HHMI BULLETIN G Hes Medical Institute
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Prospects and Challenges for the Global Nuclear Future: After Fukushima Scott D
Spring_2012_COVER 4/23/2012 10:32 AM Page 3 american academy of arts & sciences spring 2012 www.amacad.org Bulletin vol. lxv, no. 3 Prospects and Challenges for the Global Nuclear Future: After Fukushima Scott D. Sagan, Harald Müller, Noramly bin Muslim, Olli Heinonen, and Jayantha Dhanapala The Future of the American Military Karl W. Eikenberry, John L. Hennessy, James J. Sheehan, David M. Kennedy, and William J. Perry ALSO: Patrick C. Walsh, M.D., Awarded the Francis Amory Prize Humanities Indicators Track Signi½cant Changes in the Disciplines Strengthening Energy Policy through Social Science WikiLeaks and the First Amendment Upcoming Events Special Thanks to Donors APRIL ore than $5.2 million was raised in the ½scal year completed on March 31, 25th M 2012. The Academy’s Annual Fund sur- Project Brie½ng–Washington, D.C. passed the $1.6 million mark for the ½rst The Alternative Energy Future time. Additional gifts and grants totaled Speakers: Steven Koonin (Institute for over $3.6 million, with more than 1,200 in- Defense Analyses; formerly, U.S. Depart- dividuals, 14 foundations, and 54 University ment of Energy); Robert Fri (Resources Af½liates contributing to make these results for the Future); Michael Graetz (Colum- possible. “This was a very successful year,” bia Law School); Michael Greenstone said Alan Dachs, Development and Public (Massachusetts Institute of Technology; Relations Committee Chair. “The Academy Brookings Institution); Kassia Yanosek is fortunate that so many Fellows support (Stanford University; Tana Energy the work we are doing.” Dachs expressed his Capital llc) deep appreciation to the members of the De- velopment Committee during the past year, MAY including Louise Bryson, Richard Cavanagh, 14th Jesse Choper, David Frohnmayer, Michael Reception–New York City Gellert, Matthew Santirocco, Stephen Reception in Honor of New York Area Fellows Stamas, Donald Stewart, Samuel Thier, and Nicholas Zervas, along with the continuing 16th involvement of Board Chair Louis Cabot. -
2008-Annual-Report.Pdf
whitehead institute 2008 AnnuAl RepoRt. a year in the life of a scientific community empowered to explore biology’s most fundamental questions for the betterment of human health. whitehead institute 2008 annual report a Preserving the mission, contents facing the future 1 preserving the mission, it’s customary in this space to recount and reflect facing the future on the accomplishments of the year gone by. i’ll certainly do so here—proudly—but in many 5 scientific achievement important ways, 2008 was about positioning the institute for years to come. 15 principal investigators many colleges, universities, and independent 30 whitehead fellows research institutions found themselves in dire fiscal positions at the close of 2008 and entered 34 community evolution 2009 in operational crisis reflective of the global economic environment. hiring freezes and large- 40 honor roll of donors scale workforce reductions have become the norm. although whitehead institute is certainly not 46 financial summary insulated from the impact of the downturn, i am 48 leadership pleased and somewhat humbled to report that the institute remains financially strong and no less 49 sited for science committed to scientific excellence. david page, director over the past two years, we have been engaged in a focused effort to increase efficiency and editor & direCtor reduce our administrative costs, with the explicit goal of ensuring that as much of the institute’s matt fearer revenue as possible directly supports Whitehead research. Our approach, which has resulted in assoCiate editor nicole giese a 10-percent reduction in operational expense, has been carefully considered. every decision offiCe of CommuniCation and PubliC affairs has been evaluated not just for its potential effects on our scientific mission, but also for 617.258.5183 www.whitehead.mit.edu possible consequences to the whitehead community and its unique culture. -
[email protected] (609) 258-5981 Jonikaslab.Princeton.Edu Updated 3/10/2021
Martin Casimir Jonikas, Ph.D. Assistant Professor, Department of Molecular Biology Princeton University, Princeton, NJ 08544 [email protected] (609) 258-5981 jonikaslab.princeton.edu updated 3/10/2021 VISION My group seeks to advance the basic understanding of cell biology. We study the pyrenoid, a fascinating phase-separated organelle that enhances CO2 capture in nearly all eukaryotic algae. Understanding the pyrenoid is important for three reasons: (1) the pyrenoid plays a central role in our planet’s carbon cycle, (2) the pyrenoid embodies fundamental questions in organelle biogenesis, and (3) engineering a pyrenoid into land plants could dramatically increase crop yields. To accelerate progress, we are developing community resources for the unicellular green alga Chlamydomonas reinhardtii as a model system for photosynthetic organisms. My group also seeks to nurture and train future world-leading scientists. EDUCATION 2004 B.S., Aerospace Engineering, Massachusetts Institute of Technology 2009 Ph.D., Biochemistry and Molecular Biology, University of California, San Francisco. Research advisors: Dr. Jonathan Weissman and Dr. Peter Walter PROFESSIONAL POSITIONS 2010-2016 Young Investigator (faculty position equivalent to Assistant Professor), Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 2011-2016 Assistant Professor by courtesy, Department of Biology, Stanford University, Stanford, CA 2016-present Assistant Professor, Department of Molecular Biology, Princeton University, Princeton, NJ 2019-present Affiliated Faculty, Princeton Quantitative and Computational Biology Program AWARDS AND HONORS 2002 1st place, MIT 2.007 Robotics Competition 2005 National Science Foundation Graduate Research Fellowship 2009 Harvard Bauer Fellowship (declined) 2010 Air Force Office of Scientific Research Young Investigator Award 2015 National Institutes of Health Director's New Innovator Award 2016 HHMI-Simons Faculty Scholar Award 2020 Vilcek Prize for Creative Promise in Biomedical Science Martin Casimir Jonikas, Ph.D. -
Section 2 Contribution of Science and Technology to Global Issues
Chapter 1 Progress in Science and Technology and Socioeconomic Changes Section 2 Contribution of Science and Technology to Global Issues From the end of the 19th century to the 20th century, science and technology has rapidly advanced. Chemical industry, electrical industry and heavy industry and so on emerged and we have advanced forward to ages of mass production and mass consumption, when goods could be transported in bulk to distant locations for a short period, as physical distribution, including railways, cars and airplanes, developed. This accompanied the mass disposal of goods and mass consumption of energy, highlighting the Chapter 1 risk of depletion of limited resources, global warming, the destruction of ecosystems and the crisis in the global environment. Science and technology that changed our lives were explained in Section 1 of this chapter, but as well as changing our lives in terms of key daily lifestyle elements, science and technology are also crucial to solve global issues such as climate change, natural resource depletion and energy. There are significant expectations as to how science and technology can contribute to solve global issues. This section addresses the social contribution of science and technology in Japan domestically and internationally. 1 Contribution to Global Warming Countermeasures ○ Global warming state Climate changes caused by global warming are Average global surface temperature (land + sea) anomaly one of the most urgent problems which the world faces. The Intergovernmental Panel on Climate Change (IPCC)1, awarded the Nobel Peace Prize Year in 2007, published the Synthesis Report of Fifth Changes in average global sea level Assessment Report in 2014. -
Looking at Earth: an Astronaut's Journey Induction Ceremony 2017
american academy of arts & sciences winter 2018 www.amacad.org Bulletin vol. lxxi, no. 2 Induction Ceremony 2017 Class Speakers: Jane Mayer, Ursula Burns, James P. Allison, Heather K. Gerken, and Gerald Chan Annual David M. Rubenstein Lecture Looking at Earth: An Astronaut’s Journey David M. Rubenstein and Kathryn D. Sullivan ALSO: How Are Humans Different from Other Great Apes?–Ajit Varki, Pascal Gagneux, and Fred H. Gage Advancing Higher Education in America–Monica Lozano, Robert J. Birgeneau, Bob Jacobsen, and Michael S. McPherson Redistricting and Representation–Patti B. Saris, Gary King, Jamal Greene, and Moon Duchin noteworthy Select Prizes and Andrea Bertozzi (University of James R. Downing (St. Jude Chil- Barbara Grosz (Harvard Univer- California, Los Angeles) was se- dren’s Research Hospital) was sity) is the recipient of the Life- Awards to Members lected as a 2017 Simons Investi- awarded the 2017 E. Donnall time Achievement Award of the gator by the Simons Foundation. Thomas Lecture and Prize by the Association for Computational American Society of Hematology. Linguistics. Nobel Prize in Chemistry, Clara D. Bloomfield (Ohio State 2017 University) is the recipient of the Carol Dweck (Stanford Univer- Christopher Hacon (University 2017 Robert A. Kyle Award for sity) was awarded the inaugural of Utah) was awarded the Break- Joachim Frank (Columbia Univer- Outstanding Clinician-Scientist, Yidan Prize. through Prize in Mathematics. sity) presented by the Mayo Clinic Di- vision of Hematology. Felton Earls (Harvard Univer- Naomi Halas (Rice University) sity) is the recipient of the 2018 was awarded the 2018 Julius Ed- Nobel Prize in Economic Emmanuel J. -
Passport to an International Career -True Globalism
Passport to an international career̶True globalism ● Maki KAWAI Professor at Graduate School of Frontier Sciences, The University of Tokyo; RIKEN The Nobel Prize in Chemistry 2010 was awarded jointly to United States, it is rare for one to earn one’s Ph.D. in the United Richard F. Heck, Akira Suzuki, and Ei-ichi Negishi for their con- States like Ei-ichi Negishi. Satoru Masamune left Japan to study tributions to the development of organic synthesis that is also at the University of California, Berkley in 1957 as a Fulbright important industrially. Since palladium-catalyzed cross coupling scholar, and later became professor at Massachusetts Institute of is an area in which Japan is strong and for which it had been Technology (MIT) nurturing many organic scientists. Hiroaki widely expected that someday someone would receive the award, Suga of the Department of Chemistry, School of Science, The I honor the three winners and at the same time appreciate having University of Tokyo, and Yukishige Ito of RIKEN, who is pres- the opportunity to learn of the achievements made by many ently working on glycotrilogy at Exploratory Research for researchers engaged in this area of study. It is well known that Advanced Technology (ERATO), have both studied at MIT’s many of the Nobel Prize winners pursue their research work in Masamune Laboratory. Kazuo Nakamoto (Professor Emeritus at the United States, and Japanese winners are no exception. Marquette University in the United States, deceased June 2011) Among the fifteen winners up to 2010, the five winners of Ei-ichi of infrared or Raman spectroscopies left for the United States in Negishi (Nobel Prize in Chemistry 2010), Osamu Shimomura 1958, and is famous for his editions of“ Infrared and Raman Spec- (Nobel Prize in Chemistry 2008), Yoichiro Nambu (Nobel Prize tra of Inorganic and Coordination Compounds,” with which I am in Physics 2008), Susumu Tonegawa (Nobel Prize in Physiology sure many of you are familiar. -
Dr. David P. Bartel Journal Interviews
Home About Scientific Press Room Contact Us ● ScienceWatch Home ● Interviews Featured Interviews Author Commentaries Institutional Interviews 2008 : June 2008 - Author Commentaries : Dr. David P. Bartel Journal Interviews Podcasts AUTHOR COMMENTARIES - 2008 ● Analyses June 2008 Featured Analyses Dr. David P. Bartel A Featured Scientist from Essential Science IndicatorsSM What's Hot In... Special Topics Earlier this year, ScienceWatch.com published an analysis of high-impact research in Molecular Biology & Genetics over the past five years. The ● Data & Rankings analysis ranked David Bartel #2 among authors publishing high-impact papers in this field, based on 19 papers cited a total of 4,542 times. Sci-Bytes In Essential Science Indicators from Thomson Reuters, Dr. Bartel's record Fast Breaking Papers includes 76 original articles and review papers published between January 1, New Hot Papers 1998 and February 29, 2008, with a total of 10,386 cites. These papers can be found in the fields of Molecular Biology & Genetics, Biology & Emerging Research Fronts Biochemistry, and Plant & Animal Science. Fast Moving Fronts Research Front Maps Current Classics Dr. Bartel is a Howard Hughes Medical Institute investigator whose lab is based at the Whitehead Institute Top Topics for Biomedical Research in Cambridge, Massachusetts. He is also a Professor in the Department of Biology at MIT. Rising Stars New Entrants In the interview below, he talks with correspondent Gary Taubes about his highly cited research. Country Profiles What motivated your research originally on these small, non-coding RNAs, and particularly the 2000 Cell paper (Zamore PD, et al., RNAi: double-stranded RNA directs the ATP-dependent ● About Science Watch cleavage of mRNA at 21 to 23 nucleotide intervals," 101[1]: 25-33, 31 March 200), which is your most-highly cited paper that’s not a review? Methodology Tom Tuschl and Phil Zamore [see also] were postdocs in my lab working in collaboration with Phil Sharp Archives [see also] on the biochemistry of RNAi. -
GFP: Lighting up Life
PERSPECTIVE GFP: Lighting up life Martin Chalfie1 Department of Biological Sciences, Columbia University, New York, NY 10027 You can observe a lot by watching. Zernike, physics, 1953), large-array ra- My colleagues and I often call their Yogi Berra dio telescopes (Martin Ryle, physics, Nobel Prize the first worm prize. The 1974), the electron microscope (Ernst second went in 2006 to Andy Fire and My companions and I then witnessed Ruska, physics, 1986), the scanning tun- Craig Mello for their discovery of RNA a curious spectacle...TheNautilus neling microscope (Gerd Binnig and interference. I consider this year’s prize floated in the midst of ...trulyliv- Heinrich Rohrer, physics, 1986), com- to be the third worm prize, because if I ing light[,]...aninfinite agglomera- puter-assisted tomography (Allan M. had not worked on C. elegans and con- tion of colored...globules of diaph- Cormack and Godfrey N. Hounsfield, stantly told people that one of its advan- anous jelly.... physiology or medicine, 1979), and, tages was that it was transparent, I am Jules Verne, Twenty Thousand most recently, magnetic resonance imag- convinced I would have ignored GFP Leagues Under the Sea ing (Paul C. Lauterbur and Sir Peter when I first heard of it. These three Now it is such a bizarrely improbable Mansfield, physiology or medicine, prizes speak to the genius of Sydney coincidence that anything so mind- 2003). Brenner in choosing and developing a bogglingly useful could have evolved My road to imaging was not direct. I new organism for biological research. purely by chance that some thinkers had been interested in science from The year before I learned about GFP, have chosen to see it as a final and when I was very young, but after a di- my lab had begun looking at gene expres- clinching proof of the nonexistence sastrous summer lab experience in which sion in the C. -
Pnas11141toc 3..7
October 14, 2014 u vol. 111 u no. 41 u 14637–14960 Cover image: Pictured is a duck during feeding. Ducks and other tactile foraging birds rely on their sense of touch, rather than sight, to feed in murky water. Eve R. Schneider et al. found that the trigeminal ganglia in duck bills contain a high number of neurons hypersensitive to mechanical stimuli. Multiplication of mechanosensitive neurons, however, may reduce the number of thermosensitive neurons. This tradeoff may confer an advantage on tactile foraging birds, which can tolerate cold water temperatures without diminishing feeding efficiency. See the article by Schneider et al. on pages 14941–14946. Image courtesy of Eve R. Schneider (Bagriantsev Lab). From the Cover 14941 Duckbill mechanosensitivity 14675 Mobility of packaged viral DNA 14740 Strong male bonds among Guinea baboons 14822 Losing independence in microbial mutualism 14864 Density-based sickle cell detection E4288 Reply to Azuaje: Predicting effective combined Contents therapies for heterogeneous tumors Boyang Zhao, Michael T. Hemann, and Douglas A. Lauffenburger THIS WEEK IN PNAS INNER WORKINGS—An over-the-shoulder look at scientists at work 14637 In This Issue 14639 Inner Workings: Coding on the big screen Robert Frederick LETTERS (ONLINE ONLY) QNAS E4284 Delphi: Somewhere between Scylla and Charybdis? Fergus Bolger and Gene Rowe 14640 QnAs with Alan Guth E4285 Are Marine Group II Euryarchaeota significant Paul Gabrielsen contributors to tetraether lipids in the ocean? Stefan Schouten, Laura Villanueva, Ellen C. Hopmans, Marcel T. J. van der Meer, and Jaap S. Sinninghe Damsté RETROSPECTIVE E4286 Reply to Schouten et al.: Marine Group II planktonic Euryarchaeota are significant contributors to tetraether lipids in the ocean 14641 Jake MacMillan: A pioneering chemist in Sara A. -
Therapeutic Cloning Gives Silenced Genes a Second Voice
NEWS p1007 Tricky Fix: p1009 Bohemian p1010 Better than A vaccine for cocaine brain: Neuroscientist Prozac: What’s next in addiction poses John Hardy bucks antidepressant drug ethical dilemmas. the trends. development? Therapeutic cloning gives silenced genes a second voice As controversy continues on therapeutic experiments in Xenopus embryos, is the removal silencing may not be permanent.” cloning to create human embryos, applying the of methyl groups from specific regions of DNA. Jaenisch and his colleagues have also shown technique—also known as somatic cell nuclear This may be a necessary step in the epigenetic that nuclei from a skin cancer cell can be repro- transfer—in animals is generating important reprogramming of the nucleus, the researchers grammed to direct normal development of a insights into disease development. suggest in the October Nature Cell Biology. mouse embryo—meaning that removal of the Some scientists are using the approach to As cells differentiate, they accrue many epigenetic alterations is enough to restore cells study epigenetic alterations—chromosomal other types of epigenetic alterations, such as to normal (Genes Dev.18,1875–1885; 2004).An modifications that do not alter the DNA the addition of phosphates or removal of earlier study reported similar results with brain sequence—which can cause cancer. “A acetyl groups from histones, or chromosomal tumor cells (Cancer Res. 63, 2733–2736; 2003). principal question in cancer research is what proteins, and trigger changes in chromatin Based on such findings, pharmaceutical part of the cancer cell phenotype comes from structure. Defects in these processes have been companies are racing to develop and test ‘epige- genetic defects and what part is epigenetic,”says linked to cancer and other diseases. -
Fire Departments of Pathology and Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Room L235, Stanford, CA 94305-5324, USA
GENE SILENCING BY DOUBLE STRANDED RNA Nobel Lecture, December 8, 2006 by Andrew Z. Fire Departments of Pathology and Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Room L235, Stanford, CA 94305-5324, USA. I would like to thank the Nobel Assembly of the Karolinska Institutet for the opportunity to describe some recent work on RNA-triggered gene silencing. First a few disclaimers, however. Telling the full story of gene silencing would be a mammoth enterprise that would take me many years to write and would take you well into the night to read. So we’ll need to abbreviate the story more than a little. Second (and as you will see) we are only in the dawn of our knowledge; so consider the following to be primer... the best we could do as of December 8th, 2006. And third, please understand that the story that I am telling represents the work of several generations of biologists, chemists, and many shades in between. I’m pleased and proud that work from my labo- ratory has contributed to the field, and that this has led to my being chosen as one of the messengers to relay the story in this forum. At the same time, I hope that there will be no confusion of equating our modest contributions with those of the much grander RNAi enterprise. DOUBLE STRANDED RNA AS A BIOLOGICAL ALARM SIGNAL These disclaimers in hand, the story can now start with a biography of the first main character. Double stranded RNA is probably as old (or almost as old) as life on earth. -
Nobel Lecture by Roger Y. Tsien
CONSTRUCTING AND EXPLOITING THE FLUORESCENT PROTEIN PAINTBOX Nobel Lecture, December 8, 2008 by Roger Y. Tsien Howard Hughes Medical Institute, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0647, USA. MOTIVATION My first exposure to visibly fluorescent proteins (FPs) was near the end of my time as a faculty member at the University of California, Berkeley. Prof. Alexander Glazer, a friend and colleague there, was the world’s expert on phycobiliproteins, the brilliantly colored and intensely fluorescent proteins that serve as light-harvesting antennae for the photosynthetic apparatus of blue-green algae or cyanobacteria. One day, probably around 1987–88, Glazer told me that his lab had cloned the gene for one of the phycobilipro- teins. Furthermore, he said, the apoprotein produced from this gene became fluorescent when mixed with its chromophore, a small molecule cofactor that could be extracted from dried cyanobacteria under conditions that cleaved its bond to the phycobiliprotein. I remember becoming very excited about the prospect that an arbitrary protein could be fluorescently tagged in situ by genetically fusing it to the phycobiliprotein, then administering the chromophore, which I hoped would be able to cross membranes and get inside cells. Unfortunately, Glazer’s lab then found out that the spontane- ous reaction between the apoprotein and the chromophore produced the “wrong” product, whose fluorescence was red-shifted and five-fold lower than that of the native phycobiliprotein1–3. An enzyme from the cyanobacteria was required to insert the chromophore correctly into the apoprotein. This en- zyme was a heterodimer of two gene products, so at least three cyanobacterial genes would have to be introduced into any other organism, not counting any gene products needed to synthesize the chromophore4.