Names of the Hakes Is Another Name for Merluccius (Smith, 1954)

Total Page:16

File Type:pdf, Size:1020Kb

Names of the Hakes Is Another Name for Merluccius (Smith, 1954) America, capensis from South Africa; gayi from Chi Ie; and hubbsi from Argentina. In South Africa, stockfish Names of the Hakes is another name for Merluccius (Smith, 1954). Hake is used as a common name for DANIEL M. COHEN a number of kinds of fishes other than Merluccius. Among the Gadidae are six species of Urophycis from the western Atlantic (Bigelow and Most kinds of fishes do not have a species, all are known in English Schroeder, 1953; Bailey et a!., 1970): legal or official common name, and speaking countries as hake. chuss, red or squirrel hake; cirratus, common names in use for any particu­ Other Engl ish language names also Gulf hake; earlii, Carolina hake; lar species may vary from one region are used for Merluccius, the chief fioridanus, southem hake; regius, to another, from one group of users to being whiting. In a study of the spotted hake (Fig. 2); tenuis, white, another, and even with size, season, or taxonomy of North and South Ameri­ black, mud, or Boston hake. Several sex. Thus a biological species may can Merluccius (Ginsberg, 1954), other species of Urophycis live along have one or more common names, and whiting was used as a general name for the east coast of South America but do equally, or even more troublesome, all species of the genus. Merluccius not have English language common two or more species may have the bilinearis (Fig. I) from the western names. The related gadid genus Phycis same common name. The nature of North Atlantic is called whiting as well has one western Atlantic species, P. common names and their relationship as silver hake (Bigelow and Schroeder, chesteri (Fig. 3), called the longfinned to Latinized scientific names has been 1953), and in New Zealand M. aus­ hake (Bigelow and Schroeder, 1953; discussed at greater length by Cohen tralis is known as whiting or hake Bailey et aI., 1970), and two eastern (1974). (Graham, 1956). The U.S. Food and Atlantic species known as forkbeards. The origins of the word hake are not Drug Administration has approved the Two members of the gadoid family at all clear. According to the Oxford designation as whiting of five nominal Moridae must be listed, the nearly English Dictionary the first usage was species of Merluccius: bilinearis from cosmopolitan deepsea Antimora ros­ in the 14th or 15th century, and the the east coast of North America; pro­ trata (Fig. 4), known as blue hake word as presently understood refers in ductus from the west coast of North (Bigelow and Schroeder, 1953), and general to the genus Merluccius and several other genera of gadoid (cod­ like) fishes. Fish species classified in the genus Merluccius as well as several other genera are often considered to be members of a family Merluciidae, which although related to is distinct from the Gadidae or cod family proper (Marshall and Cohen, 1973). The var­ ious named species of Merluccius are rather similar in appearance, and there is not at this time any good way to Figure I.-Merluccius bilinearis from the western North Atlantic, where it is assign the correct scientific name to called hake or whiting. Merluccius from many regions of the world. There may be as few as 4 or as many as 15 or more different biologi­ cal species. The taxonomy of Merluc­ cius is being studied at present by a Japanese ichthyologist, Tadashi Inada. Whatever may be the number and cor­ rect scientific names of Merluccius Daniel M. Cohen is with the National Systematics Laboratory, National Marine Fisheries Service, NOAA, National Museum of Natural History, Figure 2.-Urophycis regius, a common fish of the U.S. east coast, where it is Washington, DC 20560. known as spotted hake. 2 Marine Fisheries Review the ew Zealand Lotella rhacina, European Gadidae (Wheeler, 1969): gadoids and with three Atlantic and called southern hake or rock cod Merlangius merlangus, whiting; one Pacific U.S. species, are known (Graham, 1956). Finally, Rexea sol­ Trisopterus luscus, whiting pout, an collectively as whitings, although each andri (Fig. 5), a member of the Gem­ alternate name for bib; and Mic­ also has other common names (Hilde­ pylidae or snake mackerel family, and romesistius poutassou, blue whiting brand and Schroeder, 1928; Bailey et not all related to the cods, has hake as (caught rarely off the U.S. east coast aI., 1970). Species belonging to sev­ an alternative name in both New Zea­ where it has no common name). Whit­ eral other famil ies of fishes unrelated to land (Graham, 1956; Whitley, 1968) ing is also an alternate name for the gadids are known as whitings (Scott, and Australia (Munro, 1958). eastern North Pacific gadid Theragra 1962); among them are the spiny-rayed As noted above the name whiting is chalcogramma, often called walleye Sillaginidae of the Indian Ocean and used interchangeably with hake for pollock (Hart, 1973; Bailey et aI., western Pacific, and the Odaciidae, Mercuccius; however, it is used also 1970). Members of the genus Men­ called rock wh itings, wrasse-like for fishes that are not called hakes. ticirrhus of the croaker family Sci­ fishes of Australia and New Zealand. Among them are three species of aenidae, not at all closely related to Finally sand whiting is listed a an al­ ternate for the bothid flatfish Scop­ thalmus aquosus, most commonly known as windowpane (Bailey et aI., 1970). Obviously, the nomenclature of hakes and whitings is complex. Posi­ tive identification of a species referred to under these names may require ref­ erence to a Latinized scientific name; although, even some of these are sub­ Figure 3.-Phycis chesteri, the longfinned hake, found on the continental slopes of ject to question. eastern North America. Literature Cited Bailey, R. M., J. E. Fitch, E. S. Herald, E. A. Lachner, C. C. Lindsey, C. R. Robins, and W. B. Scott. 1970. A list of common and scientific names of fishes from the United States and Canada. 3rd ed. Am. Fish. Soc., Spec. Publ. 6, 149 p. Bigelow, H. B., and W. C. Schroeder. 1953. Fishes of the Gul f of Maine. U.S. Fish Wildl. Serv., Fish Bull. 53, 577 p. Cohen, D. M. 1974. Names of fishes. Mar. Fish. Rev. 36(12):21-23. Ginsburg, I. 1954. Whitings on the coasts of the American continents. U.S. Fish Wildl. Serv., Fish. Bull. 56:187-208. Graham, D. H. 1956. A treasury of New Zea­ land fishes. 2d ed. A. H. and A. W. Reed, Wellington, 424 p. Hart, J. L. 1973. Pacific fishes of Canada. Fish. Res. Board Can., Bull. 180,740 p. Hildebrand, S. F., and W. C. Schroeder. 1928. Fishes of Chesapeake Bay. U.S. Bur. Fish., Figure 4.-Antimora rostrata, a deepsea fish living in many of the world's seas, is Bull. 43, 366 p. known as the blue hake. Marshall, N. B., and D. M. Cohen. 1973. Order Anacanthini (Gadiformes). Characters and synopsis of families. In Fishes of the western Nonh Atlantic, Mem. I, pan. 6, p.479-495. Sears Found. Mar. Res. Munro, I. S. R. 1958. Handbook of Australian fishes, No. 28. Fish. Newsl. (Australia) 17( 10): 17-20. SCOll, T. D. 1962. The marine and fresh water fishes of South Australia. W. L. Hawes, Gov. Print., Adelaide, 338 p. Smith, J. L. B. 1954. The sea fishes of southern Africa. Revised ed. Central New Agency Ltd., South Africa, 580 p. Wheeler, A. 1969. The fishes of the BJitish Isles and nonh-west Europe. Macmillian and Co. Ltd., Lond., 613 p. Whitley, G. P. 1968. A check-list of the fishes Figure 5.-Rexea solandri from New Zealand and Australia, where it is called hake recorded from the New Zealand region. Aust. or king barracouta. Zool. 15(1): 1-102. January 1980 3.
Recommended publications
  • Rockfish Populations Around Galiano Island Freedom to Swim: Research Component for Rockfish Recovery Project
    GALIANO CONSERVANCY ASSOCIATION Rockfish populations around Galiano Island Freedom to Swim: Research Component for Rockfish Recovery Project 2013 Rockfish populations around Galiano Island Page 2 of 18 Executive Summary Rockfish (Sebastes), of the Scorpionfish family, are unique to the Pacific Northwest. As of 2012 there are 8 species listed as threatened or of special concern by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC). Canary, Quillback and Yellowmouth rockfish are listed as ‘threatened’; Rougheye Type I, Rougheye Type II, Darkblotched, Longspine Thornyhead, and Yelloweye (outside waters and inside waters populations) rockfish are listed as ‘special concern’. Both species of Rougheye and both populations of Yelloweye rockfish are also listed under the Species At Risk Act as ‘special concern’. These predatory fish can live at great depths, and tend to live very long lives of 80 or more years (Lamb and Edgell, 2010). These factors, when combined with their primarily territorial lifestyles, have made them particularly susceptible to overharvest. There is a strong need to protect these species with enforced no‐take marine protected areas, and we can only hope that recent conservation efforts will be enough to recover some of the most depleted populations (Lamb and Edgell, 2010; McConnell and Dinnel, 2002). In the late 1980s the commercial rockfish fishery boomed, which led to a series of management responses in the 1990s to attempt to recover the rapidly depleting stocks in BC (Yamanaka and Logan, 2010). This also occurred in the US as a direct result of pressure on the salmon stocks ‐ fishermen were urged to divert their attentions to bottom fish (McConnell and Dinnel, 2002).
    [Show full text]
  • Bulletin of the United States Fish Commission
    BULLETIN OF THE UNITED STATES, FISH COMMISSION. 225 B6.’REPORT ON ’ BLACK COD OF THJ3 NORTH PACIFIC OCEAN.* By JAMES G. SWAN. NAm.-The Anoplo$oma $fimbria is known in California as candle- fish, Spanish mackerel, grease-fish, &c. ; among the Makah Indians of Cape Flattery, Wash., as “ beshow,” and by the white residents at the ’ cape ;LR (4 black cod.” On Queen Charlotte’s Islands, British Columbia, it is called “coal-fish” by white settlers, and by the Baidah Indians: who reside on those islands, it is called “skil.” At Hnight’s Inlet, British Columbia, it is called “kwakewlth.” Each tribe or locality where it is taken has a local name for it, but it is generally ]mown as blqck cod. The scientific name, Anoploporna $fimbria, has been adopted. by Gill, Jordan & Gilbert, and most other writers, although a specimen taken ob Mount Saint Elias, Alaska, \vas named by Pallas Gadus jimbria (Prbc. U. S. Nat. Museum, 1881, vol. 4, p. 254), thus showing that its resemblancei to the cod was observed by that naturalist. The tern1 ‘c cod” is applied by fishermen and fish-dealers on the North Pacific coast to a variety of fish which are not related to the genus Gadus, and are iiot found in Atlantic maters. The Oplbiodo?z eloizgatus is called, in San Francisco, buffalo cod, green cod, blue cod, &c. At Uape Flattery the Makah Indiaus call it “tooshlrow.” The whites call it knltus cod or inferior to true cod. The different variotics of Sebastiahthys are known in the Victoria and San Francisco markets as rock cod, but do not re- semble the rock cod of New England in any manner, being more like the perch, having remarkable development of sharp bony spines and prickles.
    [Show full text]
  • Secondary Sexual Characteristics in Codfishes ([[Gadidae]]) in Relation to Sound Production, Habitat Use, and Social Behaviour
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Applied Systems Analysis (IIASA) Secondary sexual characteristics in codfishes ([[Gadidae]]) in relation to sound production, habitat use, and social behaviour Skjaeraasen, J.E., Meager, J.J. and Heino, M. IIASA Interim Report 2012 Skjaeraasen, J.E., Meager, J.J. and Heino, M. (2012) Secondary sexual characteristics in codfishes ([[Gadidae]]) in relation to sound production, habitat use, and social behaviour. IIASA Interim Report. IR-12-071 Copyright © 2012 by the author(s). http://pure.iiasa.ac.at/10208/ Interim Report on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting [email protected] International Institute for Tel: +43 2236 807 342 Applied Systems Analysis Fax: +43 2236 71313 Schlossplatz 1 E-mail: [email protected] A-2361 Laxenburg, Austria Web: www.iiasa.ac.at Interim Report IR-12-071 Secondary sexual characteristics in codfishes (Gadidae) in relation to sound production, habitat use, and social behaviour Jon Egil Skjæraasen Justin J.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Trophic Relationships of Hake (Merluccius Capensis and M
    SoV 2.10 Trophic Relationships of Hake (Merluccius capensis and M. paradoxus) and Sharks (Centrophorus squamosus, Deania calcea and D. profundorum) in the Northern (Namibia) Benguela Current region Author(s): Johannes A Iitembu and Nicole B Richoux Source: African Zoology, 50(4):273-279. Published By: Zoological Society of Southern Africa URL: http://www.bioone.org/doi/full/10.1080/15627020.2015.1079142 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. African Zoology 2015, 50(4): 273–279 Copyright © Zoological Society Printed in South Africa — All rights reserved of Southern Africa AFRICAN ZOOLOGY This is the final version of the article that is ISSN 1562-7020 EISSN 2224-073X published ahead of the print and online issue http://dx.doi.org/10.1080/15627020.2015.1079142 Trophic relationships of hake (Merluccius capensis and M. paradoxus) and sharks (Centrophorus squamosus, Deania calcea and D.
    [Show full text]
  • Fishes of the Pacific Coast of Canada
    PLATE V. Lingcod (Ophiodon elongatus). Two common shades of colour, illustrated on specimens about 30 inches long. PLATE VI. Blackbanded rockfish (Sebastodes nigrocinctus). Two common shades of colour, illustrated on a specimen 10 inches long. near Nootka but was not examined. In August, 1939, west of Cape St. James, Lat. 52° 49' N, Long. 1340 29' W, three specimens were obtained on a tuna lure and were recorded in 1940 by V. J. Samson. The albacore has been captured off the west coast of Vancouver Island in increasing numbers since 1939. The first large commercial catch was made in 1940. The abundance of the fish has proven to be rather variable in Canadian waters as it has off the California coast. This pelagic fish is distributed throughout all warm to temperate seas. Since no mature individuals have been taken anywhere along the Pacific coast of North America, it would seem that the albacore is a tropical fish whose young make extensive feeding migrations to distant regions and return to the tropics at the onset of maturity. The food consists of schooling small fishes such as anchovies, pilchards, herring, saunes, young mackerel and albacore, blue lanternfish (Tarle- tonbeania crenularis), as well as squid and zooplankton. It is a highly-prized sport and commercial fish and is taken with jigs made of bone, rags and feathers, towed behind boats. The commercial catch in Canadian waters is secured by trolling with bright red feather lures and is frozen for the most part, for subsequent canning. Fishermen sometimes refer to the albacore as the tuna or longfin tuna.
    [Show full text]
  • Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs
    little fish BIG IMPACT Managing a crucial link in ocean food webs A report from the Lenfest Forage Fish Task Force The Lenfest Ocean Program invests in scientific research on the environmental, economic, and social impacts of fishing, fisheries management, and aquaculture. Supported research projects result in peer-reviewed publications in leading scientific journals. The Program works with the scientists to ensure that research results are delivered effectively to decision makers and the public, who can take action based on the findings. The program was established in 2004 by the Lenfest Foundation and is managed by the Pew Charitable Trusts (www.lenfestocean.org, Twitter handle: @LenfestOcean). The Institute for Ocean Conservation Science (IOCS) is part of the Stony Brook University School of Marine and Atmospheric Sciences. It is dedicated to advancing ocean conservation through science. IOCS conducts world-class scientific research that increases knowledge about critical threats to oceans and their inhabitants, provides the foundation for smarter ocean policy, and establishes new frameworks for improved ocean conservation. Suggested citation: Pikitch, E., Boersma, P.D., Boyd, I.L., Conover, D.O., Cury, P., Essington, T., Heppell, S.S., Houde, E.D., Mangel, M., Pauly, D., Plagányi, É., Sainsbury, K., and Steneck, R.S. 2012. Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs. Lenfest Ocean Program. Washington, DC. 108 pp. Cover photo illustration: shoal of forage fish (center), surrounded by (clockwise from top), humpback whale, Cape gannet, Steller sea lions, Atlantic puffins, sardines and black-legged kittiwake. Credits Cover (center) and title page: © Jason Pickering/SeaPics.com Banner, pages ii–1: © Brandon Cole Design: Janin/Cliff Design Inc.
    [Show full text]
  • Integrative Taxonomy, a New Tool for Fisheries Conservation
    W&M ScholarWorks Presentations 10-9-2015 Integrative Taxonomy, a New Tool for Fisheries Conservation Adela Roa-Varon Virginia Institute of Marine Science Eric J. Hilton Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/presentations Part of the Aquaculture and Fisheries Commons, Biodiversity Commons, and the Zoology Commons Recommended Citation Roa-Varon, Adela and Hilton, Eric J.. "Integrative Taxonomy, a New Tool for Fisheries Conservation". 10-9-2015. VIMS 75th Anniversary Alumni Research Symposium. This Presentation is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Presentations by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Integrave Taxonomy: a New Tool for Fisheries Conservaon Adela Roa-Varon and Eric Hilton Virginia InsFtute of Marine Science, William & Mary College [email protected], [email protected] What is Integrave Taxonomy? The Process of Integrave Results to Date Glossary Taxonomy Baits libraries were designed based on Species play a central role in nearly all candidate single-copy markers for disciplines of biology. Therefore delimitaon Gadus morhua genome, using the Species are the fundamental of species has broad implicaons for efforts taxonomic unit for a wide array of MYBaits target enrichment system. A biological studies and applied fields ranging from biological conservaon to preliminary analysis was run to test the such as conservaon planning. comparave evoluFonary analyses. The rise of baits using Merluccius bilinearis and new genomic and bioinformacs tools led for Gadus morhua as a posiFve control. Species delimitaon: the process of species delimitaon is becoming increasingly Approximately, 1500 to 3000 target idenFfying species-level biological objecFve and integrave.
    [Show full text]
  • Analysis of Horse Mackerel, Blue Whiting, and Hake Catch Data from Portuguese Surveys (1989–1999) Using an Integrated GLM Approach
    Aquat. Living Resour. 20, 105–116 (2007) Aquatic c EDP Sciences, IFREMER, IRD 2007 DOI: 10.1051/alr:2007021 Living www.alr-journal.org Resources Analysis of horse mackerel, blue whiting, and hake catch data from Portuguese surveys (1989–1999) using an integrated GLM approach Pedro Sousa1a, Ricardo T. Lemos2, Manuel C. Gomes3 and Manuela Azevedo1 1 DRM, IPIMAR, Portuguese Institute for Fisheries and Sea Research, Av. de Brasília, 1449-006 Lisbon, Portugal 2 IO, Faculty of Sciences, Univ. Lisbon, Campo Grande, 1749-016 Lisbon, and MARETEC, Technical Institute, Technical Univ. Lisbon, 1000-201 Lisbon, Portugal 3 DBV, Faculty of Sciences, Univ. Lisbon, Campo Grande, 1749-016 Lisbon, Portugal Received 21 June 2006; Accepted 10 May 2007 Abstract – Catch rates (kg hour−1) of horse mackerel (Trachurus trachurus), blue whiting (Micromesistius poutassou) and hake (Merluccius merluccius) from a series of 22 groundfish surveys conducted off Portugal between 1989 and 1999 were analysed using integrated logistic and gamma Generalized Linear Models (GLM). This methodology deals with the large amount of zeros in survey data matrices by modelling the probability of catch and the amount of positive catch separately, and then integrating the two sub-models into a single catch rate model of abundance. Among the explanatory variables included in the models, the geographic areas occupied by fish assemblages, i.e., groups of persistent co- occurring species, explained most of the variability observed for horse mackerel and blue whiting, while depth was the most important factor for hake. Because of hake’s ubiquity on the Portuguese margin, models for this species were less parsimonious and explained a lower proportion of total variability compared with the other species.
    [Show full text]
  • Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997
    The IUCN Species Survival Commission Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 Edited by Sarah L. Fowler, Tim M. Reed and Frances A. Dipper Occasional Paper of the IUCN Species Survival Commission No. 25 IUCN The World Conservation Union Donors to the SSC Conservation Communications Programme and Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 The IUCN/Species Survival Commission is committed to communicate important species conservation information to natural resource managers, decision-makers and others whose actions affect the conservation of biodiversity. The SSC's Action Plans, Occasional Papers, newsletter Species and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation. To date, more than 80 grants have been made from the Fund to SSC Specialist Groups. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC's Wildlife Trade Programme and Conservation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conservation of natural landscapes, coordination of law enforcement efforts as well as promotion of conservation education, research and international cooperation.
    [Show full text]