Boolean Functions, Algebraic Curves and Complex Multiplication Jean-Pierre Flori

Total Page:16

File Type:pdf, Size:1020Kb

Boolean Functions, Algebraic Curves and Complex Multiplication Jean-Pierre Flori Boolean functions, algebraic curves and complex multiplication Jean-Pierre Flori To cite this version: Jean-Pierre Flori. Boolean functions, algebraic curves and complex multiplication. General Mathe- matics [math.GM]. Télécom ParisTech, 2012. English. NNT : 2012ENST0003. pastel-00758378 HAL Id: pastel-00758378 https://pastel.archives-ouvertes.fr/pastel-00758378 Submitted on 28 Nov 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 2012-ENST-003 EDITE de Paris Doctorat ParisTech THÈSE pour obtenir le grade de docteur délivré par Télécom ParisTech Spécialité “Informatique et Réseaux” présentée et soutenue publiquement par Jean-Pierre FLORI le 3 février 2012 Fonctions booléennes, courbes algébriques et multiplication complexe Directeur de thèse : Gérard COHEN Directeur de thèse : Hugues RANDRIAM Jury T M. Gary MCGUIRE, Professeur Associé, University College Dublin Rapporteur M. Igor SHPARLINSKI, Professeur, Macquarie University Rapporteur H M. Andreas ENGE, Directeur de Recherche, INRIA Bordeaux-Sud-Ouest & IMB Examinateur Mme Sihem MESNAGER, Maître de Conférence, Université de Paris VIII Examinatrice M. Benjamin SMITH, Chargé de Recherche, INRIA Saclay-Île-de-France & LIX Examinateur È M. Nicolas M. THIÉRY, Maître de Conférence, Université Paris Sud Examinateur M. Gérard COHEN, Professeur, Télécom ParisTech Directeur de Thèse S M. Hugues RANDRIAM, Maître de Conférence, Télécom ParisTech Directeur de Thèse E Télécom ParisTech Grande école de l’Institut Télécom — membre fondateur de ParisTech 46, rue Barrault — 75634 Paris Cedex 13 — Tél. + 33 (0)1 45 81 77 77 — www.telecom-paristech.fr Boolean functions, algebraic curves and complex multiplication Jean-Pierre Flori Jean-Pierre Flori: Boolean functions, algebraic curves and complex multiplication, Thèse de doctorat, c February 2012. To Choupi Abstract The core of this thesis is the study of some mathematical objects or problems of interest in cryptology. As much as possible, the author tried to emphasize the computational aspects of these problems. The topics covered here are indeed not only favorable to experimental investigations, but also to the quasi direct translation of the mathematical concepts involved into concrete algorithms and implementations. The first part is devoted to the study of a combinatorial conjecture whose validity entails the existence of infinite classes of Boolean functions with good cryptographic properties. Although the conjecture seems quite innocuous, its validity remains an open question. Nonetheless, the author sincerely hopes that the theoretical and experimental results presented here will give the reader a good insight into the conjecture. In the second part, some connections between (hyper-)bent functions — a subclass of Boolean functions —, exponential sums and point counting on (hyper)elliptic curves are presented. Bent functions and hyper-bent functions are known to be difficult to classify and to build explicitly. However, exploring the links between these different worlds makes possible to give beautiful answers to theoretical questions and to design efficient algorithms addressing practical problems. The third and last part investigates the theory of (hyper)elliptic curves in a different direction. Several constructions in cryptography indeed rely on the use of highly specific classes of such curves which can not be constructed by classical means. Nevertheless, the so-called “complex multiplication” method solves some of these problems. Class polynomials are fundamental objects for that method, but their construction is usually considered only for maximal orders. The modest contribution of the author is to clarify how a specific flavor of their construction — the complex analytic method — extends to non-maximal orders. Résumé Le cœur de cette thèse est l’étude d’objets ou de problèmes mathématiques intéressants en cryptologie. Autant que possible, l’auteur a essayé de mettre en avant les aspects calculatoires de tels problèmes. Les thèmes traités ici sont en effet non seulement propices aux approches expérimentales, mais aussi à une transposition quasiment immédiate des concepts mathématiques en implémentations concrètes. La première partie de cette thèse est dévolue à l’étude d’une conjecture combinatoire dont la validité assure l’existence de familles infinies de fonctions booléennes dotées de propriétés cryptographiques intéressantes. Quoique particulièrement innocente au premier abord, la validité de cette conjecture reste un problème ouvert. Néanmoins, l’auteur espère que les résultats théoriques et expérimentaux présentés ici permettront au lecteur d’acquérir un tant soit peu de familiarité avec la conjecture. Dans la seconde partie de ce manuscrit, des liens entre fonctions (hyper-)courbes — une classe particulière de fonctions booléennes —, sommes exponentielles et courbes (hyper)elliptiques sont présentés. Les fonctions (hyper-)courbes sont en effet particulièrement difficiles à classifier et à construire. L’étude des liens mentionnés ci-dessus permet de résoudre de façon élégante des problèmes d’ordre tout aussi bien théorique que pratique. La troisième et dernière partie pousse plus avant l’étude des courbes (hyper)elliptiques d’un point de vue sensiblement différent. De nombreuses constructions cryptographiques reposent en effet sur l’utilisation de classes particulières de telles courbes qui ne peuvent être construites en utilisant des méthodes classiques. Cependant, la méthode CM permet de donner une réponse positive à ce problème. Les polynômes de classes sont des objets fondamentaux de cette méthode. Habituellement, leur construction n’est envisagée que pour des ordres maximaux. La modeste contribution de l’auteur est d’expliciter comment une telle construction — la méthode analytique complexe — s’étend aux ordres non-maximaux. Acknowledgments Vladimir. — Quand j’y pense. depuis le temps. je me demande. ce que tu serais devenu. sans moi. (Avec décision.) Tu ne serais plus qu’un petit tas d’ossements à l’heure qu’il est, pas d’erreur. En attendant Godot Samuel Beckett [11] Le Niolo est le bassin supérieur du Golo, en amont du défilé de la Scala di Santa Regina. Large cuvette granitique d’une alt. moyenne de l’ordre de 900 m, dominée au N. par le chaînon du Cinto et au S. par les crêtes qui le séparent de la haute vallée du Tavignano, c’est une région très nettement délimitée qui, avant l’ouverture de la route D84 (ex RF9), n’était accessible que par quelques cols franchis par des sentiers muletiers et bloqués par la neige une partie de l’année. Ce réel isolement par rapport au reste de l’île a fortement marqué la population du Niolo au cours des siècles et lui a conféré une certaine originalité qui se manifeste encore de nos jours dans différents domaines. Guide des montagnes corses Michel Fabrikant [88] I shall first thank both my Ph.D. advisors — Gérard Cohen and Hugues Randriam — without whom this work would have never been possible: you have let me wander in the directions I wanted for three years, and I will always be grateful to you for the wonderful ideas we shared together and that liberty you gave me. Next comes Sihem Mesnager who was kind enough to share her research interests and collaborate with me. Much of the content of this thesis would have been far different if I did not have the chance to meet you. I also had the chance to collaborate with Hervé Chabanne and Alain Patey from Morpho even though no trace of this work appears in the present memoir. As a rather fortunate consequence of this collaboration, I was forced to take my first step on the South-American continent. I am also extremely grateful to Gary McGuire and Igor Shparlinski who accepted to go through the hassle of reading this memoir and to write a report, as well as to Andreas Enge, Nicolas M. Thiéry and Benjamin Smith who accepted to be part of my defense jury. I should not forget the former and current members of the MIC2 team: David Auger and Céline Chevalier with whom I shared my office and my days; David xii Acknowledgments Madore, Bertrand Meyer and Jacques Sakarovitch who answered my silly questions; and finally Irène Charon, Laurent Decreusefond, Olivier Hudry, Antoine Lobstein and Süleyman Üstünel. From the INFRES department, I also have a thought for Jean Leneutre and Ahmed Serhrouchni — you once saved my computer during one of my lonely Sunday afternoons at Télécom ParisTech. To go on with the scientific aspect of these past three years, I must also thank the fellow members of the “Groupe de Travail de la Butte aux Cailles” — Alain Couvreur, Luca De Feo and Jérôme Plût — for keeping my modest initiative alive for more than two years. I have the feeling that we even managed to build something more than a purely mathematical relation. Finally, I can not omit my new colleagues from the ANSSI: Loïc Duflot, Olivier Levillain, and the members of the “Laboratoire de Cryptographie” — Aurélie Bauer, Thomas Fuhr, Henri Gilbert, Jean-René Reinhard, Yannick Seurin, Joana Treger–Marim. You have warmly welcomed me and offered me exceptional conditions to finish the writing of this manuscript. I hope that the near future will see the beginning of a long lasting collaboration between us. On the technical side, I guess most of the work I conducted during the past three years would have not been possible without the use of a wide spectrum of free and open source software among which I will only mention a few: the Debian operating system, the LATEX typesetting system, the GNU Compiler Collection and the Sage project. I will do my best to contribute back to these projects. I am also grateful to the maintainers of the arxiv.org and iacr.org preprint servers and the numerous authors making their results freely available there.
Recommended publications
  • A Comparitive Study of Asymmetric Key Cryptography
    Vol-5 Issue-3 2019 IJARIIE-ISSN(O)-2395-4396 A COMPARITIVE STUDY OF ASYMMETRIC KEY CRYPTOGRAPHY Dr. Prashant P. Pittalia Associate Professor, Department of Computer Science, Gujarat, India ABSTRACT Cryptography is use to secure the computer networks. Cryptography converts the plain text into cipher text such a way that it is impossible for intruders to read and understand the content. Asymmetric key cryptography is based on the public key and private key concepts to support the confidentiality and authentication services in computer networks. This paper describes how confidentiality and authentication service provides by asymmetric key algorithms. In this paper the discussion and comparison of a asymmetric key algorithms like RSA, Diffie-Hellman, ElGamal and ECC. Keyword: - RSA, Authentication, Public key, Private Key, Confidentiality 1. INTRODUCTION Today in global village the internet security is the challenging aspect and cryptography is used for it. Cryptography is the mathematical techniques of information security. It supports confidentiality, privacy, and data integrity and entity authentication. Cryptography systems classified into two main categories symmetric-key cryptography that use a symmetric key used by both sender and recipient and a public-key cryptography that use two keys, a public key known to everyone in the network and a private key that is used by only the recipient of the messages. Symmetric algorithms use the same secret key for both encryption of plaintext and decryption of cipher text. The keys may be same or there may be an easy transformation to go between the two keys. The key is shared between the two parties (sender and receiver) who want to communicate.
    [Show full text]
  • Abelian Solutions of the Soliton Equations and Riemann–Schottky Problems
    Russian Math. Surveys 63:6 1011–1022 c 2008 RAS(DoM) and LMS Uspekhi Mat. Nauk 63:6 19–30 DOI 10.1070/RM2008v063n06ABEH004576 Abelian solutions of the soliton equations and Riemann–Schottky problems I. M. Krichever Abstract. The present article is an exposition of the author’s talk at the conference dedicated to the 70th birthday of S. P. Novikov. The talk con- tained the proof of Welters’ conjecture which proposes a solution of the clas- sical Riemann–Schottky problem of characterizing the Jacobians of smooth algebraic curves in terms of the existence of a trisecant of the associated Kummer variety, and a solution of another classical problem of algebraic geometry, that of characterizing the Prym varieties of unramified covers. Contents 1. Introduction 1011 2. Welters’ trisecant conjecture 1014 3. The problem of characterization of Prym varieties 1017 4. Abelian solutions of the soliton equations 1018 Bibliography 1020 1. Introduction The famous Novikov conjecture which asserts that the Jacobians of smooth alge- braic curves are precisely those indecomposable principally polarized Abelian vari- eties whose theta-functions provide explicit solutions of the Kadomtsev–Petviashvili (KP) equation, fundamentally changed the relations between the classical algebraic geometry of Riemann surfaces and the theory of soliton equations. It turns out that the finite-gap, or algebro-geometric, theory of integration of non-linear equa- tions developed in the mid-1970s can provide a powerful tool for approaching the fundamental problems of the geometry of Abelian varieties. The basic tool of the general construction proposed by the author [1], [2]which g+k 1 establishes a correspondence between algebro-geometric data Γ,Pα,zα,S − (Γ) and solutions of some soliton equation, is the notion of Baker–Akhiezer{ function.} Here Γis a smooth algebraic curve of genus g with marked points Pα, in whose g+k 1 neighborhoods we fix local coordinates zα, and S − (Γ) is a symmetric prod- uct of the curve.
    [Show full text]
  • 1 Introduction 2 the Schottky Problem
    The Schottky problem and second order theta functions Bert van Geemen December Introduction The Schottky problem arose in the work of Riemann To a Riemann surface of genus g one can asso ciate a p erio d matrix which is an element of a space H of dimension g g Since the g Riemann surfaces themselves dep end on only g parameters if g the question arises as to how one can characterize the set of p erio d matrices of Riemann surfaces This is the Schottky problem There have b een many approaches and a few of them have b een succesfull All of them exploit a complex variety a ppav and a subvariety the theta divisor which one can asso ciate to a p oint in H When the p oint is the p erio d matrix of a Riemann surface this variety is g known as the Jacobian of the Riemann surface A careful study of the geometry and the functions on these varieties reveals that Jacobians and their theta divisors have various curious prop erties Now one attempts to show that such a prop erty characterizes Jacobians We refer to M Lectures III and IV for a nice exp osition of four such metho ds to vdG B D for overviews of later results and V for a newer approach In these notes we discuss a particular approach to the Schottky problem which has its origin the work of Schottky and Jung and unpublished work of Riemann It uses the fact that to a genus g curve one can asso ciate certain ab elian varieties of dimension g the Prym varieties In our presentation we emphasize an intrinsic line bundle on a ppav principally p olarized ab elian variety and the action
    [Show full text]
  • Newsletter37.Pdf
    CONTENTS EDITORIAL TEAM EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF ROBIN WILSON Department of Pure Mathematics The Open University Milton Keynes MK7 6AA, UK e-mail: [email protected] ASSOCIATE EDITORS STEEN MARKVORSEN Department of Mathematics Technical University of Denmark Building 303 DK-2800 Kgs. Lyngby, Denmark NEWSLETTER No. 37 e-mail: [email protected] KRZYSZTOF CIESIELSKI September 2000 Mathematics Institute Jagiellonian University Reymonta 4 30-059 Kraków, Poland EMS News : Agenda, Editorial, 3ecm report, Summer Schools ...................... 2 e-mail: [email protected] KATHLEEN QUINN The Open University [address as above] Mathematical Modelling in the Biosciences (Philip Maini) .......................... 16 e-mail: [email protected] SPECIALIST EDITORS EMS Poster Competition ............................................................................... 19 INTERVIEWS Steen Markvorsen [address as above] SOCIETIES Interview with Martin Grötschel ................................................................... 20 Krzysztof Ciesielski [address as above] EDUCATION Vinicio Villani Interview with Bernt Wegner ........................................................................ 24 Dipartimento di Matematica Via Bounarotti, 2 56127 Pisa, Italy A stamp for World Mathematical Year ..........................................................27 e-mail: [email protected] MATHEMATICAL PROBLEMS Paul Jainta Societies: The London Mathematical Society ................................................ 28 Werkvolkstr.
    [Show full text]
  • Discrete and Complex Algorithms for Curves
    Discrete and Complex Algorithms for Curves Lynn Chua Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2020-42 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-42.html May 11, 2020 Copyright © 2020, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Discrete and Complex Algorithms for Curves by Lynn Chua A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Alessandro Chiesa, Co-chair Professor Bernd Sturmfels, Co-chair Professor Kenneth Ribet Spring 2020 The dissertation of Lynn Chua, titled Discrete and Complex Algorithms for Curves, is approved: Co-chair Date Co-chair Date Date University of California, Berkeley Discrete and Complex Algorithms for Curves Copyright 2020 by Lynn Chua 1 Abstract Discrete and Complex Algorithms for Curves by Lynn Chua Doctor of Philosophy in Computer Science University of California, Berkeley Professor Alessandro Chiesa, Co-chair Professor Bernd Sturmfels, Co-chair This dissertation consists of two parts. The first part pertains to the Schottky problem, which asks to characterize Jacobians of curves amongst abelian varieties.
    [Show full text]
  • Notices of the American Mathematical Society
    CALENDAR OF AMS MEETINGS THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of the NOTICES was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the American Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF CONTRIBUTED PAPERS should be submitted on special forms which are available in most de­ partments of mathematics; forms can also be obtained by writing to the headquarters of the Society. Abstracts of papers to be presented at the meeting in person must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline for the meeting. Note that the deadline for abstracts to be considered for presentation at special sessions is three weeks earlier than that given below. For additional information consult the meeting announcement and the list of organizers of special sessions. MEETING ABSTRACTS NUMBER DATE PLACE DEADLINE for ISSUE 768 August 21-25, 1979 Duluth, Minnesota JUNE 12 August (83rd Summer Meeting) 769 October 20-21, 1979 Washington, D.C. AUGUST 22} October 770 November 2-3, 1979 Kent, Ohio AUGUST 27 771 November 9-10, 1979 Birmingham, Alabama SEPTEMBER 19 } November 772 November 16-17,
    [Show full text]
  • A Selection of New Arrivals September 2017
    A selection of new arrivals September 2017 Rare and important books & manuscripts in science and medicine, by Christian Westergaard. Flæsketorvet 68 – 1711 København V – Denmark Cell: (+45)27628014 www.sophiararebooks.com AMPERE, Andre-Marie. Mémoire. INSCRIBED BY AMPÈRE TO FARADAY AMPÈRE, André-Marie. Mémoire sur l’action mutuelle d’un conducteur voltaïque et d’un aimant. Offprint from Nouveaux Mémoires de l’Académie royale des sciences et belles-lettres de Bruxelles, tome IV, 1827. Bound with 18 other pamphlets (listed below). [Colophon:] Brussels: Hayez, Imprimeur de l’Académie Royale, 1827. $38,000 4to (265 x 205 mm). Contemporary quarter-cloth and plain boards (very worn and broken, with most of the spine missing), entirely unrestored. Preserved in a custom cloth box. First edition of the very rare offprint, with the most desirable imaginable provenance: this copy is inscribed by Ampère to Michael Faraday. It thus links the two great founders of electromagnetism, following its discovery by Hans Christian Oersted (1777-1851) in April 1820. The discovery by Ampère (1775-1836), late in the same year, of the force acting between current-carrying conductors was followed a year later by Faraday’s (1791-1867) first great discovery, that of electromagnetic rotation, the first conversion of electrical into mechanical energy. This development was a challenge to Ampère’s mathematically formulated explanation of electromagnetism as a manifestation of currents of electrical fluids surrounding ‘electrodynamic’ molecules; indeed, Faraday directly criticised Ampère’s theory, preferring his own explanation in terms of ‘lines of force’ (which had to wait for James Clerk Maxwell (1831-79) for a precise mathematical formulation).
    [Show full text]
  • Schottky Algorithms: Classical Meets Tropical Arxiv:1707.08520V2
    Schottky Algorithms: Classical meets Tropical Lynn Chua, Mario Kummer and Bernd Sturmfels Abstract We present a new perspective on the Schottky problem that links numerical computing with tropical geometry. The task is to decide whether a symmetric matrix defines a Jacobian, and, if so, to compute the curve and its canonical embedding. We offer solutions and their implementations in genus four, both classically and tropically. The locus of cographic matroids arises from tropicalizing the Schottky{Igusa modular form. 1 Introduction The Schottky problem [11] concerns the characterization of Jacobians of genus g curves among all abelian varieties of dimension g. The latter are parametrized by the Siegel upper-half space Hg, i.e. the set of complex symmetric g × g matrices τ with positive definite imaginary part. The Schottky locus Jg is the subset of matrices τ in Hg that represent Jacobians. Both sets are complex analytic spaces whose dimensions reveal that the inclusion is proper for g ≥ 4: g + 1 dim(J ) = 3g − 3 and dim(H ) = : (1) g g 2 For g = 4, the dimensions in (1) are 9 and 10, so J4 is an analytic hypersurface in H4. The equation defining this hypersurface is a polynomial of degree 16 in the theta constants. First constructed by Schottky [23], and further developed by Igusa [15], this modular form embodies the theoretical solution (cf. [11, x3]) to the classical Schottky problem for g = 4. arXiv:1707.08520v2 [math.AG] 30 Sep 2018 The Schottky problem also exists in tropical geometry [19]. The tropical Siegel space trop Hg is the cone of positive definite g × g-matrices, endowed with the fan structure given by trop the second Voronoi decomposition.
    [Show full text]
  • The Schottky Problem
    The Schottky Problem Samuel Grushevsky Princeton University January 29, 2009 | MSRI What is the Schottky problem? Schottky problem is the following question (over C): Which principally polarized abelian varieties are Jacobians of curves? Mg moduli space of curves C of genus g Ag moduli space of g-dimensional abelian varieties (A; Θ) (complex principally polarized) Jac : Mg ,!Ag Torelli map Jg := Jac(Mg ) locus of Jacobians (Recall that A is a projective variety with a group structure; Θ is an ample divisor on A with h0(A; Θ) = 1; Jac(C) = Picg−1(C) ' Pic0(C)) Schottky problem. Describe/characterize Jg ⊂ Ag . Why might we care about the Schottky problem? Relates two important moduli spaces. Lots of beautiful geometry arises in this study. A \good" answer could help relate the geometry of Mg and Ag . Could have applications to problems about curves easily stated in terms of the Jacobian: Coleman's conjecture For g sufficiently large there are finitely many curves of genus g such that their Jacobians have complex multiplication. Stronger conjecture (+ Andre-Oort =) Coleman). There do not exist any complex geodesics for the natural metric on Ag that are contained in Jg (and intersect Jg ). [Work on this by M¨oller-Viehweg-Zuo;Hain, Toledo...] (Super)string scattering amplitudes [D'Hoker-Phong], . Dimension counts g dim Mg dim Ag 1 1 = 1 indecomposable 2 3 = 3 Mg = Ag 3 6 = 6 4 9 +1 = 10 Schottky0s original equation 5 12 +3 = 15 Partial results (g−3)(g−2) g(g+1) g 3g − 3 + 2 = 2 \weak" solutions (up to extra components) Classical (Riemann-Schottky) approach N Embed Ag into P and write equations for the image of Jg .
    [Show full text]
  • On the Schottky Problem for Genus Five Jacobians with a Vanishing Theta Null
    On the Schottky problem for genus five Jacobians with a vanishing theta null Daniele Agostini and Lynn Chua Abstract We give a solution to the weak Schottky problem for genus five Jacobians with a vanishing theta null, answering a question of Grushevsky and Salvati Manni. More precisely, we show that if a principally polarized abelian variety of dimension five has a vanishing theta null with a quadric tangent cone of rank at most three, then it is in the Jacobian locus, up to extra irreducible components. We employ a degeneration argument, together with a study of the ramification loci for the Gauss map of a theta divisor. 1 Introduction The Schottky problem asks to recognize the Jacobian locus Jg inside the moduli space Ag of principally polarized abelian varieties of dimension at least 4, and it has been a central problem in algebraic geometry for more than a century. In the most classical interpretation, the problem asks for equations in the period matrix τ that vanish exactly on the Jacobian locus. In this form, the Schottky problem is completely solved only in genus 4, with an explicit equation given by Schottky [Sch88] and Igusa [Igu81]. The weak Schottky problem asks for explicit equations that characterize Jacobians up to extra irreducible components. A solution to this problem was given in genus 5 by Accola [Acc83] and, in a recent breakthrough, by Farkas, Grushevsky and Salvati Manni in all genera [FGS17]. arXiv:1905.09366v1 [math.AG] 22 May 2019 There have been many other approaches to the Schottky problem over the years; see [Gru12] for a recent survey.
    [Show full text]
  • The Converse of Abel's Theorem by Veniamine Kissounko a Thesis
    The Converse of Abel’s Theorem by Veniamine Kissounko A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Mathematics University of Toronto Copyright c 2009 by Veniamine Kissounko Abstract The Converse of Abel’s Theorem Veniamine Kissounko Doctor of Philosophy Graduate Department of Mathematics University of Toronto 2009 In my thesis I investigate an algebraization problem. The simplest, but already non- trivial, problem in this direction is to find necessary and sufficient conditions for three graphs of smooth functions on a given interval to belong to an algebraic curve of degree three. The analogous problems were raised by Lie and Darboux in connection with the classification of surfaces of double translation; by Poincare and Mumford in connection with the Schottky problem; by Griffiths and Henkin in connection with a converse of Abel’s theorem; by Bol and Akivis in the connection with the algebraization problem in the theory of webs. Interestingly, the complex-analytic technique developed by Griftiths and Henkin for the holomorphic case failed to work in the real smooth setting. In the thesis I develop a technique of, what I call, complex moments. Together with a simple differentiation rule it provides a unified approach to all the algebraization problems considered so far (both complex-analytic and real smooth). As a result I prove two variants (’polynomial’ and ’rational’) of a converse of Abel’s theorem which significantly generalize results of Griffiths and Henkin. Already the ’polynomial’ case is nontrivial leading to a new relation between the algebraization problem in the theory of webs and the converse of Abel’s theorem.
    [Show full text]
  • AUTUMN 2012 8/10/12 13:17 Page 1
    sip AUTUMN 2012 8/10/12 13:17 Page 1 SCIENCE IN PARLIAMENT A proton collides with a proton The Higgs boson appears at last sip AUTUMN 2012 The Journal of the Parliamentary and Scientific Committee www.scienceinparliament.org.uk sip AUTUMN 2012 8/10/12 13:17 Page 2 Physics for All Science and engineering students are important for the future of the UK IOP wants to see more people studying physics www.iop.org / 35 $' 3$5/, $ LQGG sip AUTUMN 2012 8/10/12 13:17 Page 3 Last years's winter of discontent was indeed made SCIENCE IN PARLIAMENT glorious summer by several sons and daughters of York. So many medals in the Olympics were won by scions of Yorkshire that the county claimed tenth place in the medals table, something hard to accept on my side of the Pennines! As well as being fantastic athletic performances the Olympics and Paralympics were stunning demonstrations of the efficiency of UK engineering, and sip the imagination of British science. The Journal of the Parliamentary and Scientific Surely we have good reason to be all eagerly awaiting Andrew Miller MP Committee. Chairman, Parliamentary The Committee is an Associate Parliamentary the announcements from Stockholm of this year's Nobel and Scientific Group of members of both Houses of Prizes? Surely the Higgs boson will be recognised? John Committee Parliament and British members of the European Parliament, representatives of Ellis recently eloquently described the "legacy" of the scientific and technical institutions, industrial hadron collider and we would be missing an important organisations and universities.
    [Show full text]