SYNTHESIS of PYRIDINES by USING METAL OXIDES on ZIRCONIA SUPPORT AS CATALYSTS By

Total Page:16

File Type:pdf, Size:1020Kb

SYNTHESIS of PYRIDINES by USING METAL OXIDES on ZIRCONIA SUPPORT AS CATALYSTS By SYNTHESIS OF PYRIDINES BY USING METAL OXIDES ON ZIRCONIA SUPPORT AS CATALYSTS by SEBENZILE BEAUTY SHABALALA Submitted in fulfillment of the academic requirements for the degree of Master of Science in the Chemistry, School of Chemistry & Physics College of Agriculture, Engineering and Science University of KwaZulu-Natal Durban May 2017 As the candidate’s supervisor I have approved this thesis for submission Supervisor: Prof. Sreenkantha Jonnalagadda Signed:……………………….. Date: ………. Co-Supervisor: Prof. Werner Van Zyl Signed:……………………….. Date: ……… i ABSTRACT In recent years, there has been a concern for the development and design of sustainable chemical routes, which resulted in Green Chemistry, a concept that became popularized in the 1990s with the intention to reduce pollution. It encouraged the planning of chemical processes to attain a final product that would, amongst other things, use the same amount of input materials, the use of green solvents as well as the use of environmentally friendly materials, which are non- toxic. Multicomponent reactions (MCRs) have become very attractive subjects in organic synthesis due to the formation of C-C and C-hetero atoms in a one-pot synthesis. They have emerged as processes with considerable ecological interest as they address the fundamental principles of synthetic efficiency and reaction design. This arises from minimization of waste, time, energy, and cost. In this study, heterogeneous catalysts with an increased activity have been synthesized and applied as easily recoverable catalysts, and focused on the effect of heterogeneous catalysts reaction’s parameters on the catalytic activity and selectivity of 1, 4- dihydropyridines synthesis. Heterocyclic structures are commonly useful templates for the design and improvement of potent and specific biologically active agents. Pyridines and their derivatives form an important class of heterocyclic compounds and owing to their properties are desired in many different fields, such as natural products, pharmaceuticals, and functionalized materials. They also show a wide range of biological properties, such as antibacterial, antioxidant, antiviral, anticancer, anticonvulsant and antihypertension activity. Pyridines are also known for their anti- inflammatory activity and can act as antagonist’s inhibitors. This study is based on the development efficient and environmental-friendly techniques and routes for the synthesis of heterocyclic compounds (pyridines), in the presence of variety of reusable catalysts. The synthesis of functionalized 1,4-dihydropyridine derivatives by the incorporation of dimethylacetylenedicarboxylate, 4-fluoroaniline, malononitrile with various substituted ii benzaldehydes using Sm2O3/ZrO2 as catalyst with ethanol as solvent and at room temperature has been achieved with (87-96%) yields. A CeO2/ZrO2 heterogeneous catalyst was employed for the synthesis of pyridine derivatives via a one-vessel, four-component reaction consisting of substituted benzaldehyde, malononitrile, dimethylacetylenedicarboxylate and dimethylaniline. Eleven compounds were synthesized giving yield of (87-95%). An efficient four component/one-pot protocol was developed for synthesis of functionalized pyridine derivatives by reacting dimethylacetylenedicarboxylate, 4-bromoaniline, malononitrile with various substituted benzaldehydes in the presence of Y2O3/ZrO2 as catalyst. Excellent yield of (88-95%) were obtained. The noteworthy advantages of this basic method are the use of ethanol as a solvent, excellent yields and shorter reaction times. Most catalysts were reusable for up to seven cycles. Powder X-ray diffraction, TEM, SEM and N2 adsorption/desorption analysis techniques were employed for the structural interpretation of the catalysts. The identity of target products were established and confirmed by diverse spectral (1H NMR, 13C NMR, 15N NMR, FT-IR and HRMS) techniques. iii DECLARATIONS DECLARATION 1 - PLAGIARISM I, Sebenzile Beauty Shabalala, declare that 1. The research reported in this thesis, except where otherwise indicated is my original research. 2. This thesis has not been submitted for any degree or examination at any other university. 3. This thesis does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. 4. This thesis does not contain other persons' writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re-written but the general information attributed to them has been referenced b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced. 5. This thesis does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the thesis and in the References sections. Signed: ……………………………………………………………………………… iv DECLARATION 2 - PUBLICATIONS DETAILS OF CONTRIBUTION TO PUBLICATIONS that form part and/or include research presented in this thesis (include publications, submitted, in press and published and give details of the contributions of each author to the experimental work and writing of each publication) 1. Sebenzile Shabalala, Suresh Maddila, Werner E. van Zyl and Sreekantha B Jonnalagadda, A facile, efficacious and reusable Sm2O3/ZrO2 catalyst for the synthesis of functionalized 1,4- dihydropyridine derivatives. Catalysis Communications, (79) 21–25, 2016. http://dx.doi.org/10.1016/j.catcom.2016.02.017 My contribution: All the pyridines and derivatives were synthesized and characterized by me under the supervision of Prof. Jonnalagadda (Supervisor), Prof van Zyl (Co- author) and Dr. S. Maddila (Postdoctoral fellow working under Prof. Jonnalagadda) and drafted the article. 2. Sebenzile Shabalala, Suresh Maddila, Werner E. van Zyl and Sreekantha B Jonnalagadda, Sustainable CeO2/ZrO2 catalyst for the green synthesis of highly functionalized 1,4-dihydropyridine-2,3-dicarboxylate derivatives. (Revised manuscript submitted to Current Organic Synthesis) My contribution: Synthesis and characterization of all compounds and derivatives were done by me under the supervision of Prof. Jonnalagadda (Supervisor) Prof van Zyl (Co- author) and Dr. S. Maddila (Postdoctoral fellow working under Prof. Jonnalagadda) and drafted the article. 3. Sebenzile Shabalala, Suresh Maddila, Werner E. van Zyl and Sreekantha B Jonnalagadda, An innovative and simple protocol for the synthesis of 1,4-Dihydropyrines using a highly stable and efficient Y2O3/ZrO2 catalyst (submitted to a journal for publication) My contribution: Synthesis of all compounds and their derivatives as well as the characterization were done by me under the supervision of Prof. Jonnalagadda (Supervisor) Prof van Zyl (Co-author) and Dr. S. Maddila (Postdoctoral fellow working under Prof. Jonnalagadda) and drafted the article. Signed:…………………………………………………………………………………………..... v ACKNOWLEDGEMENTS I would first like to thank the Sovereign God Jesus Christ for keeping and humbling me until this day and the scripture, which kept me going Mattew 6:33 "But seek ye first the kingdom of God, and his righteousness; and all these things shall be added unto you". I thank my supervisors Professors S.B. Jonnalagadda and W.E. van Zyl for the opportunity and guidance that they gave me throughout the research and write up. I really appreciate it. The University of KwaZulu-Natal, I acknowledge it for the platform it has given me to do the research as well as Prof. S.B. Jonnalagadda, for bursary given from his NRF grant holder funds. It was not going to be easy without that bursary. I would like to convey my warmest gratitude to Dr Suresh Maddila, who has guided me from day one until the end. He has been such a wonderful research adviser; he assisted in every possible means one could offer. This one goes to my research group members Gracious Shabalala, who did not only share a lab with me but also became a loving and caring sister to me. Surya Narayana Maddila, who assisted me in various ways, as well as the rest of the research group members, Vuyolwethu Ndabankulu, Bhekumuzi Gumbi and Mlungisi Sithole. Special thanks to my parents, Pheneas Shabalala and Gugu Shabalala, as well as my fiancé Siyabonga Mbatha. They have been supporting me emotionally, financially and mentally. They were there through all the hardships and challenges I went through. Thank you vi CONFERENCE PARTICIPATION 1. Sebenzile Shabalala, Suresh Maddila, Werner E. van Zyl and Sreekantha B Jonnalagadda “A facile, efficacious and reusable Sm/ZrO2 catalyst for the synthesis of functionalized 1,4-dihydropyridine derivatives”. (Oral presentation at the 42nd National Convention of the South African Chemical Institute Conference 29 Nov. - 4th December, 2015 at Elangeni Hotel, Durban 2. Sebenzile Shabalala, Suresh Maddila, Werner E. van Zyl and Sreekantha B Jonnalagadda “Sustainable CeO2/ZrO2 catalyst for the green synthesis of highly functionalized 1,4-dihydropyridine-2,3-dicarboxylate derivatives” (Poster presentation at the College of Agriculture, Engineering and Science Research day, 29th November 2016, Howard Campus, UKZN. vii LIST OF ABBREVIATIONS Abbreviations 3-CR Three component reaction 1HNMR Proton Nuclear Magnetic Resonance 13CNMR Carbon-13 Nuclear Magnetic Resonance °C Degrees Celcius ArH Aromatic ring proton BET Brunauer - Emmett - Teller Calcd Calculated C-C Carbon - Carbon bond CDCl3 Deuterated Chloroform
Recommended publications
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • Gasket Chemical Services Guide
    Gasket Chemical Services Guide Revision: GSG-100 6490 Rev.(AA) • The information contained herein is general in nature and recommendations are valid only for Victaulic compounds. • Gasket compatibility is dependent upon a number of factors. Suitability for a particular application must be determined by a competent individual familiar with system-specific conditions. • Victaulic offers no warranties, expressed or implied, of a product in any application. Contact your Victaulic sales representative to ensure the best gasket is selected for a particular service. Failure to follow these instructions could cause system failure, resulting in serious personal injury and property damage. Rating Code Key 1 Most Applications 2 Limited Applications 3 Restricted Applications (Nitrile) (EPDM) Grade E (Silicone) GRADE L GRADE T GRADE A GRADE V GRADE O GRADE M (Neoprene) GRADE M2 --- Insufficient Data (White Nitrile) GRADE CHP-2 (Epichlorohydrin) (Fluoroelastomer) (Fluoroelastomer) (Halogenated Butyl) (Hydrogenated Nitrile) Chemical GRADE ST / H Abietic Acid --- --- --- --- --- --- --- --- --- --- Acetaldehyde 2 3 3 3 3 --- --- 2 --- 3 Acetamide 1 1 1 1 2 --- --- 2 --- 3 Acetanilide 1 3 3 3 1 --- --- 2 --- 3 Acetic Acid, 30% 1 2 2 2 1 --- 2 1 2 3 Acetic Acid, 5% 1 2 2 2 1 --- 2 1 1 3 Acetic Acid, Glacial 1 3 3 3 3 --- 3 2 3 3 Acetic Acid, Hot, High Pressure 3 3 3 3 3 --- 3 3 3 3 Acetic Anhydride 2 3 3 3 2 --- 3 3 --- 3 Acetoacetic Acid 1 3 3 3 1 --- --- 2 --- 3 Acetone 1 3 3 3 3 --- 3 3 3 3 Acetone Cyanohydrin 1 3 3 3 1 --- --- 2 --- 3 Acetonitrile 1 3 3 3 1 --- --- --- --- 3 Acetophenetidine 3 2 2 2 3 --- --- --- --- 1 Acetophenone 1 3 3 3 3 --- 3 3 --- 3 Acetotoluidide 3 2 2 2 3 --- --- --- --- 1 Acetyl Acetone 1 3 3 3 3 --- 3 3 --- 3 The data and recommendations presented are based upon the best information available resulting from a combination of Victaulic's field experience, laboratory testing and recommendations supplied by prime producers of basic copolymer materials.
    [Show full text]
  • Step-By-Step Guide to Better Laboratory Management Practices
    Step-by-Step Guide to Better Laboratory Management Practices Prepared by The Washington State Department of Ecology Hazardous Waste and Toxics Reduction Program Publication No. 97- 431 Revised January 2003 Printed on recycled paper For additional copies of this document, contact: Department of Ecology Publications Distribution Center PO Box 47600 Olympia, WA 98504-7600 (360) 407-7472 or 1 (800) 633-7585 or contact your regional office: Department of Ecology’s Regional Offices (425) 649-7000 (509) 575-2490 (509) 329-3400 (360) 407-6300 The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran’s status, Vietnam Era veteran’s status or sexual orientation. If you have special accommodation needs, or require this document in an alternate format, contact the Hazardous Waste and Toxics Reduction Program at (360)407-6700 (voice) or 711 or (800) 833-6388 (TTY). Table of Contents Introduction ....................................................................................................................................iii Section 1 Laboratory Hazardous Waste Management ...........................................................1 Designating Dangerous Waste................................................................................................1 Counting Wastes .......................................................................................................................8 Treatment by Generator...........................................................................................................12
    [Show full text]
  • Synthesis, Characterization, and Application of Zirconia and Sulfated Zirconia Derived from Single Source Precursors
    SYNTHESIS, CHARACTERIZATION, AND APPLICATION OF ZIRCONIA AND SULFATED ZIRCONIA DERIVED FROM SINGLE SOURCE PRECURSORS By MOHAMMED H. AL-HAZMI Bachelor of Science King Saud University Riyadh, Saudi Arabia 1995 Master of Science King Saud University Riyadh, Saudi Arabia 1999 Submitted to the Faculty of the Graduate College of the Oklahoma State University In partial fulfilment of The requirements for The Degree of DOCTOR OF PHILOSOPHY May, 2005 SYNTHESIS, CHARACTERIZATION, AND APPLICATION OF ZIRCONIA AND SULFATED ZIRCONIA DERIVED FROM SINGLE SOURCE PRECURSORS Thesis Approved: _______________Dr. Allen Apblett_____________ Thesis Adviser ___________________________________________ ______________Dr. K. Darrell Berlin___________ _____________Dr. LeGrand Slaughter__________ _______________Dr. Gary Foutch______________ _____________Dr. A. Gordon Emslie___________ Dean of the Graduate College ii ACKNOWLEDGMENTS The words are inadequate to express my truthful and profound thanks to my phenomenal advisor Dr. Allen W. Apblett for his advice and guidance, continued support, tremendous help, encouragements, and insight and sharp criticism. Since the time that he offered and accepted me to work in this intriguing project, and during the last four and half years, I have learned lots of things from his way of thinking and his research methodology. When encountering some problems and difficulties in different research issues, he simply gives the guidance and the strength to embellish an acceptable idea into a great one. I can honestly say that this Ph.D. dissertation work would not be accomplished without his outstanding supervision, scientific knowledge and experience, and his magnanimous and warm personality of research. My committee members, Dr. Berlin, Dr. Slaughter, and Dr. Foutch are deeply appreciated for their assistance, reading, editing, and invaluable discussion and comments.
    [Show full text]
  • List of Reactive Chemicals
    LIST OF REACTIVE CHEMICALS Chemical Prefix Chemical Name Reactive Reactive Reactive CAS# Chemical Chemical Chemical Stimulus 1 Stimulus 2 Stimulus 3 111-90-0 "CARBITOL" SOLVENT D 111-15-9 "CELLOSOLVE" ACETATE D 110-80-5 "CELLOSOLVE" SOLVENT D 2- (2,4,6-TRINITROPHENYL)ETHYL ACETATE (1% IN ACETONE & BENZENE S 12427-38-2 AAMANGAN W 88-85-7 AATOX S 40487-42-1 AC 92553 S 105-57-7 ACETAL D 75-07-0 ACETALDEHYDE D 105-57-7 ACETALDEHYDE, DIETHYL ACETAL D 108-05-4 ACETIC ACID ETHENYL ESTER D 108-05-4 ACETIC ACID VINYL ESTER D 75-07-0 ACETIC ALDEHYDE D 101-25-7 ACETO DNPT T 126-84-1 ACETONE DIETHYL ACETAL D 108-05-4 ACETOXYETHYLENE D 108-05-4 1- ACETOXYETHYLENE D 37187-22-7 ACETYL ACETONE PEROXIDE, <=32% AS A PASTE T 37187-22-7 ACETYL ACETONE PEROXIDE, <=42% T 37187-22-7 ACETYL ACETONE PEROXIDE, >42% T S 644-31-5 ACETYL BENZOYL PEROXIDE (SOLID OR MORE THAN 45% IN SOLUTION) T S 644-31-5 ACETYL BENZOYL PEROXIDE, <=45% T 506-96-7 ACETYL BROMIDE W 75-36-5 ACETYL CHLORIDE W ACETYL CYCLOHEXANE SULFONYL PEROXIDE (>82% WITH <12% WATER) T S 3179-56-4 ACETYL CYCLOHEXANE SULFONYL PEROXIDE, <=32% T 3179-56-4 ACETYL CYCLOHEXANE SULFONYL PEROXIDE, <=82% T 674-82-8 ACETYL KETENE (POISON INHALATION HAZARD) D 110-22-5 ACETYL PEROXIDE, <=27% T 110-22-5 ACETYL PEROXIDE, SOLID, OR MORE THAN 27% IN SOLUTION T S 927-86-6 ACETYLCHOLINE PERCHLORATE O S 74-86-2 ACETYLENE D 74-86-2 ACETYLENE (LIQUID) D ACETYLENE SILVER NITRATE D 107-02-08 ACRALDEHYDE (POISON INHALATION HAZARD) D 79-10-7 ACROLEIC ACID D 107-02-08 ACROLEIN, INHIBITED (POISON INHALATION HAZARD) D 107-02-08 ACRYLALDEHYDE (POISON INHALATION HAZARD) D 79-10-7 ACRYLIC ACID D 141-32-2 ACRYLIC ACID BUTYL ESTER D 140-88-5 ACRYLIC ACID ETHYL ESTER D 96-33-3 ACRYLIC ACID METHYL ESTER D Stimulus - Stimuli is the thermal, physical or chemical input needed to induce a hazardous reaction.
    [Show full text]
  • Export Control Handbook for Chemicals
    Export Control Handbook for Chemicals -Dual-use control list -Common Military List -Explosives precursors -Syria restrictive list -Psychotropics and narcotics precursors ARNES-NOVAU, X 2019 EUR 29879 This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. Contact information Xavier Arnés-Novau Joint Research Centre, Via Enrico Fermi 2749, 21027 Ispra (VA), Italy [email protected] Tel.: +39 0332-785421 Filippo Sevini Joint Research Centre, Via Enrico Fermi 2749, 21027 Ispra (VA), Italy [email protected] Tel.: +39 0332-786793 EU Science Hub https://ec.europa.eu/jrc JRC 117839 EUR 29879 Print ISBN 978-92-76-11971-5 ISSN 1018-5593 doi:10.2760/844026 PDF ISBN 978-92-76-11970-8 ISSN 1831-9424 doi:10.2760/339232 Luxembourg: Publications Office of the European Union, 2019 © European Atomic Energy Community, 2019 The reuse policy of the European Commission is implemented by Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Reuse is authorised, provided the source of the document is acknowledged and its original meaning or message is not distorted. The European Commission shall not be liable for any consequence stemming from the reuse.
    [Show full text]
  • Inorganic Chemistry Practical
    EXPERIMENTAL INORGANIC CHEMISTRY For B.Sc. and M.Sc. Students As per new Syllabus Dr. M.K.Shah 2 Dedicated to all our beloved graduates & post graduate students 3 INORGANIC PREPARATION 4 1. TETRAMINE CUPRIC SULPHATE, [Cu(NH3)4 ]SO4H2O (A) REAGENTS Cupric sulphate, Ammonia, Ethyl alcohol, Nitric acid, Distilled water, Sulphuric acid. (B) REACTION CuSO45H2O(aq) + 4NH3(aq) [Cu (NH3)4]SO4H2O + 4H2O (C) PROCEDURE Take 5 gm crystalline cupric sulphate in a 250 ml beaker. Dissolve it in minimum quantity of water and then add few drops of diluted sulphuric acid. Add concentrated ammonia solution to the beaker with constant stirring, until the blue precipitate of cupric hydroxide, first formed completely dissolve to yield a clear, deep blue solution and there should be smell of ammonia in the beaker. Now add 20 ml alcohol dropwise from the dropping funnel to the beaker with constant stirring until the blue precipitates settled and clear solution is obtained. Heat it to 60o 70oC in the water bath for about 10-15 minutes. Then stop heating and remove the beaker from the water bath and allow it to stand. Long needle shaped blue crystals of tetramine cupric sulphate separates out. Filter and wash the crystals with a few drops of alcohol. Dry the crystals on a porous plate or in a desiccator. Weigh the dry crystal and find out the percentage yield followed by percentage purity by usual methods. 2. TRI (THIOUREA)-CUPROUS SULPHATE, [Cu (NH2CSNH2)3]2 SO4 2H2O] (A) REAGENTS Cupric sulphate, Ethyl alcohol, Nitric acid, Thiourea, Distilled water, Ammonia.
    [Show full text]
  • Elastomer Fluid Compatibility Chart
    ELASTOMER FLUID COMPATIBILITY CHART Recommended: 1 Not Recommended:4 Probably Satisfactory: 2 Insuficient Data: X Marginal: 3 Chemical NBR EPDM FKM PTFE 0-Chloronaphthalene 4 4 1 X 0-Chlorphenol 4 4 1 X 0-Dichlorobenzene 4 4 1 X 1-Butene, 2-Ethyl 1 4 1 X 1-Chloro 1-Nitro Ethane 4 4 4 X 90, 100, 150, 220, 300, 500 4 1 1 X Abietic Acid X X X X Acetaldehyde 3 2 4 X Acetamide 1 1 3 X Acetanilide 3 1 3 X Acetic Acid 5% 2 1 1 X Acetic Acid, 30% 2 1 3 X Acetic Acid, Glacial 2 2 4 X Acetic Acid, Hot, High Pressure 4 3 4 X Acetic Anhydride 4 2 4 X Acetoacetic Acid 3 1 3 X Acetone 4 1 4 X Acetone Cyanohydrin 3 1 3 X Acetonitrile 3 1 1 X Acetophenetidine 2 4 1 X Acetophenone 4 1 4 X Acetotoluidide 2 4 1 X Acetyl Acetone 4 1 4 X Acetyl Bromide 4 1 1 1 Acetyl Chloride 4 4 1 X Acetylacetone 4 1 4 X Acetylene 1 1 1 X Acetylene Tetrabromide 4 1 1 X Acetylene Tetrachloride 4 1 1 X Acetylsalicylic Acid 2 4 1 X Acids, Non-organic X X X X Acids, Organic X X X X Aconitic Acid X X X X Acridine X X X X Acrolein 3 1 3 X Acrylic Acid 2 3 4 X Acrylonitrile 4 4 3 X Adipic Acid 1 2 2 X Aero Lubriplate 1 4 1 X Aero Shell 17 Grease 1 4 1 X Page 1 of 61 ELASTOMER FLUID COMPATIBILITY CHART Recommended: 1 Not Recommended:4 Probably Satisfactory: 2 Insuficient Data: X Marginal: 3 Chemical NBR EPDM FKM PTFE Aero Shell 1AC Grease 1 4 1 X Aero Shell 750 2 4 1 X Aero Shell 7A Grease 1 4 1 X Aerosafe 2300 4 1 4 X Aerosafe 2300W 4 1 4 X Aerozene 50 (50% Hydrazine 50% UDMH) 3 1 4 X Air, 1 1 1 X Air, 200 - 300° F 3 2 1 X Air, 300 - 400° F 4 4 1 X Air, 400 - 500° F 4 4 3 X Air,
    [Show full text]
  • Approche Expérimentale Et Théorique Pour L'étude De L'extraction De L'acide Nitrique Et De Certains Produits De Fission
    Approche expérimentale et théorique pour l’étude de l’extraction de l’acide nitrique et de certains produits de fission Valentin Dru To cite this version: Valentin Dru. Approche expérimentale et théorique pour l’étude de l’extraction de l’acide nitrique et de certains produits de fission. Autre. Université Montpellier, 2020. Français. NNT : 2020MONTS089. tel-03329625 HAL Id: tel-03329625 https://tel.archives-ouvertes.fr/tel-03329625 Submitted on 31 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE MONTPELLIER En Chimie Séparative, Matériaux et Procédés École doctorale Sciences Chimiques Balard (ED459) Unité de recherche Institut de Chimie Séparative de Marcoule (UMR 5257) Approche expérimentale et théorique pour l'étude de l'extraction de l'acide nitrique et de certains produits de fission Présentée par Valentin DRU Le 10 décembre 2020 Sous la direction de Jean-François DUFRÊCHE RAPPORT DE GESTION Devant le jury composé de 2015 Mme Isabelle BILLARD, DR CNRS, INP Grenoble Rapporteur M. Olivier BERNARD, CR CNRS, Sorbonne Université Rapporteur Mme Bénédicte PRELOT, DR CNRS, Université de Montpellier Président du jury Mme Hélène BERTHOUMIEUX, CR CNRS, Sorbonne Université Examinateur M.
    [Show full text]
  • Fedex Ground Hazardous Materials Shipping Guide Is Intended to Simplify Title 49 CFR
    FedEx Ground Package Systems Inc. is committed to the safe transportation of hazardous materials. It is very important that each person engaged in the transportation of hazardous materials has the proper training and is thoroughly familiar with the Title 49CFR (Code of Federal Regulations) and/or USPS Publication 52. This guide is intended only to assist you in your preparation of hazardous materials shipped via FedEx Ground Package Systems Inc. It is the shipper’s responsibility to ensure each hazardous material package is in compliance with applicable Department of Transportation (D.O.T.) regulations and FedEx Ground Package Systems Inc. requirements. Failure to comply with these regulations and requirements may subject the shipper and carrier to fines and penalties. Improperly prepared hazmat packages or documentation may be subject to an additional charge(s) due to the unexpected hanlding associated with these shipments. Due to the changing nature of D.O.T. regulations and other information, it is impossible to guarantee absolute accuracy of the material contained in this guide. FedEx Ground Package Systems Inc., therefore, cannot assume any responsibility for omissions, errors, misprinting, or ambiguity contained within this guide and shall not be held liable in any degree for any loss or injury caused by such omission or error presented in this publication. Shippers should consult the most current version of the hazardous material regulations. Training is mandatory for those shipping hazardous materials, including limited quantity and other exceptions. The www.shipsafeshipsmart.com battery and hazmat training programs offer shippers an economical source of basic ground battery and/or hazardous materials shipping as well as addressing FedEx Ground specific issues.
    [Show full text]
  • Some Aspects of the Aqueous Chemistry
    SOME ASPECTS OF THE AQUEOUS CHEMISTRY OF ZIRCONIUM AND RUTHENIUM IN RELATION TO NUCLEAR FUEL REPROCESSING A thesis submitted for the degree of DOCTOR OF PHILOSOPHY in the Faculty of Engineering of the University of London by M. AMIN ANJUM, BSc (Hops), MSc (Punjab), MSc (London), DIC, ARIC Department of Chemical Engineering and Chemical Technology, Imperial College of Science and Technology, London, S. W. 7. April 1972 ABSTRACT The ion-exchange behaviour of ruthenium IV, nitrosyl ruthenium III and zirconium IV has been investigated with a view to the utilization of anion-exchange resins for the separation of ruthenium and zirconium from plutonium solutions in nuclear fuel reprocessing. Both cation and anion-exchangers have been used for the removal of ruthenium IV. Increases in nitric acid concentration decreased the extent of removal by the cation-exchanger as did increases in ruthenium concentration at lower acidities. Studies of the anion-exchange behaviour -3 in nitric acid concentration range of 0.1 to 7.5 mol dm -3 showed that maximum adsorption occurs at 3.5 and 5 mol dm acid for ruthenium IV and nitrosyl ruthenium III respectively. From solutions of comparable strength nitrosyl ruthenium was adsorbed to a greater extent. When the nitrate ion concentration was kept constant a decrease in hydrogen ion concentration resulted in higher removal by the anion- exchanger. The results are discussed in terms of the species of ruthenium and the properties of the resin involved. The adsorbed ruthenium was found to be difficult -3 to remove. Thus 7.5 mol dm acid removed about 30% -3 of adsorbed ruthenium while 0.6 mol dm acid removed only about 10%.
    [Show full text]
  • Cytotoxicity and Physicochemical Characterization of Iron–Manganese-Doped Sulfated Zirconia Nanoparticles
    Journal name: International Journal of Nanomedicine Article Designation: Original Research Year: 2015 Volume: 10 International Journal of Nanomedicine Dovepress Running head verso: Al-Fahdawi et al Running head recto: Iron–manganese-doped sulfated zirconia nanoparticles open access to scientific and medical research DOI: http://dx.doi.org/10.2147/IJN.S82586 Open Access Full Text Article ORIGINAL RESEARCH Cytotoxicity and physicochemical characterization of iron–manganese-doped sulfated zirconia nanoparticles Mohamed Qasim Abstract: Iron–manganese-doped sulfated zirconia nanoparticles with both Lewis and Brønsted Al-Fahdawi1 acidic sites were prepared by a hydrothermal impregnation method followed by calcination at Abdullah Rasedee1,2 650°C for 5 hours, and their cytotoxicity properties against cancer cell lines were determined. Mothanna Sadiq Al-Qubaisi1 The characterization was carried out using X-ray diffraction, thermogravimetric analysis, Fourier Fatah H Alhassan3,4 transform infrared spectroscopy, Brauner–Emmett–Teller (BET) surface area measurements, Rozita Rosli1 X-ray fluorescence, X-ray photoelectron spectroscopy, zeta size potential, and transmission electron microscopy (TEM). The cytotoxicity of iron–manganese-doped sulfated zirconia nano- Mohamed Ezzat El particles was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide Zowalaty1,5 (MTT) assays against three human cancer cell lines (breast cancer MDA-MB231 cells, colon 6 Seïf-Eddine Naadja carcinoma HT29 cells, and hepatocellular carcinoma HepG2 cells) and two normal human 7,8 Thomas J Webster cell lines (normal hepatocyte Chang cells and normal human umbilical vein endothelial cells 3,4 Yun Hin Taufiq-Yap [HUVECs]). The results suggest for the first time that iron–manganese-doped sulfated zirconia 1Institute of Bioscience, 2Department nanoparticles are cytotoxic to MDA-MB231 and HepG2 cancer cells but have less toxicity to of Veterinary Pathology and HT29 and normal cells at concentrations from 7.8 μg/mL to 500 μg/mL.
    [Show full text]