which would undermine the pharmacokinetics and/or immunobio- nonproprietary nature of the INN. Never- logical functions. In particular, glycosyla- theless, this is consistent with
Recommended publications
  • Oral Presentations September 23Rd - Rooms 1,2 and 3
    Oral Presentations September 23rd - Rooms 1,2 and 3 Presentation Date Abstract Authors Presenter´s name - Theme Title Code indicated by the author 18498 Thomas Smits; Femke Gresnigt; Thomas Smits Clinical Toxicology/drugs of PERFORMANCE OF AN IMMUNOASSAY Eric Franssen; Milly Attema-de abuse METHOD FOR GAMMA-HYDROXYBUTYRIC Jonge ACID (GHB) IN PATIENTS PRESENTED AT THE EMERGENCY DEPARTMENT, A PROSPECTIVE STUDY 18499 Thomas Smits; Femke Gresnigt; Thomas Smits Clinical Toxicology/drugs of DO WE NEED POINT-OF-CARE TESTING OF Milly Attema-de Jonge; Eric abuse GAMMA-HYDROXYBUTYRIC ACID (GHB) AT Fransse THE EMERGENCY DEPARTMENT? September 23 18730 Lilian H.J. Richter; Julia Menges; Lea Wagmann Clinical Toxicology/drugs of NEW PSYCHOACTIVE SUBSTANCES: Lea Wagmann; Simon D. Brandt; abuse METABOLIC FATE, ISOZYME-MAPPING, 13:30 - 14:45 Folker Westphal; Veit Flockerzi; AND PLASMA PROTEIN BINDING OF 5-APB- ROOM 1 Markus R. Meyer NBOME, 2C-B-FLY-NB2ETO5CL, AND 2C-B- FLY-NBOME 18985 Annelies Cannaert; Marie Annelies Cannaert Clinical Toxicology/drugs of HIDE AND SEEK: OVERCOMING THE Deventer; Melissa Fogarty; abuse MASKING EFFECT OF OPIOID Amanda L.A. Mohr; Christophe P. ANTAGONISTS IN ACTIVITY-BASED Stove SCREENING TESTS 18740 Souleiman El Balkhi ; Roland Souleiman El Balkhi Clinical Toxicology/drugs of METABOLIC INTERACTIONS BETWEEN Lawson; Franck Saint-Marcoux abuse OXYCODONE, BENZODIAZEPINES OR DESIGNER BENZODIAZEPINES PLAY AN IMPORTANT ROLE IN OXYCODONE INTOXICATIONS 19050 Brenda de Winter F de Velde; MN Brenda de Winter Anti-infective drugs POPULATION
    [Show full text]
  • 2020 Prior Authorization Criteria
    2020 PRIOR AUTHORIZATION CRITERIA TABLE OF CONTENTS abiraterone tablet ...................................................................................................................... 217 ABRAXANE .............................................................................................................................. 131 ACTIMMUNE .............................................................................................................................. 14 ADASUVE ................................................................................................................................... 27 ADEMPAS ................................................................................................................................ 197 AFINITOR ................................................................................................................................. 217 AFINITOR DISPERZ ................................................................................................................. 217 AIMOVIG ..................................................................................................................................... 15 ALECENSA ............................................................................................................................... 217 ALIMTA ..................................................................................................................................... 131 ALIQOPA .................................................................................................................................
    [Show full text]
  • Modulation of Allergic Inflammation in the Nasal Mucosa of Allergic Rhinitis Sufferers with Topical Pharmaceutical Agents
    Modulation of Allergic Inflammation in the Nasal Mucosa of Allergic Rhinitis Sufferers With Topical Pharmaceutical Agents Author Watts, Annabelle M, Cripps, Allan W, West, Nicholas P, Cox, Amanda J Published 2019 Journal Title FRONTIERS IN PHARMACOLOGY Version Version of Record (VoR) DOI https://doi.org/10.3389/fphar.2019.00294 Copyright Statement © Frontiers in Pharmacology 2019. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/386246 Griffith Research Online https://research-repository.griffith.edu.au fphar-10-00294 March 27, 2019 Time: 17:52 # 1 REVIEW published: 29 March 2019 doi: 10.3389/fphar.2019.00294 Modulation of Allergic Inflammation in the Nasal Mucosa of Allergic Rhinitis Sufferers With Topical Pharmaceutical Agents Annabelle M. Watts1*, Allan W. Cripps2, Nicholas P. West1 and Amanda J. Cox1 1 Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, QLD, Australia, 2 Menzies Health Institute Queensland, School of Medicine, Griffith University, Southport, QLD, Australia Allergic rhinitis (AR) is a chronic upper respiratory disease estimated to affect between 10 and 40% of the worldwide population. The mechanisms underlying AR are highly complex and involve multiple immune cells, mediators, and cytokines. As such, the development of a single drug to treat allergic inflammation and/or symptoms is confounded by the complexity of the disease pathophysiology. Complete avoidance of allergens that trigger AR symptoms is not possible and without a cure, the available therapeutic options are typically focused on achieving symptomatic relief.
    [Show full text]
  • Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis
    Journal of Allergy Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis Guest Editors: Ralph Mösges, Carlos E. Baena-Cagnani, and Desiderio Passali Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis Journal of Allergy Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis Guest Editors: Ralph Mosges,¨ Carlos E. Baena-Cagnani, and Desiderio Passali Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Journal of Allergy.” All articles are open access articles distributed under the Creative Commons At- tribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board William E. Berger, USA Alan P. Knutsen, USA Fabienne Ranc, France Kurt Blaser, Switzerland Marek L. Kowalski, Poland Anuradha Ray, USA Eugene R. Bleecker, USA Ting Fan Leung, Hong Kong Harald Renz, Germany JandeMonchy,TheNetherlands Clare M Lloyd, UK Nima Rezaei, Iran Frank Hoebers, The Netherlands Redwan Moqbel, Canada Robert P. Schleimer, USA StephenT.Holgate,UK Desiderio Passali, Italy Massimo Triggiani, Italy Sebastian L. Johnston, UK Stephen P. Peters, USA Hugo Van Bever, Singapore Young J. Juhn, USA David G. Proud, Canada Garry Walsh, United Kingdom Contents Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis,RalphMosges,¨ Carlos E. Baena-Cagnani, and Desiderio Passali Volume 2014, Article ID 416236, 2 pages Clinical Efficacy of a Spray Containing Hyaluronic Acid and Dexpanthenol after Surgery in the Nasal Cavity (Septoplasty, Simple Ethmoid Sinus Surgery, and Turbinate Surgery), Ina Gouteva, Kija Shah-Hosseini, and Peter Meiser Volume 2014, Article ID 635490, 10 pages The Effectiveness of Acupuncture Compared to Loratadine in Patients Allergic to House Dust ,Mites Bettina Hauswald, Christina Dill, Jurgen¨ Boxberger, Eberhard Kuhlisch, Thomas Zahnert, and Yury M.
    [Show full text]
  • (CD-P-PH/PHO) Report Classification/Justifica
    COMMITTEE OF EXPERTS ON THE CLASSIFICATION OF MEDICINES AS REGARDS THEIR SUPPLY (CD-P-PH/PHO) Report classification/justification of medicines belonging to the ATC group R01 (Nasal preparations) Table of Contents Page INTRODUCTION 5 DISCLAIMER 7 GLOSSARY OF TERMS USED IN THIS DOCUMENT 8 ACTIVE SUBSTANCES Cyclopentamine (ATC: R01AA02) 10 Ephedrine (ATC: R01AA03) 11 Phenylephrine (ATC: R01AA04) 14 Oxymetazoline (ATC: R01AA05) 16 Tetryzoline (ATC: R01AA06) 19 Xylometazoline (ATC: R01AA07) 20 Naphazoline (ATC: R01AA08) 23 Tramazoline (ATC: R01AA09) 26 Metizoline (ATC: R01AA10) 29 Tuaminoheptane (ATC: R01AA11) 30 Fenoxazoline (ATC: R01AA12) 31 Tymazoline (ATC: R01AA13) 32 Epinephrine (ATC: R01AA14) 33 Indanazoline (ATC: R01AA15) 34 Phenylephrine (ATC: R01AB01) 35 Naphazoline (ATC: R01AB02) 37 Tetryzoline (ATC: R01AB03) 39 Ephedrine (ATC: R01AB05) 40 Xylometazoline (ATC: R01AB06) 41 Oxymetazoline (ATC: R01AB07) 45 Tuaminoheptane (ATC: R01AB08) 46 Cromoglicic Acid (ATC: R01AC01) 49 2 Levocabastine (ATC: R01AC02) 51 Azelastine (ATC: R01AC03) 53 Antazoline (ATC: R01AC04) 56 Spaglumic Acid (ATC: R01AC05) 57 Thonzylamine (ATC: R01AC06) 58 Nedocromil (ATC: R01AC07) 59 Olopatadine (ATC: R01AC08) 60 Cromoglicic Acid, Combinations (ATC: R01AC51) 61 Beclometasone (ATC: R01AD01) 62 Prednisolone (ATC: R01AD02) 66 Dexamethasone (ATC: R01AD03) 67 Flunisolide (ATC: R01AD04) 68 Budesonide (ATC: R01AD05) 69 Betamethasone (ATC: R01AD06) 72 Tixocortol (ATC: R01AD07) 73 Fluticasone (ATC: R01AD08) 74 Mometasone (ATC: R01AD09) 78 Triamcinolone (ATC: R01AD11) 82
    [Show full text]
  • DRUGS REQUIRING PRIOR AUTHORIZATION in the MEDICAL BENEFIT Page 1
    Effective Date: 08/01/2021 DRUGS REQUIRING PRIOR AUTHORIZATION IN THE MEDICAL BENEFIT Page 1 Therapeutic Category Drug Class Trade Name Generic Name HCPCS Procedure Code HCPCS Procedure Code Description Anti-infectives Antiretrovirals, HIV CABENUVA cabotegravir-rilpivirine C9077 Injection, cabotegravir and rilpivirine, 2mg/3mg Antithrombotic Agents von Willebrand Factor-Directed Antibody CABLIVI caplacizumab-yhdp C9047 Injection, caplacizumab-yhdp, 1 mg Cardiology Antilipemic EVKEEZA evinacumab-dgnb C9079 Injection, evinacumab-dgnb, 5 mg Cardiology Hemostatic Agent BERINERT c1 esterase J0597 Injection, C1 esterase inhibitor (human), Berinert, 10 units Cardiology Hemostatic Agent CINRYZE c1 esterase J0598 Injection, C1 esterase inhibitor (human), Cinryze, 10 units Cardiology Hemostatic Agent FIRAZYR icatibant J1744 Injection, icatibant, 1 mg Cardiology Hemostatic Agent HAEGARDA c1 esterase J0599 Injection, C1 esterase inhibitor (human), (Haegarda), 10 units Cardiology Hemostatic Agent ICATIBANT (generic) icatibant J1744 Injection, icatibant, 1 mg Cardiology Hemostatic Agent KALBITOR ecallantide J1290 Injection, ecallantide, 1 mg Cardiology Hemostatic Agent RUCONEST c1 esterase J0596 Injection, C1 esterase inhibitor (recombinant), Ruconest, 10 units Injection, lanadelumab-flyo, 1 mg (code may be used for Medicare when drug administered under Cardiology Hemostatic Agent TAKHZYRO lanadelumab-flyo J0593 direct supervision of a physician, not for use when drug is self-administered) Cardiology Pulmonary Arterial Hypertension EPOPROSTENOL (generic)
    [Show full text]
  • AHFS Pharmacologic-Therapeutic Classification System
    AHFS Pharmacologic-Therapeutic Classification System Abacavir 48:24 - Mucolytic Agents - 382638 8:18.08.20 - HIV Nucleoside and Nucleotide Reverse Acitretin 84:92 - Skin and Mucous Membrane Agents, Abaloparatide 68:24.08 - Parathyroid Agents - 317036 Aclidinium Abatacept 12:08.08 - Antimuscarinics/Antispasmodics - 313022 92:36 - Disease-modifying Antirheumatic Drugs - Acrivastine 92:20 - Immunomodulatory Agents - 306003 4:08 - Second Generation Antihistamines - 394040 Abciximab 48:04.08 - Second Generation Antihistamines - 394040 20:12.18 - Platelet-aggregation Inhibitors - 395014 Acyclovir Abemaciclib 8:18.32 - Nucleosides and Nucleotides - 381045 10:00 - Antineoplastic Agents - 317058 84:04.06 - Antivirals - 381036 Abiraterone Adalimumab; -adaz 10:00 - Antineoplastic Agents - 311027 92:36 - Disease-modifying Antirheumatic Drugs - AbobotulinumtoxinA 56:92 - GI Drugs, Miscellaneous - 302046 92:20 - Immunomodulatory Agents - 302046 92:92 - Other Miscellaneous Therapeutic Agents - 12:20.92 - Skeletal Muscle Relaxants, Miscellaneous - Adapalene 84:92 - Skin and Mucous Membrane Agents, Acalabrutinib 10:00 - Antineoplastic Agents - 317059 Adefovir Acamprosate 8:18.32 - Nucleosides and Nucleotides - 302036 28:92 - Central Nervous System Agents, Adenosine 24:04.04.24 - Class IV Antiarrhythmics - 304010 Acarbose Adenovirus Vaccine Live Oral 68:20.02 - alpha-Glucosidase Inhibitors - 396015 80:12 - Vaccines - 315016 Acebutolol Ado-Trastuzumab 24:24 - beta-Adrenergic Blocking Agents - 387003 10:00 - Antineoplastic Agents - 313041 12:16.08.08 - Selective
    [Show full text]
  • 204760Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 204760Orig1s000 OTHER REVIEW(S) MEMORANDUM DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR DRUG EVALUATION AND RESEARCH DATE: September 16, 2014 FROM: Julie Beitz, MD SUBJECT: Approval Action TO: NDA 204760 Movantik (naloxegol) tablets AstraZeneca Pharmaceuticals LP Summary Naloxegol is an antagonist of opioid binding at the muͲopioid receptor. When administered at the recommended dose levels, naloxegol functions as a peripherallyͲacting opioid receptor antagonist in tissues such as the gastrointestinal tract, thereby decreasing the constipating effects of opioids. Naloxegol is a PEGylated derivative of naloxone and a new molecular entity. Pegylation confers the following properties: naloxegol has reduced passive permeability across membranes compared to naloxone; naloxegol is a PͲglycoprotein (PͲgp) efflux transporter substrate; and naloxegol is orally bioavailable. The reduced passive permeability and PͲgp efflux transporter properties limit CNS entry of naloxegol compared to naloxone. This memo documents my concurrence with the Division of Gastroenterology and Inborn Errors Product’s recommendation for approval of NDA 204760 for Movantik (naloxegol) tablets for the treatment of opioidͲinduced constipation (OIC) in adult patients with chronic nonͲcancer pain. Discussions regarding product labeling, and postmarketing study requirements and commitments have been satisfactorily completed. There are no inspectional issues that preclude approval. Dosing The recommended dose of Movantik (naloxegol) tablets is 25 mg taken once daily in the morning on an empty stomach. Patients who do not tolerate this dose, may reduce the dose to 12.5 mg once daily. Maintenance laxatives should be discontinued prior to initiation of therapy with Movantik.
    [Show full text]
  • Design and Synthesis of Cyclic Analogs of the Kappa Opioid Receptor Antagonist Arodyn
    Design and synthesis of cyclic analogs of the kappa opioid receptor antagonist arodyn By © 2018 Solomon Aguta Gisemba Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Chair: Dr. Blake Peterson Co-Chair: Dr. Jane Aldrich Dr. Michael Rafferty Dr. Teruna Siahaan Dr. Thomas Tolbert Date Defended: 18 April 2018 The dissertation committee for Solomon Aguta Gisemba certifies that this is the approved version of the following dissertation: Design and synthesis of cyclic analogs of the kappa opioid receptor antagonist arodyn Chair: Dr. Blake Peterson Co-Chair: Dr. Jane Aldrich Date Approved: 10 June 2018 ii Abstract Opioid receptors are important therapeutic targets for mood disorders and pain. Kappa opioid receptor (KOR) antagonists have recently shown potential for treating drug addiction and 1,2,3 4 8 depression. Arodyn (Ac[Phe ,Arg ,D-Ala ]Dyn A(1-11)-NH2), an acetylated dynorphin A (Dyn A) analog, has demonstrated potent and selective KOR antagonism, but can be rapidly metabolized by proteases. Cyclization of arodyn could enhance metabolic stability and potentially stabilize the bioactive conformation to give potent and selective analogs. Accordingly, novel cyclization strategies utilizing ring closing metathesis (RCM) were pursued. However, side reactions involving olefin isomerization of O-allyl groups limited the scope of the RCM reactions, and their use to explore structure-activity relationships of aromatic residues. Here we developed synthetic methodology in a model dipeptide study to facilitate RCM involving Tyr(All) residues. Optimized conditions that included microwave heating and the use of isomerization suppressants were applied to the synthesis of cyclic arodyn analogs.
    [Show full text]
  • GC-MS Analysis of an Herbal Medicinal
    SUPPLEMENT TO October 2014 LCGC North America | LCGC Europe | Spectroscopy GC–MS Analysis of an Herbal Medicine Screening Clandestine Drug Operations with Portable Ambient Sampling MS Targeted Protein Quantifi cation Using MS with Data- Independent Acquisition Determination of Methylxanthines and Cotinine in Human Plasma by SPE and LC–MS-MS magentablackcyanyellow ES501473_SpecCTMS1014_CV1.pgs 09.18.2014 21:10 ADV To Unravel the Proteome, Take an Integrated Approach Solving the complexity of the proteome is far more challenging than ESI-Qq-TOF fi rst imagined. That is why Bruker offers a portfolio of integrated MALDI TOF-TOF complementary technologies that together comprise a multidimensional ESI-ITMS toolbox optimized to unlock the proteome’s complexity. Bottom-up and top-down analyses, intact protein analysis as well as in-depth protein ESI-MALDI-FTMS characterization come together to illuminate a more detailed picture of Bioinformatics the proteome, complete with biological context and confi dence in the quality of your MS data. Contact us for solutions to your proteomics challenges. www.bruker.com Proteomics Innovation with Integrity magentablackcyanyellow ES502017_SPECCTMS1014_CV2_FP.pgs 09.19.2014 19:01 ADV magentablackcyanyellow ES502015_SPECCTMS1014_003_FP.pgs 09.19.2014 19:01 ADV 4 Current Trends in Mass Spectrometry October 2014 www.spectroscopyonline.com PUBLISHING & SALES ® 485F US Highway One South, Suite 210, Iselin, NJ 08830 (732) 596-0276, Fax: (732) 647-1235 Michael J. Tessalone Science Group Publisher, [email protected] Edward Fantuzzi Publisher, [email protected] Stephanie Shaffer East Coast Sales Manager, [email protected] (774) 249-1890 Lizzy Thomas MANUSCRIPTS: To discuss possible article topics or obtain manuscript preparation Account Executive, [email protected] guidelines, contact the editorial director at: (732) 346-3020, e-mail: [email protected].
    [Show full text]
  • Heart Failure and Drug-Induced Lupus
    Unusual toxicities with TNF inhibition: Heart failure and drug-induced lupus J.J. Cush John J. Cush, MD, Chief, Rheumatology ABSTRACT demyelinating disease, cytopenias, auto- and Clinical Immunology, Presbyterian Serious and unexpected adverse events, immune disorders, and heart failure. Hospital of Dallas, Clinical Professor of such as heart failure and drug-induced Other essays in this volume address the Internal Medicine, The University of Texas lupus, have been reported in patients subject of infection (10), demyelination Southwestern Medical School, Dallas, Texas, USA. receiving TNF inhibitor therapy. These (11), and lymphoma (12). This review events generally are easily recogniz- will focus on heart failure and lupus- Please address correspondence to: John J. Cush, MD, Presbyterian Hospital able, although they cannot be predicted like disease, which are rarely seen in of Dallas, 8200 Walnut Hill Lane, Dallas, nor avoided, other than by drug avoid- association with TNF inhibitor therapy Texax 75231-4496, USA. ance altogether. Many patients have and are currently without explanation. Clin Exp Rheumatol 2004; 22 (Suppl. 35): great benefit from anti-TNF therapies. S141-S147. Their intelligent use requires a firm Sources of data © Copyright CLINICAL AND EXPERIMENTAL understanding of these rare toxicities, As a consequence of drug approval, RHEUMATOLOGY 2004. so as to minimize the morbidity associ- manufacturers have a responsibility to ated with their uncommon occurrence. collect safety data actively and report Key words: TNF inhibitors, conges- these data to the appropriate agencies. tive heart failure, drug-induced lupus, Introduction For example, in the USA a manufactur- rheumatoid arthritis. The introduction of biologic agents to er must submit periodic safety reports specifically inhibit the pro-inflammato- to the FDA twice yearly (March and ry cytokine, tumor necrosis factor (TNF), September).
    [Show full text]
  • [Product Monograph Template
    PRODUCT MONOGRAPH PrXELJANZ® tofacitinib, tablets, oral 5 mg tofacitinib (as tofacitinib citrate) 10 mg tofacitinib (as tofacitinib citrate) PrXELJANZ® XR tofacitinib extended-release, tablets, oral 11 mg tofacitinib (as tofacitinib citrate) ATC Code: L04AA29 Selective Immunosuppressant Pfizer Canada ULC Date of Preparation: 17,300 Trans-Canada Highway October 24, 2019 Kirkland, Quebec H9J 2M5 TMPF PRISM C.V. c/o Pfizer Manufacturing Holdings LLC Pfizer Canada ULC, Licensee © Pfizer Canada ULC 2019 Submission Control No: 230976 XELJANZ/XELJANZ XR Page 1 of 80 Table of Contents PART I: HEALTH PROFESSIONAL INFORMATION.........................................................3 SUMMARY PRODUCT INFORMATION ........................................................................3 INDICATIONS AND CLINICAL USE..............................................................................3 CONTRAINDICATIONS ...................................................................................................4 ADVERSE REACTIONS..................................................................................................15 DRUG INTERACTIONS ..................................................................................................29 DOSAGE AND ADMINISTRATION..............................................................................34 OVERDOSAGE ................................................................................................................38 ACTION AND CLINICAL PHARMACOLOGY ............................................................38
    [Show full text]