Two Major Satellite Breakups Near End of 2001 Two Major Satellite Breakups, the Worst in for Each
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modèle Document
AVISO DT CorSSH and DT SLA Product Handbook Reference: CLS-DOS-NT-08.341 Nomenclature: - Issue: 2 rev 0 Date: October 2012 Aviso Altimetry 8-10 rue Hermès, 31520 Ramonville St Agne, France – [email protected] DT CorSSH and DT SLA Product Handbook CLS-DOS-NT-08.341 Iss :2.9 - date : 28/02/2012 - Nomenclature: - i.1 Chronology Issues: Issue: Date: Reason for change: 1.0 2005/07/18 1st issue 1.1 2005/11/08 Processing of ERS-2 data 1.2 2005/10/17 Processing of GFO data 1.3 2008/06/10 New standards for corrections and models for Jason-1 1.4 2008/08/07 New standards for corrections and models for Envisat after cycle 65. 1.5 2008/12/18 New standards for corrections and models for Jason-1 GDR-C. 1.6 2010/03/05 New standards for Jason-2 1.7 2010/06/08 New standards for corrections and/or models Processing of ERS-1 data 1.8 2011/04/14 Correction of table 2 1.9 2012/02/28 Specification of the reading routines for SLA files only 2.0 2012/10/16 New geodetic orbit for Jason-1 (c≥500) New version D for Jason-2 (c≥146) D : page deleted I : page inserted M : page modified DT CorSSH and DT SLA Product Handbook CLS-DOS-NT-08.341 Iss :2.9 - date : 28/02/2012 - Nomenclature: - i.2 List of Acronyms: ATP Along Track Product Aviso Archiving, Validation and Interpretation of Satellite Oceanographic data Cersat Centre ERS d’Archivage et de Traitement CLS Collecte, Localisation, Satellites CMA Centre Multimissions Altimetriques Cnes Centre National d’Etudes Spatiales CorSSH Corrected Sea Surface Height Doris Doppler Orbitography and Radiopositioning Integrated -
Unmanned Satellites on Postage Stamps 42. Aryabhata, Bhaskara, Rohini, and Badr Series Satellites by Don Hillger - SU 5200 and Garry Toth (Coauthor)
Unmanned Satellites on Postage Stamps 42. Aryabhata, Bhaskara, Rohini, and Badr Series Satellites by Don Hillger - SU 5200 and Garry Toth (Coauthor) This is the forty-second in a series of quasi-spherical polyhedron, about 1.6 articles about unmanned satellites on m in diameter. postage stamps. In this article we cover Since the body of the spacecraft scientific satellites from Southern Asia: is similar for both Aryabhata and the Aryabhata, Bhaskara, and Rohini Bhaskara, it is assumed that the satellites from India, and the Badr antennas can be used to distinguish satellite from Pakistan. between the two. For Aryabhata, the TheAryabhata satellite was India’s antennas appear to be attached to the first satellite, launched 19 April 1975. widest part of the spacecraft body. For It was completely designed and Bhaskara, the antennas appear to be manufactured in India but launched by attached to the angled part of the body. Russia. The spacecraft, named after the The first Rohini was the first Indian- famous Indian astronomer Aryabhata built satellite that was also launched (476-550), was a scientific satellite by them, on 18 July 1980. Three used to measure cosmic X-rays, solar Rohinis were launched through 1983. neutrons, gamma rays, ionospheric Although some sources identify electrons, and UV rays. With 26 sides, it as a spherical satellite, 0.6 m in the spacecraft was quasi-spherical. diameter, the lone postal item from It appears on several stamps or other India featuring Rohini shows it as a postal items from India and Russia. polyhedron, similar to Aryabhata and Dominica is the only other country Bhaskara, but with one flattened end. -
N95- 17549 I If!!I I'__/ I
N95- 17549 i if!!i_i'__/_i GROUND STATION SUPPORT FOR SMALL SCIENTIFIC SATELLITES : i_ ¸::::• ; R. Holdaway, E. Dunford and P.H. McPherson " _i_:', _ i. Rutherford Appleton Laboratory Chilton, DIDCOT Oxfordshire, OXI10QX, UK _ _ii i_I ABSTRACT In order to keep the cost of a complete small scientific satellite programme low, it is necessary to minimise the cost of the Ground Station Operations and Support. This is required not only for the operations and support :.? : per se, but also in the development of Ground Station hardware and the mission associated software. Recent experiences at the Rutherford Appleton Laboratory (RAL) on two international projects, IRAS and AMPTE, have shown that the low cost objectives of operations using smaller national facilities can be achieved. This paper describes the facilities at RAL, and the methods by which low cost support are provided by considering the differing implications of hardware/software system modularity, reliability and small numbers of dedicated and highly skilled operations staff. INTRODUCTION / i_!_ Rutherford Appleton Laboratory (RAL) is part of tile UK Engineering and Physical Sciences Research Council (EPSRC) - formally the Science and Engineering Research Council (SERC). RAL has a long history of Space Science and Technology going back to the early 1960's, and in more recent times RAL has had TT&C responsibilities for a number of space missions. In 1983, RAL operated the Infra-Red Astronomical Satellite (IRAS) on behalf of NASA, S ERC and the Dutch Aerospace Agency NIVR. Operations with IRAS covered all aspects of ground System work, including Mission Planning, Command Generation, Satellite Control, Data Reception, Satellite Health Monitoring, and Detailed Science Analysis. -
HUMAN ADAPTATION to SPACEFLIGHT: the ROLE of FOOD and NUTRITION Second Edition
National Aeronautics and Human Space Administration Adaptation to Spaceflight: The Role of Food and Nutrition Second Edition Scott M. Smith Sara R. Zwart Grace L. Douglas Martina Heer National Aeronautics and Space Administration HUMAN ADAPTATION TO SPACEFLIGHT: THE ROLE OF FOOD AND NUTRITION Second Edition Scott M. Smith Grace L. Douglas Nutritionist; Advanced Food Technology Lead Scientist; Manager for Nutritional Biochemistry Manager for Exploration Food Systems Nutritional Biochemistry Laboratory Space Food Systems Laboratory Biomedical Research and Human Systems Engineering and Environmental Sciences Division Integration Division Human Health and Performance Human Health and Performance Directorate Directorate NASA Johnson Space Center NASA Johnson Space Center Houston, Texas USA Houston, Texas USA Sara R. Zwart Martina Heer Senior Scientist; Nutritionist; Deputy Manager for Nutritional Program Director Nutritional Sciences Biochemistry IU International University of Nutritional Biochemistry Laboratory Applied Sciences Biomedical Research and Bad Reichenhall, Germany Environmental Sciences Division & Human Health and Performance Adjunct Professor of Nutrition Physiology Directorate Institute of Nutritional and Food Sciences NASA Johnson Space Center University of Bonn, Germany Houston, Texas USA & Preventive Medicine and Population Health University of Texas Medical Branch Galveston, Texas USA Table of Contents Preface ......................................................................................................................... -
Pakistan Response Towards Terrorism: a Case Study of Musharraf Regime
PAKISTAN RESPONSE TOWARDS TERRORISM: A CASE STUDY OF MUSHARRAF REGIME By: SHABANA FAYYAZ A thesis Submitted to the University of Birmingham For the degree of DOCTOR OF PHILOSOPHY Department of Political Science and International Studies The University of Birmingham May 2010 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT The ranging course of terrorism banishing peace and security prospects of today’s Pakistan is seen as a domestic effluent of its own flawed policies, bad governance, and lack of social justice and rule of law in society and widening gulf of trust between the rulers and the ruled. The study focused on policies and performance of the Musharraf government since assuming the mantle of front ranking ally of the United States in its so called ‘war on terror’. The causes of reversal of pre nine-eleven position on Afghanistan and support of its Taliban’s rulers are examined in the light of the geo-strategic compulsions of that crucial time and the structural weakness of military rule that needed external props for legitimacy. The flaws of the response to the terrorist challenges are traced to its total dependence on the hard option to the total neglect of the human factor from which the thesis develops its argument for a holistic approach to security in which the people occupy a central position. -
Chronology of NASA Expendable Vehicle Missions Since 1990
Chronology of NASA Expendable Vehicle Missions Since 1990 Launch Launch Date Payload Vehicle Site1 June 1, 1990 ROSAT (Roentgen Satellite) Delta II ETR, 5:48 p.m. EDT An X-ray observatory developed through a cooperative program between Germany, the U.S., and (Delta 195) LC 17A the United Kingdom. Originally proposed by the Max-Planck-Institut für extraterrestrische Physik (MPE) and designed, built and operated in Germany. Launched into Earth orbit on a U.S. Air Force vehicle. Mission ended after almost nine years, on Feb. 12, 1999. July 25, 1990 CRRES (Combined Radiation and Release Effects Satellite) Atlas I ETR, 3:21 p.m. EDT NASA payload. Launched into a geosynchronous transfer orbit for a nominal three-year mission to (AC-69) LC 36B investigate fields, plasmas, and energetic particles inside the Earth's magnetosphere. Due to onboard battery failure, contact with the spacecraft was lost on Oct. 12, 1991. May 14, 1991 NOAA-D (TIROS) (National Oceanic and Atmospheric Administration-D) Atlas-E WTR, 11:52 a.m. EDT A Television Infrared Observing System (TIROS) satellite. NASA-developed payload; USAF (Atlas 50-E) SLC 4 vehicle. Launched into sun-synchronous polar orbit to allow the satellite to view the Earth's entire surface and cloud cover every 12 hours. Redesignated NOAA-12 once in orbit. June 29, 1991 REX (Radiation Experiment) Scout 216 WTR, 10:00 a.m. EDT USAF payload; NASA vehicle. Launched into 450 nm polar orbit. Designed to study scintillation SLC 5 effects of the Earth's atmosphere on RF transmissions. 114th launch of Scout vehicle. -
An Assessment of Quickbird Satellite Data As a Routine Means Of
An assessment of QuickBird satellite data as a routine means of assessing green macroalgal weed cover within intertidal areas for the purpose of classifying transitional waters for the WFD, OSPAR and UWWTD Final Report June 2006 RS Scientific Edinburgh 1 This report was produced for the Scottish Environment Protection Agency by the RS Scientific. The authors were: Dr Evanthia Karpouzli and Dr Tim Malthus 27/10 Castle Terrace Edinburgh, EH1 2EL This report should be quoted as: Karpouzli, E., Malthus, T.J. (2006). An assessment of QuickBird satellite data as a routine means of assessing green macroalgal weed cover within intertidal areas for the purpose of classifying transitional waters for the WFD, OSPAR and UWWTD. Report produced for the Scottish Environment Protection Agency (SEPA) under Research Contract No R50021PUR 2 Table of contents 1 EXECUTIVE SUMMARY 4 2 INTRODUCTION 6 2.1 Aims and objectives 6 2.2 Background to the Project 6 2.3 Site habitat description 7 3 METHODS 8 3.1 Scientific staff 8 3.2 Field procedures 8 3.2.1 Measurement of ground validation sites 8 3.2.2 Algal biomass sampling 9 3.2.3 Laboratory procedures 9 3.3 Satellite imagery 9 3.3.1 Survey of previous satellite image acquisitions 9 3.3.2 Satellite Image acquisition 11 3.3.3 Field methods 12 3.3.4 Satellite image processing 15 4 RESULTS 22 4.1 Ground survey data 22 4.2 Satellite imagery and maps 25 4.2.1 Quality of the image for algal mapping 25 4.2.2 Initial processing steps 25 4.2.3 Sunglint and surface reflection correction 25 4.3 Green algal biomass cover and classification 29 4.3.1 Results of the discriminant analysis 30 5 DISCUSSION 33 5.1 LESSONS LEARNED 33 6 RECOMMENDATIONS AND FUTURE WORK 36 7 REFERENCES 38 8 LIST OF ACRONYMS 39 9 ANNEX – BIOLOGICAL DATA OBTAINED DURING THE FIELD SURVEY. -
Commercial Spacecraft Mission Model Update
Commercial Space Transportation Advisory Committee (COMSTAC) Report of the COMSTAC Technology & Innovation Working Group Commercial Spacecraft Mission Model Update May 1998 Associate Administrator for Commercial Space Transportation Federal Aviation Administration U.S. Department of Transportation M5528/98ml Printed for DOT/FAA/AST by Rocketdyne Propulsion & Power, Boeing North American, Inc. Report of the COMSTAC Technology & Innovation Working Group COMMERCIAL SPACECRAFT MISSION MODEL UPDATE May 1998 Paul Fuller, Chairman Technology & Innovation Working Group Commercial Space Transportation Advisory Committee (COMSTAC) Associative Administrator for Commercial Space Transportation Federal Aviation Administration U.S. Department of Transportation TABLE OF CONTENTS COMMERCIAL MISSION MODEL UPDATE........................................................................ 1 1. Introduction................................................................................................................ 1 2. 1998 Mission Model Update Methodology.................................................................. 1 3. Conclusions ................................................................................................................ 2 4. Recommendations....................................................................................................... 3 5. References .................................................................................................................. 3 APPENDIX A – 1998 DISCUSSION AND RESULTS........................................................ -
Interfaces Paksat-1R Satellite Platform
Capacity Building in Space Technology Through Low Cost Programme Initiatives By Mohammad Yousuf Khan SUPARCO, Pakistan Introduction ¾ SUPARCO, the national space agency of Pakistan, is looking forward for capacity building in the field of space technology within its limited resources Badr‐1 ¾ Two experimental Micro Satellites Badr‐ 1 and Badr‐2 have been indigenously designed, developed and launched in the past Badr‐2 Introduction Contd.. ¾ In 2008, a contract was awarded to CGWIC, China for manufacturing and launch of the first communication satellite of Pakistan, Paksat‐1R, in order to meet needs of the country ¾ The contract was utilized by SUPARCO for capacity building in such way that an indigenously designed and developed subsystem named as Customer Furnished Instruments (CFIs) to Paksat‐1R was flown and tested in orbit successfully Launch of paksat‐1R Challenges and Constraints of CFIs ¾ Stringent qualifying criteria for CFIs to check its suitability against a mature Chinese platform ¾ Meeting the deadlines set for satellite to avoid delays in the schedule of the overall programme ¾ The subsystem should not cause any failure to the satellite ¾ Provision of limited space, mass and power ¾ CFIs functionality be such that it is significantly useful for future programmes CFIs Design & Development ¾ It has the necessary electrical function of a satellite platform in order to be useful for the future programmes ¾ It does not propagate fault to the satellite ¾ Mostly COTS components were used ¾ The units were ruggedized in order to meet stringent qualification requirement Overview of CFIs ‐ Interfaces PakSat-1R Satellite Platform Satellite Channel Satellite Receiver Amplifier Overview of CFIs ‐ Interfaces SDIU 100 V TC TM RS422 PCDU-1 & PCDU-2 IMUX OMUX LNA DHU OBC TWTA Switch TC TC RS422 TM TM Test TC Coupler Rx-1 DECDEC ENC Tx-1 Test 1553B Coupler TC TM CF Rx-2 RTU Tx-2 CFI Spacecraft5 Overview of CFIs –Broad Specs ¾ Total Mass : 48.5kg ¾ Dimensions : 36” (L) x 30” (W) x 15”(H) ¾ Power Consump : 75W ¾ Qual. -
Pakistan's Space Programme
Pakistan’s Space Programme Introduction The launching of first artificial satellite Sputnik-1 in 1957 and Apollo-11's landing on the Moon in 1969 were spectacular achievements that satisfied the human quest to reach out into the vast outer space. But in the fifty years since the beginning of the space age, the opportunities offered by space, space-based assets and their applications have brought about a quiet revolution and a profound change in the world in which we live. Today, some 900 satellites are in orbit, operated by more than 40 countries. Almost 7000 satellites have been launched since 1957. Space-based assets have now become indispensible to modern life whether it is live telecast of events across the world or beyond, the ubiquitous Internet, the tele- communications revolution, satellite weather forecasting, mapping, mineral exploration, water resource management, disaster mitigation, national security or hundreds of other applications, life without these would now be quite difficult, to say the least. Pakistan’s Need for Space Capability Pakistan is a large and populous country. It also entertains great diversity in culture, ethnicity, terrain and climate. Like other developing countries, it faces a number of socioeconomic problems such as poverty, hunger, over-population, illiteracy, healthcare, and energy and water shortage. In Baluchistan, Northern areas, mountainous region of NWFP and deserts of Sindh, some additional problems include poor telecommunication, rail and road infrastructure and rugged and inaccessible terrain. Finding solutions for all these problems through conventional methods is difficult, if not impossible. Space exploration is amongst the most fascinating ventures of modern times. -
Utilisation of the Bird Satellite After Its End of Operational Life
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Transport Research:Publications UTILISATION OF THE BIRD SATELLITE AFTER ITS END OF OPERATIONAL LIFE Grundmann, J.T.(1); Halle, W.(2); Montenegro, S.(3); Wüsten, H.(4) (1)DLR Institute of Space Systems, Am Fallturm 1, 28359 Bremen, Germany, Email:[email protected] (2) DLR Optical Information Systems at the Institute of Robotics and Mechatronics, Rutherfordstraße 2, 12489 Berlin, Germany, Email:[email protected] (3) DLR Institute of Space Systems, Am Fallturm 1, 28359 Bremen, Germany, Email:[email protected] (4) DLR GSOC Space Operations, Oberpfaffenhofen, 82234 Weßling, Germany, Email:[email protected] ABSTRACT these series are in phase CD and phase A, with launches intended in 2010 and 2011, respectively. The small satellite BIRD has successfully demonstrated the combination of ambitious science and innovative but 1.2. On-board Technical and Ground Segment not necessarily space-proven components in design to Operational Status cost. BIRD’s payload is still fully functional. Its pointing accuracy depends on the still working attitude BIRD operations have in recent years only been control components. Future missions based on BIRD maintained through a skilful and serendipitous experience and design are planned. We suggest a combination of personal and institutional efforts. These continued on-demand use of BIRD as a test bed for their include housekeeping data harvesting for the OOV/TET development. New algorithms and strategies can be development effort, engineering interest in the long- tested on BIRD by software upload before taking risks term behaviour of infrared sensors and mechanical on its successors. -
DEPARTMENT of SPACE DEMAND NO.92 Department of Space A
216 Notes on Demands for Grants, 2002-2003 DEPARTMENT OF SPACE DEMAND NO.92 Department of Space A. The Budget allocations, net of recoveries, are given below: (In crores of Rupees) Budget 2001-2002 Revised 2001-2002 Budget 2002-2003 Major Head Plan Non-Plan Total Plan Non-Plan Total Plan Non-Plan Total Revenue 1288.46 320.00 1608.46 1266.63 309.35 1575.98 1637.75 313.87 1951.62 Capital 421.54 ... 421.54 333.37 ... 333.37 312.25 ... 312.25 Total 1710.00 320.00 2030.00 1600.00 309.35 1909.35 1950.00 313.87 2263.87 1. Secretariat - Economic Services 3451 0.01 4.17 4.18 0.01 3.81 3.82 ... 3.85 3.85 Space Research Rocket Development 2. Geo -Synchronous Satellite Launch Vehicle 3402 98.31 ... 98.31 83.56 ... 83.56 101.13 ... 101.13 5402 0.35 ... 0.35 0.30 ... 0.30 ... ... ... Total 98.66 ... 98.66 83.86 ... 83.86 101.13 ... 101.13 3. GSLV MK-III Development. 3402 5.00 ... 5.00 1.00 ... 1.00 163.00 ... 163.00 5402 ... ... ... ... ... ... 17.00 ... 17.00 Total 5.00 ... 5.00 1.00 ... 1.00 180.00 ... 180.00 4. Cryogenic Upper Stage (CUS) 3402 20.34 ... 20.34 14.82 ... 14.82 15.56 ... 15.56 Project 5402 0.96 ... 0.96 5.49 ... 5.49 0.82 ... 0.82 Total 21.30 ... 21.30 20.31 ... 20.31 16.38 ... 16.38 5. C-20 Cryogenic Stage 3402 0.10 ..