The Metabolic Regimes of Flowing Waters

Total Page:16

File Type:pdf, Size:1020Kb

The Metabolic Regimes of Flowing Waters LIMNOLOGY and Limnol. Oceanogr. 63, 2018, S99–S118 VC 2017 The Authors Limnology and Oceanography published by Wiley Periodicals, Inc. OCEANOGRAPHY on behalf of Association for the Sciences of Limnology and Oceanography doi: 10.1002/lno.10726 The metabolic regimes of flowing waters E. S. Bernhardt ,1* J. B. Heffernan ,2 N. B. Grimm ,3 E. H. Stanley ,4 J. W. Harvey ,5 M. Arroita,6,7 A. P. Appling,8 M. J. Cohen,9 W. H. McDowell ,10 R. O. Hall, Jr.,7,a J. S. Read,11 B. J. Roberts,12 E. G. Stets,13 C. B. Yackulic14 1Department of Biology, Duke University, Durham, North Carolina 2Nicholas School of the Environment, Duke University, Durham, North Carolina 3Arizona State University, Tempe, Arizona 4Center for Limnology, University of Wisconsin, Madison, Wisconsin 5National Research Program, U.S. Geological Survey, Reston, Virginia 6Department of Plant Biology and Ecology, University of the Basque Country, Bilbao, Spain 7Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 8US Geological Survey, Office of Water Information, Tucson, Arizona 9School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 10Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire 11U.S. Geological Survey, Office of Water Information, Middleton, Wisconsin 12Louisiana Universities Marine Consortium, Chauvin, Louisiana 13U.S. Geological Survey, National Research Program, Boulder, Colorado 14U.S. Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona Abstract The processes and biomass that characterize any ecosystem are fundamentally constrained by the total amount of energy that is either fixed within or delivered across its boundaries. Ultimately, ecosystems may be understood and classified by their rates of total and net productivity and by the seasonal patterns of pho- tosynthesis and respiration. Such understanding is well developed for terrestrial and lentic ecosystems but our understanding of ecosystem phenology has lagged well behind for rivers. The proliferation of reliable and inexpensive sensors for monitoring dissolved oxygen and carbon dioxide is underpinning a revolution in our understanding of the ecosystem energetics of rivers. Here, we synthesize our current understanding of the drivers and constraints on river metabolism, and set out a research agenda aimed at characterizing, classi- fying and modeling the current and future metabolic regimes of flowing waters. The fuel that powers almost all of Earth’s ecosystems is autotrophs and heterotrophs) is measured as ecosystem res- created by organisms capable of the alchemy of photosyn- piration (ER). Together, GPP and ER are the fundamental thesis, in which solar energy, water, and carbon dioxide are metabolic rates of ecosystems that constrain the energy sup- converted into reduced carbon compounds that are then ply and energy dissipation through food chains, and the bal- used to sustain life. We measure this conversion of solar ance of these two fluxes, measured as net ecosystem energy into organic energy as the gross primary productivity production (NEP), determines whether carbon accumulates (GPP) of ecosystems. The collective dissipation of this or is depleted within an ecosystem. Terrestrial ecosystems organic energy through organismal metabolism (of both often have predictable annual cycles, with both GPP and NEP typically peaking during warmer and wetter months of the year. In many well-studied lakes productivity peaks *Correspondence: [email protected] when warming temperatures, lengthening days, and high aPresent address: Flathead Lake Biological Station, University of Montana, nutrient concentrations occur in concert. The life cycles of Polson, Montana many consumers are likely synchronized to these seasonal oscillations such that periods of peak energetic demand by This is an open access article under the terms of the Creative Commons consumers coincide with or follow the peak productivity of Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly their preferred plant or prey (e.g., Lampert et al. 1986; Berger cited and is not used for commercial purposes. et al. 2010). As a result, ecosystem respiration tends to S99 Bernhardt et al. Metabolic regimes Fig. 1. Temporal trends in dissolved oxygen (DO shown as % of atmospheric saturation) for four contrasting U.S. rivers over a 4-yr period. High diel variation in dissolved oxygen is a proxy for high ecosystem GPP. The top trace is from the Menominee River in northern, Wisconsin, a large river with clear summer peaks and winter lows in stream metabolism. Dissolved oxygen traces for the more southern Five Mile Creek in Alabama and San Anoto- nio River in Texas show little seasonality, with the smaller Creek having sustained high diel variation in DO and the more urban river having many alternating periods of high and low diel DO variation. The bottom trace is from Fanno Creek, a heavily shaded and frequently flooded small stream in western Oregon. Data from each of these four streams appears again (along with axes labels) in Figs. 3, 5. Here, we remove axes scores to focus on the differences in seasonality of a common signal across streams. The scale of both axes is the same for all four series. covary with GPP. This phenology of the ecosystem, or its reduced coherence between climate drivers and river ecosys- seasonal timing of carbon, water and energy exchange (sensu tem productivity and respiration. Noormets 2009) is both a cause and a consequence of the Of course, the relative importance of terrestrial shading phenology of all component organisms. and terrestrial organic matter inputs varies with river size The same “cause and consequence of organism (Vannote et al. 1980). Just as the importance of terrestrial phenology” argument cannot be made for river ecosystems inputs of nutrients and organic matter to lake food webs for three reasons. First, in many rivers seasonal variation in diminishes as the ratio of lake size to watershed size light is uncorrelated with seasonal variation in temperature, increases (Tanentzap et al. 2017), we expect that the relative because of the reduction in light supply due to canopy inter- importance of canopy shading, allochthonous inputs, and ception, sediment loads or colored organic matter. Second, hydrologic disturbance should decline between headwater in many rivers intense and frequent high flow events regu- streams and large rivers. This gradient in river size impacts larly reduce the biomass of autotrophs (algae, mosses, and the expected ecosystem phenology, with well-lit and less fre- macrophytes) through scouring or burial while stream drying quently disturbed large rivers having regular summer pro- can strand and desiccate autotrophs on the channel bed. ductivity peaks while shaded headwaters with frequent Finally, most rivers receive energetic subsidies in the form of flooding are likely to have productivity peaks that are mis- detritus and dissolved organic matter from their surrounding matched to the terrestrial growing season (Fig. 1). These pre- watersheds. These allochthonous inputs can match or exceed dicted longitudinal patterns can be obscured for rivers with in situ GPP and thus decouple the seasonal and annual pat- high sediment or colored organic matter inputs. Because the terns of GPP and ER. For each of these reasons we expect a temporal signals of GPP and ER are so diverse across streams S100 Bernhardt et al. Metabolic regimes and years, and so often asynchronous with terrestrial pro- in the concentration of dissolved oxygen (DO) throughout a ductivity and climate drivers, we propose that the term meta- diel (24-h) cycle, using increases during daylight hours and bolic regimes is more appropriate than phenology to describe overnight declines to calculate rates of GPP, ER, and NEP. In these patterns. Here, we define a metabolic regime as the Odum’s initial metabolism estimates (Odum 1956, 1957) characteristic temporal pattern of ecosystem GPP and ER these changes were documented by collecting samples at 2– observed for a river. 4 h intervals throughout a day followed by manual analysis Despite the frequent mismatches in the timing of peak of DO concentration via titration. Sampling around the energy supply, thermal optima, and disturbance river ecosys- clock by this method is labor intensive, and the duration of tems support a tremendous diversity of species (Strayer and early studies was thus limited to a handful of days during Dudgeon 2010) and can convert enormous quantities of the year. Later efforts were enabled by instantaneous meas- organic matter and inorganic nutrients into CO2,CH4,N2, urements of DO with first generation environmental sensors. and N2O gases (Cole et al. 2007; Mulholland et al. 2008; Bat- Because these sensors were expensive and required frequent tin et al. 2009; Raymond et al. 2013; Stanley et al. 2016). calibration, researchers tended to deploy them for very lim- The capacity of rivers to support these critical functions ited periods of time. As a result, most reported rates of river depends, fundamentally, on ecosystem metabolism, defined ecosystem metabolism were derived from a small number of as “the production and destruction of organic matter, and the measurement days over a year (e.g., 2–12 d; synthesized by associated fluxes of nutrients, through the gross photosynthetic Lamberti and Steinman 1997; Finlay 2011). These brief sam- and respiratory
Recommended publications
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • Characterization of Fuel Before and After a Single Prescribed Fire in an Appalachian Hardwood Forest • Elizabeth Bucks, Mary A
    Characterization of Fuel before and after a Single Prescribed Fire in an Appalachian Hardwood Forest • Elizabeth bucks, Mary A. Arthur, Jessi E. Lyons, and David L. Loftis Improved understanding of how fuel loads and prescribed fire interact in Appalachian hardwood forests can help managers evaluate the impacts of increased use of prescribed fire in the region. The objective of this study was to characterize fuel loads before and after a single late-winter/early spring prescribed fire and after autumn leaf fall. A repeated measures split-plot design was used to examine dead and down fuels by treatment, sampling time, and landscape position. Preburn mean fuel moss was 40.5 Mg/ha with the duff (Oea) comprising the largest component (19.5 Mg/ha; 48%), followed by large (more than 7.6 cm in diameter) downed lags (9.6 Mg/ha; 24%). Fuel mass was similar across landscape positions; however, duff depth was greater on subxeric compared with intermediate and submesic landscape positions. Burning reduced litter mass (0i; P < 0.00]) and duff depth (P = 0.01). Changes in woody fuels (1-, 10-, 100-, and 1,000-hour) and duff mass were not statistically significant. Post—leaf fall fuel masses did not differ from preburn masses. Thus, a single prescribed burn did not accomplish significant fuel reduction. However, significant declines in duff depth and fuel bed continuity may limit the spread of fire beyond leaf fall and increase potential for soil erosion. This study contributes to the dialogue regarding the use of fire in the Appalachian forest region and impacts on fuel loads.
    [Show full text]
  • Effects of Eutrophication on Stream Ecosystems
    EFFECTS OF EUTROPHICATION ON STREAM ECOSYSTEMS Lei Zheng, PhD and Michael J. Paul, PhD Tetra Tech, Inc. Abstract This paper describes the effects of nutrient enrichment on the structure and function of stream ecosystems. It starts with the currently well documented direct effects of nutrient enrichment on algal biomass and the resulting impacts on stream chemistry. The paper continues with an explanation of the less well documented indirect ecological effects of nutrient enrichment on stream structure and function, including effects of excess growth on physical habitat, and alterations to aquatic life community structure from the microbial assemblage to fish and mammals. The paper also dicusses effects on the ecosystem level including changes to productivity, respiration, decomposition, carbon and other geochemical cycles. The paper ends by discussing the significance of these direct and indirect effects of nutrient enrichment on designated uses - especially recreational, aquatic life, and drinking water. 2 1. Introduction 1.1 Stream processes Streams are all flowing natural waters, regardless of size. To understand the processes that influence the pattern and character of streams and reduce natural variation of different streams, several stream classification systems (including ecoregional, fluvial geomorphological, and stream order classification) have been adopted by state and national programs. Ecoregional classification is based on geology, soils, geomorphology, dominant land uses, and natural vegetation (Omernik 1987). Fluvial geomorphological classification explains stream and slope processes through the application of physical principles. Rosgen (1994) classified stream channels in the United States into seven major stream types based on morphological characteristics, including entrenchment, gradient, width/depth ratio, and sinuosity in various land forms.
    [Show full text]
  • Influence of a Waterfall Over Richness and Similarity in Adjoining Pools Of
    Acta Limnologica Brasiliensia, 2010, vol. 22, no. 4, p. 378-383 doi: 10.4322/actalb.2011.003 Influence of a waterfall over richness and similarity in adjoining pools of an Atlantic Rainforest stream Influência de uma queda d’água sobre a riqueza e a similaridade de dois remansos em um rio da Mata Atlântica Biological LimnologyBiological Célio Roberto Jönck¹ and José Marcelo Rocha Aranha² ¹Avaliação e Monitoramento Ambiental, Centro de Pesquisas Leopoldo Américo Miguez de Melo, CEP 21941-915, Rio de Janeiro, RJ, Brazil e-mail: [email protected] ²Laboratório de Ecologia de Rios, Universidade Federal do Paraná – UFPR, Campus Palotina, Rua 24 de Junho, 698, CEP 85950-000, Palotina, PR, Brazil e-mail: [email protected] Abstract: Aim: The main goal of the study was to determine the effect of the Morato Fall in the richness and composition of the aquatic animal community; Methods: We compared faunal richness and similarity in four substrate samples from two pools separated by a waterfall in the Morato River, southern Brazil; Results: The richness was not significantly different, although the upstream pool had 72 taxa and the downstream one just 65. On the other hand, composition was poorly similar, just a 36.5% similarity between the two sites; Conclusions: That indicates a strong influence of the waterfall, mainly on organisms which spent its entire life cycle on the water, such as fish and small crustaceans. That allow aquatic insects, a group with airborne adult phase and, therefore, able to disperse up to the upstream pool, to evolve with less predatory pressure, becoming the top group in the food web of this environment.
    [Show full text]
  • The Burdiehouse Burn Valley Park
    The Burdiehouse Burn Valley Park Local Nature Reserve Management Plan 2008 – 2018 Revised in 2010 D:\Ranger\My Documents\BBVP\Burdiehouse Burn Valley Park Management Plan 2008\green flag Management plan.doc 1 INDEX PAGE Introduction .................................................................................................................................... 3 SECTION ONE –Site description........................................................................................................... 3 Site maps I, II, III and IV…………………………………………………………………………………………...6-9 1.1 Management plan framework........................................................................................................... 10 SECTION TWO – Our vision ................................................................................................................ 11 SECTION THREE – Aims ..................................................................................................................... 12 3.1 Aims and links with Green Flag criteria ............................................................................................ 12 SECTION FOUR – Surveys .................................................................................................................. 13 4.1 Introduction .................................................................................................................................. 13 4.2 Historical links .................................................................................................................................
    [Show full text]
  • Impact of Wildfire on Stream Nutrient Chemistry and Ecosystem Metabolism in Boreal Forest Catchments of Interior Alaska
    Impact of Wildfire on Stream Nutrient Chemistry and Ecosystem Metabolism in Boreal Forest Catchments of Interior Alaska Abstract With climatic warming, wildfire occurrence is increasing m the boreal forest of interior Alaska. Loss of catchment vegetation during fire can impact streams directly through altered solute and debris inputs and changed light and temperature regimes. Over longer time scales, fire can accelerate permafrost degradation, altering catchment hydrology and stream nutrient dynamics. In 2004, the 217,000 ha Boundary Fire burned 65% of an established study site in the Caribou-Poker Creeks Research Watershed. We used this opportunity to investigate the impact of wildfire on stream chemistry and metabolism in boreal forest catchments. Wildfire impacts on chemistry were evaluated by examining solute chemistry in four catchments from 2002 to 2007. Ecosystem metabolism was measured over the summer of 2005 in one burned and two unburned catchments. Wildfire led to stream nitrate concentration increasing up to threefold, whereas dissolved organic carbon (DOC) and dissolved organic nitrogen concentrations decreased post-fire. Average stream gross primary production in the burned catchment was double that of the unburned sites (2.4 and -2 1.2 g O2 m day, respectively). Respiration rate was also elevated in the burned -2 -1 stream (6.6 g O2 m day ) compared with the control streams (l.2 and -2 -1 4.5 g O2 m day ). Climatic warming has the potential to impact boreal forest streams through permafrost thaw and increased fire frequency, leading to altered solute inputs and production and respiration rates. Introduction stream disch arge and hydrologic flowpaths through watersheds, In the boreal forest, wildfire is a widespread disturbance and thereby altering both the magnitude and timing of flows and fundamental in shaping forest structure, function, and succession- solute delivery to streams (Earl and Blinn, 2003; Petrone et al., al processes (Chapin et al., 2006).
    [Show full text]
  • EVALUATING the EFFECTS of CATASTROPHIC WILDFIRE on WATER QUALITY, WHOLE-STREAM METABOLISM and FISH COMMUNITIES Justin K
    University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations Spring 4-12-2018 EVALUATING THE EFFECTS OF CATASTROPHIC WILDFIRE ON WATER QUALITY, WHOLE-STREAM METABOLISM AND FISH COMMUNITIES Justin K. Reale Biology Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Part of the Terrestrial and Aquatic Ecology Commons Recommended Citation Reale, Justin K.. "EVALUATING THE EFFECTS OF CATASTROPHIC WILDFIRE ON WATER QUALITY, WHOLE-STREAM METABOLISM AND FISH COMMUNITIES." (2018). https://digitalrepository.unm.edu/biol_etds/265 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Justin K. Reale Candidate Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Dr. Clifford N. Dahm, Chairperson Dr. David J. Van Horn, Co-Chairperson Dr. Thomas F. Turner Dr. Ricardo González-Pinźon i EVALUATING THE EFFECTS OF CATASTROPHIC WILDFIRE ON WATER QUALITY, WHOLE-STREAM METABOLISM AND FISH COMMUNITIES BY JUSTIN KEVIN REALE B.S., University of New Mexico, 2009 M.S., University of New Mexico, 2016 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biology The University of New Mexico Albuquerque, New Mexico May, 2018 ii ACKNOWLEGEMENTS I would like to express my gratitude to my co-advisors, Drs. Dahm and Van Horn, for their mentoring, teaching and support throughout my dissertation.
    [Show full text]
  • Model Stormwater Management Ordinance MODEL STORMWATER ORDINANCE
    State of Illinois Illinois Department of Natural Resources Model Stormwater Management Ordinance MODEL STORMWATER ORDINANCE Illinois Department of Natural Resources Office of Water Resources September 2015 Version 1 Page Left Intentionally Blank Table of Contents Introduction .................................................................................................................... 1 How To Use This Model Ordinance ................................................................................. 1 100.0 PURPOSE AND SCOPE ............................................................................................ 2 101.0 Purpose ............................................................................................................................. 2 102.0 Scope ................................................................................................................................. 3 200.0 ABBREVIATIONS AND DEFINITIONS ....................................................................... 3 201.0 Abbreviations .................................................................................................................... 3 202.0 Definitions ......................................................................................................................... 3 300.0 AUTHORITY AND APPROVALS .............................................................................. 14 400.0 GENERAL PROVISIONS AND JURISDICTION .......................................................... 15 401.0 Regulated Development ............................................................................................
    [Show full text]
  • Flooding Dynamics in a Large Low-Gradient Alluvial Fan, the Okavango Delta, Botswana, from Analysis and Interpretation of a 30-Year Hydrometric Record
    Hydrology and Earth System Sciences, 10, 127–137, 2006 www.copernicus.org/EGU/hess/hess/10/127/ Hydrology and SRef-ID: 1607-7938/hess/2006-10-127 Earth System European Geosciences Union Sciences Flooding dynamics in a large low-gradient alluvial fan, the Okavango Delta, Botswana, from analysis and interpretation of a 30-year hydrometric record P. Wolski and M. Murray-Hudson Harry Oppenheimer Okavango Research Centre, Maun, Botswana Received: 11 August 2005 – Published in Hydrology and Earth System Sciences Discussions: 6 September 2005 Revised: 29 November 2005 – Accepted: 3 January 2006 – Published: 21 February 2006 Abstract. The Okavango Delta is a flood-pulsed wetland, tem, and the flood frequency distribution itself can change, which supports a large tourism industry and the subsistence compared to that at upstream locations (Wolff and Burges, of the local population through the provision of ecosystem 1994). The ecological role of the channel-floodplain interac- services. In order to obtain insight into the influence of var- tion is expressed by the flood pulse concept (Junk et al., 1989; ious environmental factors on flood propagation and distri- Middleton, 1999). According to this concept, floodplain wet- bution in this system, an analysis was undertaken of a 30- lands and riparian ecosystems adjust to, and are maintained, year record of hydrometric data (discharges and water lev- by the pulsing of water, sediment and nutrients that occurs els) from one of the Delta distributaries. The analysis re- during over-bank flow conditions. Odum (1994) addition- vealed that water levels and discharges at any given channel ally identifies flood pulsing at various spatial and temporal site in this distributary are influenced by a complex interplay scales as an energy subsidy to wetland ecosystems, explain- of flood wave and local rainfall inputs, modified by channel- ing in part the high ecological productivity associated with floodplain interactions, in-channel sedimentation and techni- such systems.
    [Show full text]
  • Spatial Heterogeneity and Controls of Ecosystem Metabolism in a Great Plains River Network
    Spatial heterogeneity and controls of ecosystem metabolism in a Great Plains river network Walter K. Dodds, Sophie A. Higgs, Margaret J. Spangler, James Guinnip, Jeffrey D. Scott, Skyler C. Hedden, Bryan D. Frenette, et al. Hydrobiologia The International Journal of Aquatic Sciences ISSN 0018-8158 Volume 813 Number 1 Hydrobiologia (2018) 813:85-102 DOI 10.1007/s10750-018-3516-0 1 23 Your article is protected by copyright and all rights are held exclusively by Springer International Publishing AG, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Hydrobiologia (2018) 813:85–102 https://doi.org/10.1007/s10750-018-3516-0 PRIMARY RESEARCH PAPER Spatial heterogeneity and controls of ecosystem metabolism in a Great Plains river network Walter K. Dodds . Sophie A. Higgs . Margaret J. Spangler . James Guinnip . Jeffrey D. Scott . Skyler C. Hedden . Bryan D. Frenette . Ryland Taylor . Anne E. Schechner . David J. Hoeinghaus . Michelle A. Evans-White Received: 17 June 2017 / Revised: 14 December 2017 / Accepted: 11 January 2018 / Published online: 20 January 2018 Ó Springer International Publishing AG, part of Springer Nature 2018 Abstract Gross primary production and ecosystem limitation, and was positively related to nutrients.
    [Show full text]
  • Wildfire Effects on Stream Metabolism: Aquatic Succession Is Mediated by Local Riparian Succession and Stream Geomorphology
    Wildfire effects on stream metabolism: Aquatic succession is mediated by local riparian succession and stream geomorphology Emily A. Davis A thesis Submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2015 Committee: Daniel Schindler Christian Torgersen Colden Baxter Charles Simenstad Program Authorized to Offer Degree: School of Aquatic and Fishery Science ©Copyright 2015 Emily A. Davis i University of Washington Wildfire effects on stream metabolism: Aquatic succession is mediated by local riparian succession and stream geomorphology Emily A. Davis Chair of the Supervisory Committee: Dr. Daniel Schindler School of Aquatic and Fishery Science Abstract As climate change shifts and intensifies fire regimes, it is important to understand stream ecosystem responses to fire. How stream metabolism responds remains largely unexplored. We investigated effects of fire severity and watershed geomorphology on stream ecosystem metabolism at multiple spatial scales in an Idaho wilderness watershed. We measured dissolved oxygen, temperature, and irradiance in 18 streams varying in fire history and watershed characteristics in order to model diel oxygen dynamics, from which we estimated rates of production (P) and respiration (R), then used P:R as an index of stream metabolic state. We found that post-fire riparian canopy recovery strongly influenced stream metabolic state. Severely burned streams with dense riparian regrowth were heterotrophic, whereas streams with less canopy recovery were autotrophic. Fire effects on stream metabolic state were highly mediated by watershed geomorphology, with the strongest long-term changes observed in low- order, narrow, steep streams. Effect sizes of fire and watershed geomorphology on stream metabolism changed from fine spatial scale (500-m riparian buffer) to coarse scale (watershed), and were strongest at fine scales.
    [Show full text]
  • Organic Matter Decomposition and Ecosystem Metabolism As Tools to Assess the Functional Integrity of Streams and Rivers–A Systematic Review
    water Review Organic Matter Decomposition and Ecosystem Metabolism as Tools to Assess the Functional Integrity of Streams and Rivers–A Systematic Review Verónica Ferreira 1,* , Arturo Elosegi 2 , Scott D. Tiegs 3 , Daniel von Schiller 4 and Roger Young 5 1 Marine and Environmental Sciences Centre–MARE, Department of Life Sciences, University of Coimbra, 3000–456 Coimbra, Portugal 2 Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain; [email protected] 3 Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; [email protected] 4 Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de l’Aigua (IdRA), University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; [email protected] 5 Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; [email protected] * Correspondence: [email protected] Received: 4 November 2020; Accepted: 8 December 2020; Published: 15 December 2020 Abstract: Streams and rivers provide important services to humans, and therefore, their ecological integrity should be a societal goal. Although ecological integrity encompasses structural and functional integrity, stream bioassessment rarely considers ecosystem functioning. Organic matter decomposition and ecosystem metabolism are prime candidate indicators of stream functional integrity, and here we review each of these functions, the methods used for their determination, and their strengths and limitations for bioassessment. We also provide a systematic review of studies that have addressed organic matter decomposition (88 studies) and ecosystem metabolism (50 studies) for stream bioassessment since the year 2000. Most studies were conducted in temperate regions. Bioassessment based on organic matter decomposition mostly used leaf litter in coarse-mesh bags, but fine-mesh bags were also common, and cotton strips and wood were frequent in New Zealand.
    [Show full text]