Synthesis of Novel Flavones and Isoflavones
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: a Review
molecules Review Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: A Review Hanghang Lou 1,†, Lifei Hu 2,†, Hongyun Lu 1, Tianyu Wei 1 and Qihe Chen 1,* 1 Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; [email protected] (H.L.); [email protected] (H.L.); [email protected] (T.W.) 2 Hubei Key Lab of Quality and Safety of Traditional Chinese Medicine & Health Food, Huangshi 435100, China; [email protected] * Correspondence: [email protected]; Tel.: +86-0571-8698-4316 † These authors are equally to this manuscript. Abstract: Flavonoids belong to a class of plant secondary metabolites that have a polyphenol structure. Flavonoids show extensive biological activity, such as antioxidative, anti-inflammatory, anti-mutagenic, anti-cancer, and antibacterial properties, so they are widely used in the food, phar- maceutical, and nutraceutical industries. However, traditional sources of flavonoids are no longer sufficient to meet current demands. In recent years, with the clarification of the biosynthetic pathway of flavonoids and the development of synthetic biology, it has become possible to use synthetic metabolic engineering methods with microorganisms as hosts to produce flavonoids. This article mainly reviews the biosynthetic pathways of flavonoids and the development of microbial expression systems for the production of flavonoids in order to provide a useful reference for further research on synthetic metabolic engineering of flavonoids. Meanwhile, the application of co-culture systems in the biosynthesis of flavonoids is emphasized in this review. Citation: Lou, H.; Hu, L.; Lu, H.; Wei, Keywords: flavonoids; metabolic engineering; co-culture system; biosynthesis; microbial cell factories T.; Chen, Q. -
Glossary Terms
Glossary Terms € 1584 5W6 5501 a 7181, 12203 5’UTR 8126 a-g Transformation 6938 6Q1 5500 r 7181 6W1 5501 b 7181 a 12202 b-b Transformation 6938 A 12202 d 7181 AAV 10815 Z 1584 Abandoned mines 6646 c 5499 Abiotic factor 148 f 5499 Abiotic 10139, 11375 f,b 5499 Abiotic stress 1, 10732 f,i, 5499 Ablation 2761 m 5499 ABR 1145 th 5499 Abscisic acid 9145 th,Carnot 5499 Absolute humidity 893 th,Otto 5499 Absorbed dose 3022, 4905, 8387, 8448, 8559, 11026 v 5499 Absorber 2349 Ф 12203 Absorber tube 9562 g 5499 Absorption, a(l) 8952 gb 5499 Absorption coefficient 309 abs lmax 5174 Absorption 309, 4774, 10139, 12293 em lmax 5174 Absorptivity or absorptance (a) 9449 μ1, First molecular weight moment 4617 Abstract community 3278 o 12203 Abuse 6098 ’ 5500 AC motor 11523 F 5174 AC 9432 Fem 5174 ACC 6449, 6951 r 12203 Acceleration method 9851 ra,i 5500 Acceptable limit 3515 s 12203 Access time 1854 t 5500 Accessible ecosystem 10796 y 12203 Accident 3515 1Q2 5500 Acclimation 3253, 7229 1W2 5501 Acclimatization 10732 2W3 5501 Accretion 2761 3 Phase boundary 8328 Accumulation 2761 3D Pose estimation 10590 Acetosyringone 2583 3Dpol 8126 Acid deposition 167 3W4 5501 Acid drainage 6665 3’UTR 8126 Acid neutralizing capacity (ANC) 167 4W5 5501 Acid (rock or mine) drainage 6646 12316 Glossary Terms Acidity constant 11912 Adverse effect 3620 Acidophile 6646 Adverse health effect 206 Acoustic power level (LW) 12275 AEM 372 ACPE 8123 AER 1426, 8112 Acquired immunodeficiency syndrome (AIDS) 4997, Aerobic 10139 11129 Aerodynamic diameter 167, 206 ACS 4957 Aerodynamic -
Synthesis of Ochnaflavone and Its Inhibitory Activity on PGE 2
Synthesis and Biological Activity of Ochnaflavone Bull. Korean Chem. Soc. 2014, Vol. 35, No. 11 3219 http://dx.doi.org/10.5012/bkcs.2014.35.11.3219 Synthesis of Ochnaflavone and Its Inhibitory Activity on PGE2 Production Sung Soo Kim,† Van Anh Vo,† and Haeil Park* College of Pharmacy and †Medicine of Kangwon National University, Chuncheon 200-701, Korea *E-mail: [email protected] Received June 5, 2014, Accepted July 11, 2014 Ochnaflavone, a naturally occurring biflavonoid composed of two units of apigenin (5,7,4'-trihydroxyflavone) joined via a C-O-C linkage, was first synthesized and evaluated its inhibitory activity on PGE2 production. Total synthesis was accomplished through modified Ullmann diaryl ether formation as a key step. Coupling reactions of 4'-halogenoflavones and 3'-hydroxy-5,7,4'-trimethoxyflavone were explored in diverse reaction conditions. The reaction of 4'-fluoro-5,7-dimethoxyflavone (2c) and 3'-hydroxy-5,7,4'-trimethoxyflavone (2d) in N,N-dimethylacetamide gave the coupled compound 3 in 58% yield. Synthetic ochnaflavone strongly inhibited PGE2 production (IC50 = 1.08 µM) from LPS-activated RAW 264.7 cells, which was due to reduced expression of COX-2. On the contrary, the inhibition mechanism of wogonin was somewhat different from that of ochnaflavone although wogonin, a natural occurring anti-inflammatory flavonoid, showed strong inhibitory activity of PGE2 production (IC50 = 0.52 µM), and seems to be COX-2 enzyme inhibition. Our concise total synthesis of ochnaflavone enable us to provide sufficient quantities of material for advanced biological studies as well as to efficiently prepare derivatives for structure-activity relationship study. -
Supplementary Materials Evodiamine Inhibits Both Stem Cell and Non-Stem
Supplementary materials Evodiamine inhibits both stem cell and non-stem-cell populations in human cancer cells by targeting heat shock protein 70 Seung Yeob Hyun, Huong Thuy Le, Hye-Young Min, Honglan Pei, Yijae Lim, Injae Song, Yen T. K. Nguyen, Suckchang Hong, Byung Woo Han, Ho-Young Lee - 1 - Table S1. Short tandem repeat (STR) DNA profiles for human cancer cell lines used in this study. MDA-MB-231 Marker H1299 H460 A549 HCT116 (MDA231) Amelogenin XX XY XY XX XX D8S1179 10, 13 12 13, 14 10, 14, 15 13 D21S11 32.2 30 29 29, 30 30, 33.2 D7S820 10 9, 12 8, 11 11, 12 8 CSF1PO 12 11, 12 10, 12 7, 10 12, 13 D3S1358 17 15, 18 16 12, 16, 17 16 TH01 6, 9.3 9.3 8, 9.3 8, 9 7, 9.3 D13S317 12 13 11 10, 12 13 D16S539 12, 13 9 11, 12 11, 13 12 D2S1338 23, 24 17, 25 24 16 21 D19S433 14 14 13 11, 12 11, 14 vWA 16, 18 17 14 17, 22 15 TPOX 8 8 8, 11 8, 9 8, 9 D18S51 16 13, 15 14, 17 15, 17 11, 16 D5S818 11 9, 10 11 10, 11 12 FGA 20 21, 23 23 18, 23 22, 23 - 2 - Table S2. Antibodies used in this study. Catalogue Target Vendor Clone Dilution ratio Application1) Number 1:1000 (WB) ADI-SPA- 1:50 (IHC) HSP70 Enzo C92F3A-5 WB, IHC, IF, IP 810-F 1:50 (IF) 1 :1000 (IP) ADI-SPA- HSP90 Enzo 9D2 1:1000 WB 840-F 1:1000 (WB) Oct4 Abcam ab19857 WB, IF 1:100 (IF) Nanog Cell Signaling 4903S D73G4 1:1000 WB Sox2 Abcam ab97959 1:1000 WB ADI-SRA- Hop Enzo DS14F5 1:1000 WB 1500-F HIF-1α BD 610958 54/HIF-1α 1:1000 WB pAkt (S473) Cell Signaling 4060S D9E 1:1000 WB Akt Cell Signaling 9272S 1:1000 WB pMEK Cell Signaling 9121S 1:1000 WB (S217/221) MEK Cell Signaling 9122S 1:1000 -
Inflammatory Disease Processes and Interactions with Nutrition
Downloaded from https://www.cambridge.org/core Inflammatory Disease Processes and Interactions with Nutrition . IP address: P. C. Calder1, R. Albers2, J.-M. Antoine3, S. Blum4, R. Bourdet-Sicard3, G. A. Ferns5, G. Folkerts6, 1 7 8 9,10 11 12 13 P. S. Friedmann , G. S. Frost , F. Guarner , M. Løvik , S. Macfarlane , P. D. Meyer , L. M’Rabet , 170.106.202.8 M. Serafini14, W. van Eden15, J. van Loo16, W. Vas Dias17, S. Vidry18*, B. M. Winklhofer-Roob19 and J. Zhao20 , on 1. School of Medicine, University of Southampton, Southampton SO16 6YD, UK 29 Sep 2021 at 21:58:18 2. Unilever Food & Health Research Institute, Unilever R&D Vlaardingen, 3130 AC Vlaardingen, The Netherlands 3. Danone Vitapole, 91767 Palaiseau Cedex, France 4. Nutrition & Health Department, Nestle´ Research Center, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland 5. Postgraduate Medical School, University of Surrey, Guildford GU2 7WG, UK 6. School of Biomedical and Life Sciences, University of Surrey, Guildford GU2 7XH, UK 7. Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, University of , subject to the Cambridge Core terms of use, available at Utrecht, 3508 TB Utrecht, The Netherlands 8. Digestive System Research Unit, University Hospital Vall d’Hebron, 08035 Barcelona, Spain 9. Division of Environmental Medicine, Norwegian Institute of Public Health, 0403 Oslo, Norway 10. Institute for Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway 11. Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, Dundee University, Dundee DD1 9SY, UK 12. Royal Cosun, 4704 RA Roosendaal, The Netherlands 13. Danone Research – Centre for Specialised Nutrition, 6700 CA Wageningen, The Netherlands 14. -
Tyrosinase Inhibitors from Traditional Chinese Medicine As Potential Anti-Hyperpigmentation Agents
Tyrosinase Inhibitors from Traditional Chinese Medicine as Potential Anti-hyperpigmentation agents Author Shi, Gengxuan Published 2019 Thesis Type Thesis (Masters) School School of Environment and Sc DOI https://doi.org/10.25904/1912/1780 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/387690 Griffith Research Online https://research-repository.griffith.edu.au Tyrosinase Inhibitors from Traditional Chinese Medicine as Potential Anti-hyperpigmentation agents Gengxuan SHI School of Environment and Science Griffith Science Griffith University Submitted in fulfilment of the requirements of the degree of Master of Science July 2019 i Abstract Several treatments for skin pigmentation are available today, however, many have unwanted side effects. Classic drugs like hydroquinone, arbutin, mequinol and kojic acid have been considered strongly carcinogenic, with related adverse effects. Traditional Chinese medicines (TCMs) have long been documented for their skin- lightening properties with little known negative effects. However, little is known about precisely how these herbal medicines work and what are the chemical basis for their activity. In this project, a 96-well plate based tyrosinase assay was established and used to test 44 TCM with known skin-lightening properties. Out of 44, 17 TCM extracts showed over 60% inhibition against tyrosinase at the concentration of 0.5 mg/mL. One of the TCM extracts, Xanthium strumarium L. extract, possessed 81.7% inhibition at 0.5 mg/mL. Further bioassay-guided isolation of the crude extract resulted in 10 compounds. Three of the compounds showed moderate activity against tyrosinase with IC50 values of 0.18 mM (cytidine), 0.29 mM (1,4-dicaffeoylquinic acid) and 2.47 mM (xanthiside). -
Ethnopharmacology of Medicinal Plants Asia and the Pacific
Ethnopharmacology of Medicinal Plants Asia and the Pacific Christophe Wiart, PharmD Ethnopharmacology of Medicinal Plants Ethnopharmacology of Medicinal Plants Asia and the Pacific Christophe Wiart, PharmD © 2006 Humana Press Inc. 999 Riverview Drive, Suite 208 Totowa, New Jersey 07512 www.humanapress.com All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise without written permis- sion from the Publisher. Methods in Molecular Biology™ is a trademark of The Humana Press Inc. All papers, comments, opinions, conclusions, or recommendations are those of the author(s), and do not necessarily reflect the views of the publisher. This publication is printed on acid-free paper. ∞ ANSI Z39.48-1984 (American Standards Institute) Permanence of Paper for Printed Library Materials. Production Editor: Jennifer Hackworth Cover illustration: Photo 15 Cover design by Patricia F. Cleary For additional copies, pricing for bulk purchases, and/or information about other Humana titles, contact Humana at the above address or at any of the following numbers: Tel.: 973-256-1699; Fax: 973-256-8341; E-mail: [email protected]; or visit our Website: www.humanapress.com Photocopy Authorization Policy: Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Humana Press, provided that the base fee of US $30.00 per copy is paid directly to the Copyright Clearance Center at 222 Rosewood Drive, Danvers, MA 01923. For those organizations that have been granted a photocopy license from the CCC, a separate system of payment has been arranged and is acceptable to Humana Press Inc. -
Natural Products from Genus Selaginella (Selaginellaceae)
ISSN: 2087-3948 (print) Vol. 3, No. 1, Pp.: 44-58 ISSN: 2087-3956 (electronic) March 2011 Review: Natural products from Genus Selaginella (Selaginellaceae) AHMAD DWI SETYAWAN♥ Department of Biology, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta 57126. Jl. Ir. Sutami 36A Surakarta 57126, Tel./fax. +62-271-663375, email: [email protected] Manuscript received: 28 Augustus 2010. Revision accepted: 4 October 2010. Abstract. Setyawan AD. 2011. Natural products from Genus Selaginella (Selaginellaceae). Nusantara Bioscience 3: 44-58. Selaginella is a potent medicinal-stuff, which contains diverse of natural products such as alkaloid, phenolic (flavonoid), and terpenoid. This species is traditionally used to cure several diseases especially for wound, after childbirth, and menstrual disorder. Biflavonoid, a dimeric form of flavonoids, is the most valuable natural products of Selaginella, which constituted at least 13 compounds, namely amentoflavone, 2',8''-biapigenin, delicaflavone, ginkgetin, heveaflavone, hinokiflavone, isocryptomerin, kayaflavone, ochnaflavone, podocarpusflavone A, robustaflavone, sumaflavone, and taiwaniaflavone. Ecologically, plants use biflavonoid to response environmental condition such as defense against pests, diseases, herbivory, and competitions; while human medically use biflavonoid especially for antioxidant, anti- inflammatory, and anti carcinogenic. Selaginella also contains valuable disaccharide, namely trehalose that has long been known for protecting from desiccation and allows surviving severe environmental stress. The compound has very prospects as molecular stabilizer in the industries based bioresources. Key words: natural products, biflavonoid, trehalose, Selaginella. Abstrak. Setyawan AD. 2011. Bahan alam dari Genus Selaginella (Selaginellaceae). Nusantara Bioscience 3: 44-58. Selaginella adalah bahan baku obat yang potensial, yang mengandung beragam metabolit sekunder seperti alkaloid, fenolik (flavonoid), dan terpenoid. -
Osteoporosis: Possible Pathways Involved and the Role of Natural
Sains Malaysiana 48(9)(2019): 2007–2019 http://dx.doi.org/10.17576/jsm-2019-4809-22 Osteoporosis: Possible Pathways Involved and the Role of Natural Phytoestrogens in Bone Metabolism (Osteoporosis: Laluan yang Mungkin Terlibat dan Peranan Fitoestrogen Semula Jadi dalam Metabolisme Tulang) ZAR CHI THENT, SRIJIT DAS*, PASUK MAHAKKANUKRAUH & VIRGINIA LANZOTTI ABSTRACT The incidence of post-menopausal osteoporosis is increasing globally. In post-menopausal osteoporosis, there is deficiency in oestrogen level resulting in bone loss and fractures. Bone formation is under the control of different hormones. In the present review, we highlight few pathways such as RANKL/RANK, apoptosis and Wnt/β-catenin signalling pathways and phytoestrogens involved in the bone metabolism. RANKL/RANK signalling is responsible for regulating the formation and activation of multinucleated osteoclasts from their precursors which is responsible for the survival of normal bone remodelling. Apoptosis regulates the development, growth and maintains the bone tissues. The Wnt pathway is an important pharmacological target for bone anabolic drugs and its future discovery. In today’s world, herbal remedies are used to treat post-menopausal osteoporosis as these products contain phytoestrogens. These phytoestrogens are oestrogen like compounds which influence bone metabolism. The phytoestrogens provide better therapeutic effect in reducing the RANKL, osteoclastogenesis, inflammatory markers, and increase the osteogenic markers in the bone cells or osteoblasts. We discuss the mechanism of action of few phytoestrogens such as genistein, daidzein and equol which are beneficial for improvement of the bone health. Daidzein enhances osteoblast growth via the upregulation of BMP expression in primary osteoblast cells and it is a potential antiosteoporotic agent. -
Antioxidant, Cytotoxic, and Antimicrobial Activities of Glycyrrhiza Glabra L., Paeonia Lactiflora Pall., and Eriobotrya Japonica (Thunb.) Lindl
Medicines 2019, 6, 43; doi:10.3390/medicines6020043 S1 of S35 Supplementary Materials: Antioxidant, Cytotoxic, and Antimicrobial Activities of Glycyrrhiza glabra L., Paeonia lactiflora Pall., and Eriobotrya japonica (Thunb.) Lindl. Extracts Jun-Xian Zhou, Markus Santhosh Braun, Pille Wetterauer, Bernhard Wetterauer and Michael Wink T r o lo x G a llic a c id F e S O 0 .6 4 1 .5 2 .0 e e c c 0 .4 1 .5 1 .0 e n n c a a n b b a r r b o o r 1 .0 s s o b b 0 .2 s 0 .5 b A A A 0 .5 0 .0 0 .0 0 .0 0 5 1 0 1 5 2 0 2 5 0 5 0 1 0 0 1 5 0 2 0 0 0 1 0 2 0 3 0 4 0 5 0 C o n c e n tr a tio n ( M ) C o n c e n tr a tio n ( M ) C o n c e n tr a tio n ( g /m l) Figure S1. The standard curves in the TEAC, FRAP and Folin-Ciocateu assays shown as absorption vs. concentration. Results are expressed as the mean ± SD from at least three independent experiments. Table S1. Secondary metabolites in Glycyrrhiza glabra. Part Class Plant Secondary Metabolites References Root Glycyrrhizic acid 1-6 Glabric acid 7 Liquoric acid 8 Betulinic acid 9 18α-Glycyrrhetinic acid 2,3,5,10-12 Triterpenes 18β-Glycyrrhetinic acid Ammonium glycyrrhinate 10 Isoglabrolide 13 21α-Hydroxyisoglabrolide 13 Glabrolide 13 11-Deoxyglabrolide 13 Deoxyglabrolide 13 Glycyrrhetol 13 24-Hydroxyliquiritic acid 13 Liquiridiolic acid 13 28-Hydroxygiycyrrhetinic acid 13 18α-Hydroxyglycyrrhetinic acid 13 Olean-11,13(18)-dien-3β-ol-30-oic acid and 3β-acetoxy-30-methyl ester 13 Liquiritic acid 13 Olean-12-en-3β-ol-30-oic acid 13 24-Hydroxyglycyrrhetinic acid 13 11-Deoxyglycyrrhetinic acid 5,13 24-Hydroxy-11-deoxyglycyirhetinic -
Poster Session Abstracts 610
Pharmaceutical Biology Pharmaceutical Biology, 2012; 50(2): 537–610 2012 © 2012 Informa Healthcare USA, Inc. ISSN 1388-0209 print/ISSN 1744-5116 online 50 DOI: 10.3109/13880209.2012.658723 2 537 Poster Session Abstracts 610 00 00 0000 00 00 0000 UMU APPLIED FOR SCREENING HERB AND PLANT EXTRACTS OR PURE PHYTOCHEMICALS FOR ANTIMUTAGENIC ACTIVITY 00 00 0000 Monique Lacroix, Stéphane Caillet, Stéphane Lessard INRS-Institut Armand-Frappier, Laval, Quebec H7V1B7, Canada 1388-0209 Antimutagenic activities of twelve herb extracts and twenty two plant extracts or pure phytochemicals assessed using a method based on the umu test system for screening natural antimutagens. All herb extracts tested showed antimuta- 1744-5116 genic properties except for Italian parsley that had mutagenic activity. Sage, mint, vervaine and oregano were the most © 2012 Informa Healthcare USA, Inc. antimutagenic. With regard to the metabolites, those from most herb extracts showed antimutagenic properties and those from garlic and thyme showed very strong antimutagenic activities, while those from camomile, rosemary and 10.3109/13880209.2012.658723 tarragon showed mutagenic activities, and those from celeriac and sage showed very strong mutagenic activities. Among pure compounds, pycnogenol metabolites showed strong antimutagenic activities. NPHB 658723 INSECTICIDAL ACTIVITY OF DERRIS MALACCENSIS FROM FRENCH POLYNESIA Heinui Philippe,1 Taivini Teai,1 Maurice Wong,2 Christian Moretti,3 Phila Raharivelomanana1 1Université de la Polynésie Française, Laboratoire BIOTEM, Faa’a, 98702, French Polynesia, 2Service du Développement Rural, Papeete, 98713, French Polynesia, 3Institut de Recherche pour le Développement, Papeete, 98713, French Polynesia Derris malaccensis (G. Bentham) D. Prain, a tropical member of the Fabaceae growing in French Polynesia, was inves- tigated to determine concentrations of metabolites (rotenoids and flavonoids) with pesticidal potential. -
(Iso)Flavonoids As Antimicrobial Agents Production, Activity and Mode of Action
Prenylated (iso)flavonoids as an�microbial agents Invitation Prenylated (iso)flavonoids as You are cordially invited to attend the public defence an�microbial agents of my PhD thesis entitled Produc�on, ac�vity and mode of ac�on Prenylated (iso)flavonoids as antimicrobial agents Production, activity & mode of action on Friday 28 May 2021 at 11:00 a.m. in the Aular of Wageningen University, Generaal Foulkesweg 1A, Wageningen Sylvia Kalli-Angel [email protected] Sylvia Kalli-Angel Paranymphs Alexandra Kiskini [email protected] Katharina Duran [email protected] 2021 Sylvia Kalli-Angel Propositions 1. Mono-prenylated isoflavonoids can serve as promising antimicrobials against Gram-positive bacteria and yeasts. (this thesis) 2. The concepts of priming and elicitation cannot be distinguished on the basis of defence metabolite production. (this thesis) 3. The exponentially growing developments in genetic engineering will revolutionize the way we approach the Human Enhancement Question ("what do we want to become?"). based on Yuval Noah Harari, Sapiens: A Brief History of Humankind 4. The olympic motto - Citius, Altius, Fortius (faster, higher, stronger) - is getting increasingly applicable to science. 5. Emotional intelligence should be raised through compulsory activities already in early stages of education. 6. Music disturbs inertia and comforts chaos. Propositions belonging to the thesis, entitled: Prenylated (iso)flavonoids as antimicrobial agents Production, activity and mode of action Sylvia Kalli-Angel Wageningen, 28 May 2021 Prenylated (iso)flavonoids as antimicrobial agents Production, activity and mode of action Sylvia Kalli-Angel Thesis committee Promotor Prof. Dr J.-P. Vincken Professor of Food Chemistry Wageningen University & Research Co-promotor Dr C.