Chapter 2 for Details)

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 2 for Details) Conservation of Cyprinodon nevadensis pectoralis and three endemic aquatic invertebrates in an artificial desert spring refuge located in Ash Meadows National Wildlife Refuge, Nevada by Darrick S. Weissenfluh, B.S. A Thesis In BIOLOGY Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCES Approved Dr. Gene R. Wilde Chair Dr. Nancy E. McIntyre Dr. Richard E. Strauss Ralph Ferguson Dean of the Graduate School December, 2010 Copyright 2010, Darrick S. Weissenfluh Texas Tech University, Darrick S. Weissenfluh, December 2010 ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Gene R. Wilde, for accepting me as a graduate student and for working with me remotely. I also wish to thank him for challenging me to communicate more effectively through writing. Dr. Nancy E. McIntyre and Dr. Richard E. Strauss also provided recommendations and critiques of my work and were valuable committee members. Many people unselfishly assisted me with collecting data in what seemed to be the most extreme Mojave Desert field conditions: Jeff Goldstein, Sam Skalak, Erin Bradshaw, April Bradshaw, Cristi Baldino, Mark James, Carl Lundblad, and Paula Booth. Sam Skalak and Cristi Baldino also provided valuable comments and suggestions concerning my paper and my study. Additionally, Paula Booth and Marie Weissenfluh interpreted poor writing on numerous data sheets while assisting with data entry. Kathie Taylor spent countless hours assisting me with GIS maps and database development, for which I am indebted. The design of my research site, School Springs, was largely the creation of Rob Andress and the Ash Meadows Recovery Implementation Team (AMRIT). On numerous occasions Rob and the AMRIT went out of their way to assist with questions and data needs related to my research. Sharon McKelvey, Cristi Baldino, and Heather Hundt worked with Cynthia Martinez to make my position at Ash Meadows National Wildlife Refuge possible and supported me throughout my collateral duty as a U.S. Fish and Wildlife Service Student Career Employment Program biologist and graduate student. ii Texas Tech University, Darrick S. Weissenfluh, December 2010 Thanks to their support and encouragement I have had the opportunity to assist the Refuge in obtaining important scientific information while continuing to pursue my career. Finally, I am indebted to my wife Marie Weissenfluh who unselfishly allowed me to pursue this degree and dealt with all my stress and distraction during the process. My daughter, Kaitlyn, is owed countless hours for allowing “Daddy” to spend too much time away from her. I look forward to spending more time with both of them. My parents Steve and Diana, brother Shawn, and sister Holly also supported and encouraged me to continue my education and for that I am grateful. iii Texas Tech University, Darrick S. Weissenfluh, December 2010 TABLE OF CONTENTS ACKNOWLEDGEMENTS .............................................................................................. ii ABSTRACT……………………………………………………………………………..vi LIST OF TABLES ......................................................................................................... viii LIST OF FIGURES ........................................................................................................... x I. INTRODUCTION ......................................................................................................... 1 Literature Cited ....................................................................................................... 6 II. HABITAT ASSOCIATION AND DISTRIBUTION OF ENDANGERED WARM SPRINGS PUPFISH, CYPRINODON NEVADENSIS PECTORALIS, IN SCHOOL SPRINGS REFUGE ................................ 9 Introduction ............................................................................................................. 9 Study Area ............................................................................................................ 12 Methods................................................................................................................. 16 Study Design ............................................................................................. 16 Determination of Life Stages Using Digital Images ................................. 18 C. n. pectoralis Habitat Association ......................................................... 20 Physical and Chemical Stream Variables in School Springs Refuge ....... 21 Results ................................................................................................................... 22 Non-native Aquatic Fish and Crayfish Eradication Results ..................... 22 Status of C. n. pectoralis in School Springs Refuge ................................. 22 C. n. pectoralis Habitat Association in School Springs Refuge ............... 24 Discussion ............................................................................................................. 24 School Springs Refuge Renovation: Was it a Success? ............................ 24 Does School Springs Refuge Reduce the Threats to C. n. pectoralis Conservation? ........................................................................................... 28 Determining C. n. pectoralis Length from Digital Images ....................... 30 Recommendations for the Management of School Springs Refuge ......... 31 Literature Cited ..................................................................................................... 34 iv Texas Tech University, Darrick S. Weissenfluh, December 2010 III. ENDEMIC AQUATIC INVERTEBRATE DISTRIBUTION AND ASSOCIATION WITH PHYSICAL AND CHEMICAL STREAM PROPERTIES IN SCHOOL SPRINGS REFUGE ............................... 51 Introduction ........................................................................................................... 51 Study Area ............................................................................................................ 54 Methods................................................................................................................. 55 Aquatic Invertebrate Distribution in School Springs Refuge ................... 55 Endemic Aquatic Invertebrate Association with Physical and Chemical Stream Properties in School Springs Refuge ............................................ 57 Results ................................................................................................................... 58 Non-native Aquatic Invertebrate Eradication in School Springs Refuge ....................................................................................................... 58 Endemic Aquatic Invertebrate Translocation ........................................... 59 Persistence of Endemic Aquatic Invertebrates in School Springs Refuge ....................................................................................................... 59 Distribution and Dispersal of Endemic Aquatic Invertebrates in School Springs Refuge .......................................................................................... 61 Endemic Aquatic Invertebrate Distribution and Their Association with Chemical and Physical Stream Properties in School Springs Refuge ...... 63 Discussion ............................................................................................................. 64 Evaluating the Translocation Success of Endemic Aquatic Invertebrates in School Springs Refuge .................................................... 64 Evaluating the Success and Design of School Springs Refuge ................ 68 Management Recommendations ............................................................... 71 Literature Cited ..................................................................................................... 74 A. SCHOOL SPRINGS REFUGE CHANNEL CHARACTERISTICS FOR EACH REACH ........................................................................... 100 B. SUMMARY STATISTICS FOR PHYSICAL AND CHEMICAL STREAM CHARACTERISTICS IN EACH REACH FROM SCHOOL SPRINGS REFUGE. ALL SAMPLES FROM 6 MARCH 2009 TO 3 MARCH 2010 WERE COMBINED .............. 101 v Texas Tech University, Darrick S. Weissenfluh, December 2010 ABSTRACT The Warm Springs Complex (WSC) is one of four management units within Ash Meadows National Wildlife Refuge. It contains six low-discharge warm spring systems with individual flows ranging from 1.13 x 10-4 to 1.98 x 10-4 cubic meters per second and spring-source water temperatures ranging from 28o to 33.5oC year round. School Springs is one component of the WSC and its spring source is the warmest. This spring has undergone dramatic anthropogenic transformation since at least the 1930s. In 1969 the Bureau of Land Management (BLM) increased pool habitat in School Springs in an effort to preserve the endangered Warm Springs pupfish, Cyprinodon nevadensis pectoralis. Four concrete ponds were constructed at School Springs in 1983 to further increase available habitat to C. n. pectoralis. During the summer of 2008, the School Springs refuge was completely renovated: the large concrete ponds were removed and a “naturalized” channel consisting of pools, runs, riffles, and a wash was created. There were three primary objectives of this renovation: (1) eradicate three aquatic non-native species including western mosquitofish Gambusia affinis, red swamp crayfish Procambarus clarkii, and red-rimmed melania Melanoides tuberculatus; (2) improve amount of suitable habitat for the endangered Warm Springs pupfish and three
Recommended publications
  • Table of Contents 2
    Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) List of Freshwater Macroinvertebrate Taxa from California and Adjacent States including Standard Taxonomic Effort Levels 1 March 2011 Austin Brady Richards and D. Christopher Rogers Table of Contents 2 1.0 Introduction 4 1.1 Acknowledgments 5 2.0 Standard Taxonomic Effort 5 2.1 Rules for Developing a Standard Taxonomic Effort Document 5 2.2 Changes from the Previous Version 6 2.3 The SAFIT Standard Taxonomic List 6 3.0 Methods and Materials 7 3.1 Habitat information 7 3.2 Geographic Scope 7 3.3 Abbreviations used in the STE List 8 3.4 Life Stage Terminology 8 4.0 Rare, Threatened and Endangered Species 8 5.0 Literature Cited 9 Appendix I. The SAFIT Standard Taxonomic Effort List 10 Phylum Silicea 11 Phylum Cnidaria 12 Phylum Platyhelminthes 14 Phylum Nemertea 15 Phylum Nemata 16 Phylum Nematomorpha 17 Phylum Entoprocta 18 Phylum Ectoprocta 19 Phylum Mollusca 20 Phylum Annelida 32 Class Hirudinea Class Branchiobdella Class Polychaeta Class Oligochaeta Phylum Arthropoda Subphylum Chelicerata, Subclass Acari 35 Subphylum Crustacea 47 Subphylum Hexapoda Class Collembola 69 Class Insecta Order Ephemeroptera 71 Order Odonata 95 Order Plecoptera 112 Order Hemiptera 126 Order Megaloptera 139 Order Neuroptera 141 Order Trichoptera 143 Order Lepidoptera 165 2 Order Coleoptera 167 Order Diptera 219 3 1.0 Introduction The Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) is charged through its charter to develop standardized levels for the taxonomic identification of aquatic macroinvertebrates in support of bioassessment. This document defines the standard levels of taxonomic effort (STE) for bioassessment data compatible with the Surface Water Ambient Monitoring Program (SWAMP) bioassessment protocols (Ode, 2007) or similar procedures.
    [Show full text]
  • The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V
    The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V. Bennett Edwin F. Cook Technical Bulletin 332-1981 Agricultural Experiment Station University of Minnesota St. Paul, Minnesota 55108 CONTENTS PAGE Introduction ...................................3 Key to Adults of Nearctic Families of Semiaquatic Hemiptera ................... 6 Family Saldidae-Shore Bugs ............... 7 Family Mesoveliidae-Water Treaders .......18 Family Hebridae-Velvet Water Bugs .......20 Family Hydrometridae-Marsh Treaders, Water Measurers ...22 Family Veliidae-Small Water striders, Rime bugs ................24 Family Gerridae-Water striders, Pond skaters, Wherry men .....29 Family Ochteridae-Velvety Shore Bugs ....35 Family Gelastocoridae-Toad Bugs ..........36 Literature Cited ..............................37 Figures ......................................44 Maps .........................................55 Index to Scientific Names ....................59 Acknowledgement Sincere appreciation is expressed to the following individuals: R. T. Schuh, for being extremely helpful in reviewing the section on Saldidae, lending specimens, and allowing use of his illustrations of Saldidae; C. L. Smith for reading the section on Veliidae, checking identifications, and advising on problems in the taxon­ omy ofthe Veliidae; D. M. Calabrese, for reviewing the section on the Gerridae and making helpful sugges­ tions; J. T. Polhemus, for advising on taxonomic prob­ lems and checking identifications for several families; C. W. Schaefer, for providing advice and editorial com­ ment; Y. A. Popov, for sending a copy ofhis book on the Nepomorpha; and M. C. Parsons, for supplying its English translation. The University of Minnesota, including the Agricultural Experi­ ment Station, is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, creed, color, sex, national origin, or handicap. The information given in this publication is for educational purposes only.
    [Show full text]
  • OCHTEROIDEA La Superfamilia Ochteroidea, Incluida En El Infraorden Nepomorpha, Comprende Las Familias Ochteridae Y Gelastocoridae
    | 341 Resumen OCHTEROIDEA La superfamilia Ochteroidea, incluida en el infraorden Nepomorpha, comprende las familias Ochteridae y Gelastocoridae. Ambas familias están presentes en todas las regiones biogeográficas del mundo, aunque tienen mayor diversidad y abundancia en las regiones tropicales. Hasta el momento para la Argentina se han citado tres géneros y 10 especies de Gelastocoridae, y una especie de Ochteridae. Se actualiza el estado de conocimiento de sus características morfológicas, bio- logía e historia taxonómica. Se presentan claves para la identificación de las subfamilias de Gelastocoridae y los géneros de Ochteridae, diagnosis de los géneros, la lista de especies y su distribución geográfica en la Argentina. Abstract The superfamily Ochteroidea, included in the in- fraorder Nepomorpha, is comprised of the families Ochteridae and Gelastocoridae. Both of them are present in all biogeographic regions, although they are more abundant and diverse in the tropics. Up to now, three genera and 10 species of Gelastocoridae and a single one of Ochteridae have been recorded from Argentina. I provide an account of the state of knowledge of the morphology, biology and taxonomic history of both families. I present a key to the subfa- María Cecilia MELO milies of Gelastocoridae and genera of Ochteridae, diagnoses of all genera mentioned, and a list of the División Entomología, Museo de La Plata. CONICET. species recorded in Argentina with their geographic Paseo del Bosque, 1900 La Plata, Argentina distribution. [email protected] Introducción La superfamilia Ochteroidea (Hemiptera, Heteroptera, Nepomorpha) se encuentra conformada por las familias de “orilleros” Ochteridae y Gelastocoridae, típicas habitantes de las riberas de cuerpos de agua dulce (Hebsgaard et al., 2004).
    [Show full text]
  • Recovery Plan for the Endangered and Threatened Species of Ash Meadows, Nevada
    RECOVERY PuN FOR THE ENDANGERED AND THREATENED SPECIES OF AsH MEADows, NEVADA Prepared by Don W. Sada U.S. Fish and Wildlife Service Reno, Nevada RECOVERY PLAN FOR THE ENDANGERED AND THREATENED SPECIES OF ASH MEADOWS, NEVADA Prepared By Don W. Sada U.S. Fish and Wildlife Service Reno, Nevada for the U.S. Fish and Wildlife Service Portland, Oregon ~FP2 3 ‘:XN Date This plan covers the following federally listed species in Ash Meadows, Nevada and California: Devil’s Hole pupfish, Warm Springs pupfish, Ash Meadows Arnargosa pupfish, Ash Meadows speckled dace, Ash Meadows naucorid, Ash Meadows blazing star, Ash Meadows ivesia, Ainargosa niterwort, Spring-loving centaury, Ash Meadows sunray, Ash Meadows inilk-vetch, and Ash Meadows guxnplant. THIS IS THE COMPLETED ASH MEADOWS SPECIES RECOVERY PLAN. IT HAS BEEN APPROVED BY THE U.S. FISH AND WILDLIFE SERVICE. IT DOES NOT NECESSARILY REPRESENT OFFICIAL POSITIONS OR APPROVALS OF COOPERATING AGENCIES (AND IT DOES NOT NECESSARILY REPRESENT THE VIEWS OF ALL INDIVIDUALS) WHO PLAYED THE KEY ROLE IN PREPARING THIS PLAN. THIS PLAN IS SUBJECT TO MODIFICATION AS DICTATED BY NEW FINDINGS AND CHANGES IN SPECIES STATUS, AND COMPLETION OF TASKS DESCRIBED IN THE PLAN. GOALS AND OBJECTIVES WILL BE ATTAINED AND FUNDS EXPENDED CONTINGENT UPON APPROPRIATIONS, PRIORITIES, AND OTHER BUDGETARY CONSTRAINTS. LITERATURE CITATION SHOULD READ AS FOLLOWS U.S. Fish and Wildlife Service. 1990. Recovery plan for the endangered and threatened species of Ash Meadows, Nevada. U.S. Fish and Wildlife Service, Portland, Oregon. 123 pp. Additional copies may be obtained from Fish and Wildlife Reference Service 5430 Grosvenor Lane, Suite 110 Bethesda, Maryland 20814 Telephone: 301-492-6403 1-800-582-3421 : ACKNOWLEDGMENTS: This plan results from the efforts of many who spent considerable time and energy to prevent the destruction of Ash Meadows and the extinction of its diverse endemic biota.
    [Show full text]
  • The Combined Effects of Multiple Invasive Species on the Persistence of Experimental Populations of Imperiled Pahrump PoolSh
    The Combined Effects of Multiple Invasive Species on the Persistence of Experimental Populations of Imperiled Pahrump Poolsh Brandon L. Paulson North Dakota State University Craig A. Stockwell ( [email protected] ) North Dakota State University https://orcid.org/0000-0001-7882-8674 Research Article Keywords: Empetrichthys, Mosquitosh, Invasive Species, Invasional Meltdown, Craysh, Combined Effects Posted Date: April 19th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-238574/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 The combined effects of multiple invasive species on the persistence of experimental populations of imperiled Pahrump Poolfish Brandon L. Paulson1,2 and Craig A. Stockwell1* 1Department of Biological Sciences, Environmental and Conservation Sciences Program, North Dakota State University, NDSU Box 6050, Fargo, North Dakota, USA 58108 * corresponding author: [email protected] Keywords: Empetrichthys, Mosquitofish, Invasive Species, Invasional Meltdown, Crayfish, Combined Effects Running head: Crayfish and mosquitofish impact Pahrump Poolfish Number of figures: 2 Orcid IDs: Brandon L. Paulson - https://orcid.org/0000-0002-4635-1485 Craig A. Stockwell - https://orcid.org/0000-0001-7882-8674 Funding: This work was supported by a Desert Fishes Council Conservation Grant and stipend support for BLP from the NDSU Environmental and Conservation Sciences Graduate Program. Availability of data and material: The data will be provided by the authors
    [Show full text]
  • Man and the Changing Fish Fauna of the American Southwest
    t,P • PAPERS OF THE MICHIGAN ACADEMY OF SCIENCE, ARTS, AND LETTERS VOL. XLVI, 1961 GS.110 4.Marrma) • Af.4,114.-aiLsk, 71 ici4,1 MAN AND THE CHANGING FISH FAUNA OF •THE AMERICAN SOUTHWEST' . ROBERT RUSH MILLER Museum of Zool9gy, The University of Michigan TEE past 100 years have witnessed drastia changes in the rivers of Western North America and in their fish faunas. Deterioration of stream flow has greatly shrunk the ranges of many species, and other species have been denied access to large segments of their original distribution by the construction of barrier dams. Profound modifica- tion of pristine environments has restricted habitable waters, and the introduction and establishment of a host of exotics have brought about replacement as well as reduction of native forms through com- petition, predation, and hybridization. Some species and subspecies ave become extinct, and many others are endangered (Matthiessen, 959). These changes have been particularly marked in areas of ricted water supply such as characterize the arid Southwest ,;(Fig: 1 . Much of this region is embraced by the Basin and Range ProvinCe *: (Fenneman; 1931, pl. I), including the Great Basin, Sonoran Desert; - and the Chihuahuan Desert of northern Mexico. Only about 100 species of strictly fresh-water fishes are known west of the Rocky Mountains and north of Mexico—a depauperate - fauna characterized by relicts, monotypic genera, and much regional The initial version of this paper was presented at the Fifth Annual Sym- posium on Systematics, Missouri Botanical Garden, St. Louis, on October 25, , 1958, under the general subject "Taxonomic Consequences of Man's Activities." Yield work has been generously supported by the Horace H.
    [Show full text]
  • Desert Aquatic Ecosystems and the Genetic and Morphological Diversity of Death Valley System Speckled Dace
    American Fisheries Society Symposium 17:350-359, 1995 © Copyright by the American Fisheries Society 1995 Desert Aquatic Ecosystems and the Genetic and Morphological Diversity of Death Valley System Speckled Dace DONALD W. SADA Environmental Studies Program, University of Nevada-Las Vegas 2689 Highland Drive, Bishop, California 93514, USA HUGH B. BRITTEN AND PETER F. BRUSSARD Biodiversity Research Center, Department of Biology, University of Nevada Reno, Nevada 89557-0015, USA Abstract.—The morphological and genetic diversities of fishes in North American deserts have been examined to estimate evolutionary rates, to create models of interbasin pluvial connectivity, and to justify protection of aquatic ecosystems throughout the region. Morphological and genetic studies comparing 13 populations of speckled dace Rhinichthys osculus from the Death Valley system, Lahontan basin, and lower Colorado River were conducted to quantify differences among populations. Differences in meristic and mensural characteristics among populations were highly significant, but differences in body shape were slight and best explained as representing two forms, one deep-bodied and short, the other elongate and slender. Starch gel electrophoretic assays of 23 loci showed isolated populations to be genetically unique. Fifty-nine taxa are identified as endemic to wetland and aquatic habitats in the Death Valley system: 16 forms of fish, 1 amphibian, 22 mollusks, 7 aquatic insects, 3 mammals, and 10 forms of flowering plants. Genetic and morphological differentiation of isolated speckled dace populations and the diversity and number of endemic forms associated with wetlands and aquatic habitats in the Death Valley system suggest that each desert wetland community functions as an evolutionarily significant unit.
    [Show full text]
  • USFWS National Wildlife Refuge Lands and Fish Hatcheries
    Final Environmental Assessment Rangeland Grasshopper and Mormon Cricket Suppression Program Churchill, Humboldt, Pershing, and Washoe Counties, Nevada EA Number: NV-01-20 Prepared by: Animal and Plant Health Inspection Service Plant Protection and Quarantine 8775 Technology Way Reno, NV 89521 May 27, 2020 1 Table of Contents I. Need for Proposed Action ...................................................................................................... 5 A. Purpose and Need Statement .............................................................................................. 5 B. Background Discussion ...................................................................................................... 6 C. About This Process ............................................................................................................. 8 II. Alternatives ............................................................................................................................ 8 A. No Action Alternative ....................................................................................................... 10 B. Insecticide Applications at Conventional Rates or Reduced Agent Area Treatments with Adaptive Management Strategy (Preferred Alternative) ........................................................ 10 III. Affected Environment .......................................................................................................... 12 A. Description of Affected Environment ..............................................................................
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]
  • Recovery Plan Endangered and Species Nevada
    RECOVERYPLAN FOR THE ENDANGEREDAND THREATENED SPECIES OF&H MEADOWS, NEVADA Prepared by Don W. Sada U.S. Fish and Wildlife Service Reno, Nevada RECOVERY PLAN FOR THE ENDANGERED AND THREATENED SPECIES OF ASH MEADOWS, NEVADA Prepared By Don W. Sada U.S. Fish and Wildlife Service Reno, Nevada for the U.S. Fish and Wildlife Service Portland, Oregon ~FP2 3 ‘:XN Date This plan covers the following federally listed species in Ash Meadows, Nevada and California: Devil’s Hole pupfish, Warm Springs pupfish, Ash Meadows Arnargosa pupfish, Ash Meadows speckled dace, Ash Meadows naucorid, Ash Meadows blazing star, Ash Meadows ivesia, Ainargosa niterwort, Spring-loving centaury, Ash Meadows sunray, Ash Meadows inilk-vetch, and Ash Meadows guxnplant. THIS IS THE COMPLETED ASH MEADOWS SPECIES RECOVERY PLAN. IT HAS BEEN APPROVED BY THE U.S. FISH AND WILDLIFE SERVICE. IT DOES NOT NECESSARILY REPRESENT OFFICIAL POSITIONS OR APPROVALS OF COOPERATING AGENCIES (AND IT DOES NOT NECESSARILY REPRESENT THE VIEWS OF ALL INDIVIDUALS) WHO PLAYED THE KEY ROLE IN PREPARING THIS PLAN. THIS PLAN IS SUBJECT TO MODIFICATION AS DICTATED BY NEW FINDINGS AND CHANGES IN SPECIES STATUS, AND COMPLETION OF TASKS DESCRIBED IN THE PLAN. GOALS AND OBJECTIVES WILL BE ATTAINED AND FUNDS EXPENDED CONTINGENT UPON APPROPRIATIONS, PRIORITIES, AND OTHER BUDGETARY CONSTRAINTS. LITERATURE CITATION SHOULD READ AS FOLLOWS U.S. Fish and Wildlife Service. 1990. Recovery plan for the endangered and threatened species of Ash Meadows, Nevada. U.S. Fish and Wildlife Service, Portland, Oregon. 123 pp. Additional copies may be obtained from Fish and Wildlife Reference Service 5430 Grosvenor Lane, Suite 110 Bethesda, Maryland 20814 Telephone: 301-492-6403 1-800-582-3421 : ACKNOWLEDGMENTS: This plan results from the efforts of many who spent considerable time and energy to prevent the destruction of Ash Meadows and the extinction of its diverse endemic biota.
    [Show full text]
  • A Preliminary Survey of the Aquatic and Semiaquatic Hemiptera
    Polhemus and Polhemus: Aquatic Hemiptera of Desert Hot Springs 1 A preliminary survey of the aquatic and semiaquatic Hemiptera occurring in the springs of the Railroad Valley, White River, and Amargosa River drainage systems, Nevada and California, with special reference to thermal relicts Dan A. Polhemus Dept. of Entomology, Bishop Museum, P. 0. Box 19000-A, Honolulu, HI 96817 ard John T. Polhemus Univ. of Colorado Museum, 3115 S. York St., Englewood, CO 80110 INTRODUCTION One of the most remarkable concentrations of disjunct and endemic aquatic Hemiptera in North America is found in the thermal refugia of the Railroad Valley, White River, and Amargosa River drainages of Nevada and California. These drainages represent former tributaries to the Colorado system that were continuous systems in the Pliocene and Pleistocene, but have been subsequently dessicated and reduced to discontinous spring fed aquatic refugia. The thermal springs of these three systems contain a large number of endemic aquatic Hemiptera species, as well as many highly disjunct populations of other taxa. The current report details the distributions of these species, addresses certain taxonomic problems relating to them, and considers the biogeographic significance of this thermally relictual fauna. LOCALITIES SAMPLED The information upon which this report is based has been collected by the authors over a period of thirty years, and in many cases the passage of several decades has seen a serious degredation of the aquatic habita~s listed below. For this reason an attempt has been made in the last three years to revisit many of the most critical habitats and &scertain the status of their aquatic Hemiptera faunas.
    [Show full text]
  • Integrated Pest Management Plan for Ash Meadows National Wildlife Refuge
    Integrated Pest Management Plan for Ash Meadows National Wildlife Refuge Nye County, Nevada 2006 U.S. Fish and Wildlife Service December 2006 Integrated Pest Management Plan for Ash Meadows National Wildlife Refuge Nye County, Nevada Monoculture of Russian knapweed Tamarix spp. bordering Peterson Reservoir. near Bradford Springs. The Integrated Pest Management Plan for Ash Meadows National Wildlife Refuge was prepared by staff of Ash Meadows National Wildllife Refuge and the Southern Nevada Field Office of the U.S. Fish and Wildlife Service. Marco Buske, Integrated Pest Management Specialist for Klamath Basin NWRC and Bob Wilson, Extension Educator, University of Nevada-Reno Cooperative Extension, reviewed this document. Brian Hobbs, Biologist for the Nevada Department of Wildlife, and Gary Scoppettone, Scientist with the Biological Resources Division of the U.S. Geological Survey, were also consulted. 2 Table of Contents EXECUTIVE SUMMARY ........................................................................................................................ 6 I. INTRODUCTION .................................................................................................................................. 7 IMPACT OF INVASIVE SPECIES ................................................................................................................... 8 IMPACT OF INVASIVE PLANT SPECIES ON ASH MEADOWS NATIONAL WILDLIFE REFUGE ...................... 8 IMPACT OF INVASIVE ANIMAL SPECIES ON ASH MEADOWS NATIONAL WILDLIFE REFUGE ..................
    [Show full text]