Western Australia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Toward Sustainable Management: Southern Africa's Afromontane, And
Proceedings 6th National Conference of the Australian Forest History Society Inc, Michael Calver et al. (eds) © 2005 Millpress, Rotterdam, ISBN 90 5966 026 9 Toward sustainable management: Southern Africa’s Afromontane, and Western Australia’s jarrah forests Grant Wardell-Johnson Natural and Rural Systems Management, The University of Queensland, Gatton, 4343 Michael Calver Biological Sciences, Murdoch University, Murdoch, Western Australia 6150 Peer reviewed contribution Keywords: logging, Afromontane forest, jarrah forest, management regimes, sustainability, silviculture, employment, plantations ABSTRACT: We review the history of forest management in two southern hemisphere forest types: Western Australia’s jarrah Eucalyptus marginata forests and the Afromontane forests of southern Africa to determine approaches for achieving sustainable forest management. We argue that despite major differences in the ecology and biogeography of these two forest types, a shared pattern in the history of exploitation may provide lessons for achieving sustainable management across forest types. While advanced silvicultural understanding has long been achieved in both for- est types, this in itself has not led to either sustainable management or to public acceptance of forest management regimes. In both areas an early, rapid expansion of uncontrolled timber removal and in the number of operating timber mills was followed by controlled exploitation, a rapid decline in the numbers of mills and, more recently, a general decline in yield. In neither case was increased con- cern about conservation responsible for the reduction in either yield or in employment in the indus- try. Rather, in WA jarrah forests, amendments in purpose and tenure were subsequent to the loss of most mills and towns, while in southern Africa’s Afromontane forests, timber workers were pen- sioned by 1939 because of scanty remaining merchantable timber. -
Coastal Land and Groundwater for Horticulture from Gingin to Augusta
Research Library Resource management technical reports Natural resources research 1-1-1999 Coastal land and groundwater for horticulture from Gingin to Augusta Dennis Van Gool Werner Runge Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/rmtr Part of the Agriculture Commons, Natural Resources Management and Policy Commons, Soil Science Commons, and the Water Resource Management Commons Recommended Citation Van Gool, D, and Runge, W. (1999), Coastal land and groundwater for horticulture from Gingin to Augusta. Department of Agriculture and Food, Western Australia, Perth. Report 188. This report is brought to you for free and open access by the Natural resources research at Research Library. It has been accepted for inclusion in Resource management technical reports by an authorized administrator of Research Library. For more information, please contact [email protected], [email protected], [email protected]. ISSN 0729-3135 May 1999 Coastal Land and Groundwater for Horticulture from Gingin to Augusta Dennis van Gool and Werner Runge Resource Management Technical Report No. 188 LAND AND GROUNDWATER FOR HORTICULTURE Information for Readers and Contributors Scientists who wish to publish the results of their investigations have access to a large number of journals. However, for a variety of reasons the editors of most of these journals are unwilling to accept articles that are lengthy or contain information that is preliminary in nature. Nevertheless, much material of this type is of interest and value to other scientists, administrators or planners and should be published. The Resource Management Technical Report series is an avenue for the dissemination of preliminary or lengthy material relevant the management of natural resources. -
Broken Hill Complex
Broken Hill Complex Bioregion resources Photo Mulyangarie, DEH Broken Hill Complex The Broken Hill Complex bioregion is located in western New South Wales and eastern South Australia, spanning the NSW-SA border. It includes all of the Barrier Ranges and covers a huge area of nearly 5.7 million hectares with approximately 33% falling in South Australia! It has an arid climate with dry hot summers and mild winters. The average rainfall is 222mm per year, with slightly more rainfall occurring in summer. The bioregion is rich with Aboriginal cultural history, with numerous archaeological sites of significance. Biodiversity and habitat The bioregion consists of low ranges, and gently rounded hills and depressions. The main vegetation types are chenopod and samphire shrublands; casuarina forests and woodlands and acacia shrublands. Threatened animal species include the Yellow-footed Rock- wallaby and Australian Bustard. Grazing, mining and wood collection for over 100 years has led to a decline in understory plant species and cover, affecting ground nesting birds and ground feeding insectivores. 2 | Broken Hill Complex Photo by Francisco Facelli Broken Hill Complex Threats Threats to the Broken Hill Complex bioregion and its dependent species include: For Further information • erosion and degradation caused by overgrazing by sheep, To get involved or for more information please cattle, goats, rabbits and macropods phone your nearest Natural Resources Centre or • competition and predation by feral animals such as rabbits, visit www.naturalresources.sa.gov.au -
Insights Into Australian Bat Lyssavirus in Insectivorous Bats of Western Australia
Tropical Medicine and Infectious Disease Article Insights into Australian Bat Lyssavirus in Insectivorous Bats of Western Australia Diana Prada 1,*, Victoria Boyd 2, Michelle Baker 2, Bethany Jackson 1,† and Mark O’Dea 1,† 1 School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; [email protected] (B.J.); [email protected] (M.O.) 2 Australian Animal Health Laboratory, CSIRO, Geelong, VIC 3220, Australia; [email protected] (V.B.); [email protected] (M.B.) * Correspondence: [email protected]; Tel.: +61-893607418 † These authors contributed equally. Received: 21 February 2019; Accepted: 7 March 2019; Published: 11 March 2019 Abstract: Australian bat lyssavirus (ABLV) is a known causative agent of neurological disease in bats, humans and horses. It has been isolated from four species of pteropid bats and a single microbat species (Saccolaimus flaviventris). To date, ABLV surveillance has primarily been passive, with active surveillance concentrating on eastern and northern Australian bat populations. As a result, there is scant regional ABLV information for large areas of the country. To better inform the local public health risks associated with human-bat interactions, this study describes the lyssavirus prevalence in microbat communities in the South West Botanical Province of Western Australia. We used targeted real-time PCR assays to detect viral RNA shedding in 839 oral swabs representing 12 species of microbats, which were sampled over two consecutive summers spanning 2016–2018. Additionally, we tested 649 serum samples via Luminex® assay for reactivity to lyssavirus antigens. Active lyssavirus infection was not detected in any of the samples. -
11.3 Infrastructure Services Attachments
SHIRE OF AUGUSTA MARGARET RIVER ORDINARY COUNCIL MEETING 10 OCTOBER 2018 11.3 Infrastructure Services Attachments ITEM NO SUBJECT PAGE 11.3.1 LEEUWIN NATURALISTE 2050 CYCLING STRATEGY – FOR ADOPTION 1 11.3.3 CLOSURE OF OLD BURNSIDE ROAD ALIGNMENT, BURNSIDE 102 SHIRE OF AUGUSTA MARGARET RIVER ORDINARY COUNCIL MEETING 10 OCTOBER 2018 11.3 Infrastructure Services 11.3.1 LEEUWIN NATURALISTE 2050 CYCLING STRATEGY – FOR ADOPTION Attachment 1 – Leeuwin Naturaliste 2050 Cycling Strategy (final) Attachment 2 – Implementation Program 1 Department of Transport LEEUWIN- NATURALISTE 2050 CYCLING STRATEGY A LONG-TERM VISION TO REALISE THE SUBREGION’S CYCLING POTENTIAL 2 EXECUTIVE SUMMARY Cities and towns with high levels of cycling enjoy a range of economic, environmental and social benefits. Not only is cycling proven to reduce traffic congestion and improve air quality, it also helps to create more vibrant and welcoming communities. Cycling can facilitate new forms of industry (such as cycle-tourism) and more generally, it enables people to live happier, healthier and more active lives. Fundamentally, increasing cycling mode share is about improving quality of life – something that is critical for attracting and retaining people in regional areas. The key to increasing cycling mode share is The Leeuwin-Naturaliste 2050 Cycling Strategy will providing infrastructure which is not only safe help inform future investment through the Regional and convenient, but also competitive against Bicycle Network Grants Program and potentially other modes of transport. To achieve this, cycling other funding sources. needs to be prioritised ahead of other modes in In developing this strategy, extensive consultation appropriate locations and integrated with adjoining has been undertaken with key stakeholders and land use. -
Unlocking the Kimberley's Past: the Applicability of Organic Spring
Unlocking the Kimberley’s past: The applicability of organic spring deposits for reconstructing late Quaternary climatic and environmental change Emily Field M.Sc. Quaternary Science, 2010 B.A. (Hons) Geography, 2009 A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2018 School of Earth and Environmental Sciences Abstract There are limited high-resolution records of climatic and environmental change from the Kimberley region of northwest Australia. This has hindered the development of knowledge of climate and environmental change in Australia’s monsoonal tropics, and the ability to provide context for the area’s rich archaeological record and globally renowned rock art. The lack of high-resolution records from this region is primarily a result of the monsoonal climate which limits the presence of “classic” palaeoenvironmental archives such as perennial lakes and wetlands. Organic spring deposits are unconventional archives of past environmental change yet offer potential to provide outstanding records in arid and semi-arid regions such as the Kimberley. Despite this, the majority of existing research demonstrates complications with their use, in particular the application of standard radiocarbon (14C) techniques to build robust chronologies of their development. Because of the importance of springs as critical palaeoenvironmental archives, and the pressing need for high-resolution records from northwest Australia, this thesis utilised three organic spring deposits to develop new, high-resolution records of climate and environmental change for the Kimberley. These records span the last ~14,500 years, and were underpinned by a new protocol for establishing robust chronologies from these settings which was developed via a rigorous geochronological investigation. -
Phylogenetic Structure of Vertebrate Communities Across the Australian
Journal of Biogeography (J. Biogeogr.) (2013) 40, 1059–1070 ORIGINAL Phylogenetic structure of vertebrate ARTICLE communities across the Australian arid zone Hayley C. Lanier*, Danielle L. Edwards and L. Lacey Knowles Department of Ecology and Evolutionary ABSTRACT Biology, Museum of Zoology, University of Aim To understand the relative importance of ecological and historical factors Michigan, Ann Arbor, MI 48109-1079, USA in structuring terrestrial vertebrate assemblages across the Australian arid zone, and to contrast patterns of community phylogenetic structure at a continental scale. Location Australia. Methods We present evidence from six lineages of terrestrial vertebrates (five lizard clades and one clade of marsupial mice) that have diversified in arid and semi-arid Australia across 37 biogeographical regions. Measures of within-line- age community phylogenetic structure and species turnover were computed to examine how patterns differ across the continent and between taxonomic groups. These results were examined in relation to climatic and historical fac- tors, which are thought to play a role in community phylogenetic structure. Analyses using a novel sliding-window approach confirm the generality of pro- cesses structuring the assemblages of the Australian arid zone at different spa- tial scales. Results Phylogenetic structure differed greatly across taxonomic groups. Although these lineages have radiated within the same biome – the Australian arid zone – they exhibit markedly different community structure at the regio- nal and local levels. Neither current climatic factors nor historical habitat sta- bility resulted in a uniform response across communities. Rather, historical and biogeographical aspects of community composition (i.e. local lineage per- sistence and diversification histories) appeared to be more important in explaining the variation in phylogenetic structure. -
ABSTRACT One Htmdy'ed and Ni.Nefu -Fout Lichen Species Are Reported from Westerm Australia Ui,Th Infornation on Their Dlstr
WESTERNAUSTRALIAN HERBARIUM RESEARCH NOTES No. 7, 1982: 17-29 SYSTEMATICLIST WITH DISTRIBUTIONSOF THE LICHEN SPECIES OF WESTERNAUSTRALIA, BASEDON COLLECTIONSIN THE WESTERNAUSTRALIAN HERBARIUM By R.M. Richardson and D.H.S. Richardson Westem Austnalian Herbariun, GeoxgeSt., South Perth, l{ .A. 6151 (Present address: School of Botany, Trinity College, Dublin 2, Ireland). ABSTRACT One htmdy'edand ni.nefu -fout Lichen species are reported from WestermAustralia ui,th infornation on their dLstr"tbution. The Li,st of species is based on prouisionalLy deternrined speci.mens deposited in the Westerm Austt'alitt Herbar"iwn. ?he Lichen flora of the state i,s il:Luerse, the most Lzrcur"ient grotsth occurrLng i,n the south-uesltem comey. As LittLe i-s kraan of the Lichern of the z:emaird.er of the state " parti.cular:Ly the north-east, tnrch research remaina to be done on thei.r. taronom7 and distr"ibut ion. INTRODUCTION Little intensive research has been done on the lichen flora of Western Australia though collections were nade at quite an early date, The earliest taxononic publication appears to be that of Fries (1846), who described 25 species, the Tesult of collections by L. Preiss fron Rottnest Island and the south-west part of the state. The following year Taylor (1847) listed 1"6 lichens from Western Australia in his catalogue of the W.J. Hooker Herbariun. Mueller (1887) collated the early records and produced a list of Australian lichens, includlng two species from Western Australia which had not previously been recorded:. Cladia aggregata and CLadon'Laretipot u", the latter now segregated in Western Australia as Cla&ia ferdi,nandii. -
Ecological Character Description of the Muir-Byenup System Ramsar Site South-West Western Australia
ECOLOGICAL CHARACTER DESCRIPTION OF THE MUIR-BYENUP SYSTEM RAMSAR SITE SOUTH-WEST WESTERN AUSTRALIA Report Prepared for Department of Environment and Conservation, 2009 CENRM Report: CENRM085 i © Centre of Excellence in Natural Resource Management, The University of Western Australia TITLE: Ecological Character Description of the Muir- Byenup System Ramsar Site South-west Western Australia: Report prepared for the Department of Environment and Conservation PRODUCED BY: CLAIRE FARRELL AND BARBARA COOK Centre of Excellence in Natural Resource Management The University of Western Australia Unit 1, Proudlove Parade, Albany, 6332 Telephone: (08) 9842 0839 Fax: (08) 9842 8499 Email: [email protected] PRODUCED FOR: DEPARTMENT OF ENVIRONMENT AND CONSERVATION 17 Dick Perry Avenue Technology Park, Western Precinct Kensington WA 6151 CONTACT: MICHAEL COOTE DATE: SEPTEMBER 2009 PUBLICATION DATA: Farrell, C. and Cook, B. 2009. Ecological Character Description of the Muir-Byenup System Ramsar Site South-west Western Australia: Report prepared for the Department of Environment and Conservation, CENRM085. Centre of Excellence in Natural Resource Management, University of Western Australia. September 2009. ACKNOWLEDGEMENTS Funding for the development of this document was sourced jointly from the Natural Heritage Trust (NHT) and the State and Commonwealth contributions to the National Action Plan for Salinity and Water Quality (NAP). NHT and NAP are jointly administered by the Australian Government departments of Agriculture, Fisheries and Forestry -
Eg the Short Range-Endemics of the Pilbara Bioregion
Appendix 3 Supporting Technical Studies Earl Grey Lithium Project SRE and Subterranean Fauna Desktop Assessment Prepared for: Covalent Lithium January 2019 Final Report May 2017 Earl Grey SRE & Subterranean Fauna Kidman Resources Ltd Earl Grey Lithium Project SRE and Subterranean Fauna Desktop Assessment Bennelongia Pty Ltd 5 Bishop Street Jolimont WA 6014 P: (08) 9285 8722 F: (08) 9285 8811 E: [email protected] ABN: 55 124 110 167 Report Number: 298 Report Version Prepared by Reviewed by Submitted to Client Method Date Draft Anton Mittra Stuart Halse Email 31 May 2017 Final Stuart Halse Email 24 November 17 Final V2 Anton Mittra Email 14 January 2019 BEC_Mt Holland_SRE_final_V2_10i2019.docx This document has been prepared to the requirements of the Client and is for the use by the Client, its agents, and Bennelongia Environmental Consultants. Copyright and any other Intellectual Property associated with the document belongs to Bennelongia Environmental Consultants and may not be reproduced without written permission of the Client or Bennelongia. No liability or responsibility is accepted in respect of any use by a third party or for purposes other than for which the document was commissioned. Bennelongia has not attempted to verify the accuracy and completeness of information supplied by the Client. © Copyright 2015 Bennelongia Pty Ltd. i Earl Grey SRE & Subterranean Fauna Kidman Resources Ltd EXECUTIVE SUMMARY Covalent Lithium proposes to mine lithium at the Earl Grey deposit (the Proposal) approximately 100 km southeast of Southern Cross in Western Australia. This desktop review examines the likelihood that short-range endemic (SRE) invertebrates and listed terrestrial invertebrate species occur in the Proposal area and whether these species are likely to be impacted by proposed development. -
MVG04 Tropical Eucalypt Open Forests DRAFT
MVG 4 - TROPICAL EUCALYPT OPEN FORESTS Tropical eucalypt savanna forest Kakadu National Park, NT (Photo: D. Keith) Overview Also known as tropical savannas. MVG 4 occurs in high rainfall areas of Cape York in Queensland, on Melville and Bathurst Islands, the Top End in Northern Territory, and in Western Australia close to Kimberley coast. Structurally it is an open forest with a tall grass-dominated groundlayer. Dominated by eucalypts, primarily species of Corymbia and Eucalyptus, notably the subgenera Fibridia and Leprolaena, but the tree canopy also includes a range of tropical non-eucalypt genera. The grassy understorey is dominated by annual and perennial species exclusively with C4 photosynthetic pathways. Closely associated with tropical monsoonal climates with wet summers and dry winters. Regularly fire-prone in dry seasons. Facts and figures Major Vegetation Group MVG 4 – Tropical Eucalypt Open Forests Major Vegetation Subgroups xx. Tropical eucalypt savanna forest NT, QLD, WA (number of NVIS descriptions) Typical NVIS structural formations Low open forest Number of IBRA regions 26 Most extensive in IBRA region Est. pre-1750: Jarrah Forest (WA) (Est. pre-1750 and present) Present: Nandewar (NSW) Estimated pre-1750 extent (km2) 4 726 Present extent (km2) 3 952 Area protected (km2) 1 417 Structure and physiognomy Open forests dominated by eucalypts with tall grass dominated understories. Trees are taller with straighter boles and the canopy cover is greater than in the savanna woodlands of MVG 12. Leaves of the tree canopies are sclerophyllous and vary in size from notophyll (20 – 45 cm2) to mesophyll (45 – 150 cm2). Broad-leaved shrubs, palms and cycads occur in the understorey (Dunlop 2001; Beard et al. -
The Western Australian Naturalist
THE WESTERN AUSTRALIAN NATURALIST Vol. 21 31st December, 1996 No.2 HISTORY OF THE DISAPPEARANCE OF NATIVE FAUNA FROM THE NULLARBOR PLAIN THROUGH THE EYES OF LONG TIME RESIDENT AMY CROCKER By]. D. RICHARDS and JEFF SHORT CSIRO Wildlife & Ecology, LMB No.4 PO Midland Western Australia 6065. The southern coastal region of naturalist, artist and writer, her years Australia was first explored from the of observation provide an account of sea by the Dutch in 1627, the French the region since the early days of inl792, the English in 1802, and finally European settlement, and man's by Edward John Eyre, who made the influence on the environment. first overland crossing of the Mrs Crocker provided an overview of Nullarbor in 1841. Initial settlement her impressions of the changing of the area followed, with Yalata fauna within her surroundings, with Station established by William Swan a brief letter written the year of her in 1858 near Fowler's Bay in South death. Here follows an excerpt of her Australia. Further settlement did not letter, describing the impact of take place until the 1870's with European settlement, from a lifetime Mundrabilla Station in 1871, Moopina of living on the Nullarbor. inl873, Madura in 1876and Balladonia in 1880 (Allen 1987). One of the early settlers of this area, Amy Eda Crocker was born in Albany, "Balladonia Station Western Australia in November 1902, via Norseman W A 6443 and at only seven weeks of age, My grandfather, Stephen Ponton, voyaged along the southern coast to with his brother William and their Point Malcolm at the eastern border partner, John Sharp, were 'the' ofwhatisnowtheCapeArid National pioneers of this district, having driven Park.