An Alkaline Solution of Potassium Chromate As a Transmittancy Standard in the Ultraviolet G Eraldine W

Total Page:16

File Type:pdf, Size:1020Kb

An Alkaline Solution of Potassium Chromate As a Transmittancy Standard in the Ultraviolet G Eraldine W Journal of Resea rch of the National Bureau of Sta ndards Vol. 48, No. 12, June 1952 Research Paper 2331 An Alkaline Solution of Potassium Chromate as a Transmittancy Standard in the Ultraviolet G eraldine W. Haupt The need for a means of testing t.he reliability of t he photometric scale of spectro­ photometers in the ultraviolet region (where glasses are unsuitable) h as led to t. he study of an aqueous solution of potassium chromate havin g t he composit ion 0.0400 g/li ter of K2Cr04 in 0.05 N KOH. Based on extensive measurements, llsing photogra phic, photo­ electric, a nd visual spectrophotometry , standard values of spectral t ra nsmittancy have been determined for 1.000 and 2.000 cm of solution at 25° C from 220 to 500 mIL . These values have been tabulated alo ng wit h derived values of absor bancy, molar a bso rbancy indcx a M, a nd 10glOaM. The latter values have been compared graphicall y wit h those of ot her observers . Changes in spectr al transmittancy with changes in temperature have been determined. The work has also included a study of the e ffects due to t he contain er bottle and to age of solut ions over periods up to 8 years, and a co mparison of results ob­ tained with t he solution prepa red either from K 2Cr04 or from l(2C r20 7 as one of t he reagents. 1. Introduction To make the solution most useful as fl calibration standard of spectral transmittancy in the ul traviolet, A means of testing the r eliability of the photo­ information should be availahle r egarding its per­ metric scale of spectrophotometers in the ultraviolet manence, or stability. under specified conditions region has been in demand fo r a number of years. (including the effects of the container bot tles on the With the introduction of commercial photoelectric spectral transmittancy) and regarding any change in spectrophotometers for the ul traviolet in 1940, the its spectral transmittancy with tempera ture over the demand increased considerably. range of room temperatures to be expec ted . Such Although glass fil ter standards of spectral trans­ data have accordingly been obtained . mittance [1, 2] I have proved to be a very sa tisfac­ This investigation was star ted in 1940 and discon­ tory and valuable means of testing the reliabIlity of tinued in 1943 because of the war . I t was resumed the photometric scale of spec trophotometers in the in 1948, and preliminary data have been published visible region, they are in general unsatisfactory in [8, 9. 10]. The presen t paper describes the work the ultraviolet. Not only do all but a few special leading up to the determination of these preliminary glasses absorb completely below 290 m/-L , but, in values, based solely on the measuremen ts made in addition, the ultraviolet spec tral transmittances of 1940- 43, and describes the recen t work on new solu­ many glasses change on exposure to strong ultra­ tions with a new instrumen t, on the basis of which violet radiant flu x [2, 3, 4] . In these respects solu­ the final values were derivecl as herein published . tions in cells with quartz end plates are found to be superior to glasses for use in the ultraviolet. In 2. Preparation of Solutions addition, solutions are reproducible and can be pre­ pared in the laboratory from specifications with All the potassium clu'omate solutions studied were relatively small time and cost. Various solutions prepared in the Bureau's Chemistry D ivision by have been studied or recommended 23 for this pur­ W. Stanley Clabaugh . The solutions are of two pose. Preeminen t among these is an aqueous solu­ general types (A) those prepared bv dissolving the tion of potassium chTomate, K 2Cr04 (0.04 g/liter) in salt in dilute solution of KOH, and (B ) those prepared 0.05 N KOH. This has alternate regions of high by dissolving the sal t in distill ed water. transmission and absorption in the ultraviolet, and The type (A), or alkaline, solutions were prepared this one solution in 1- and 2-cm thicknesses covers as follows: the transmittancy scale from abou t 0.90 to about (AI): A solution of K2Cr0 4 stock material, rea­ 0.01 (0.046 to 2. 0 in absorbancy). Several investi­ gent, grade, 0.0400 g/liter, in 0.05 N KOH (solution gators have previously worked with this solution, of potassium hydroxide prepared by dissolving 3.3 g and from the information available in 1940 this ap­ of potassium hydroxide sticks (Sfi% KOH) of reagent peared to be one of the best fo r the purpose. It was These solu tions havc their limitations fo r use as calibration standards both in accordingly selected for calibration .4 the shortwave end. of the visi ble region and in the ultraviolet region. In the visible, neither of them has sufflcient absorption in the violet to be of much value 1 Figures in brackets indicate the literature refe rences at the end of this pa pcr. for the purpose. I u the ultraviolet, the copper sulfate solu tion varies rather 2 For example, Brode 15, p. 2001 lists potassiu m chromate, azo benzene, and ra pidly from high transparency at wavelen gths above 330 m" to high absorption potassium n itrate as solutions that can be accurately prepared as standards for at wavelengths below 270 m}.L and thus has no general utility over the whole the calibration of spectrophotometers. region . rrhc co balt ammonium sulfate solution used in the D avis-Gibson filters 3 P hotoelectric Spectrophotometry Group of England has recently conducted [7] has too hi gh transparency between 230 and 400 m" to be of much value as a a collaborative test on the use of 1(,C1"2 0 , [61. gpectrophotometric stalld~rd . Solntiolls prepared at 10 times this co ncentration 4 Solution s can, of co urse, also be used in the visible region. In fact, the aq ueous werc fo und (un published d~ta) to be unstable with time throughout the ultra· solutions of copper sulfate and cobalt ammonium sulfate used in the Davis·Gibson violet and were thus considered undesirable for usc as spectrophotometric filters [7, 8, 9, 101 have been recommcnded for that purpose. ca li bration stand3.rds. 414 quality in sufficient distilled wat!'!' to make 1 liter). 3.1. Photographic Method (A2 ): A solution of K 2CrO'1 of the same concen­ tration and alkalinity as (AI) but prepared from TIIC photographic data were obtained by means of 0.0303 g of K 2CrZ07 5• which, when converted gave til e Hilger sector photometer with th e Fues quartz 0.0400 g of K zCr04/liter. This follows from the spectrograph [11 , 12, 13]. reaction K2Cr207 + 2KOH= 2KzCr04+ H zO. The equivalent slit widths for an 0.2-mm sli t, The purpose of clissolving the potassium chromate \Vh ich was used throughou t all th e exposures, arc in dilute solutions of KOH was to prevent any di­ chromate from forming. In A2 a potassium chro­ mate solu tion was prepared by means of a different \\Ta velength I Slit widths material, potassium dicID'omate. Tills solution was preparod to determine whether the spectrophoto­ 'lnj1. IIWI /11,!" metric data from Al and A2 would be identical. 400 O. 2 O. 6 Since they were found to be identical, there is a 310 . 2 . 25 260 .2 . 13 distinct advantage in using potassium dichromate as 220 . 2 . 08 one of the reagents rather than potassium chrol11 ute, because in stock material potassium dichromate exists in a purer state. A special sample of potassium On each plate exposures were made of at lea t two chromate that had been r ecrystallized four times was aluminum spark spectra for wavelength calibration used in the preparation of one of the B, or neutral, purposes. A calibration curve was used to translate solutions with the view to studying the effect of the scalar valu es, which were read at th e density mateh­ puri ty of the potassium chromate. poin ts, into wavelengths. Both 1.000- and 4.000-cm The solutions prepared in 1940, 1942, and again in cells were used wi th th e H il ger instrument. 1949 were stored in liter bottles of the ordinarv storeroom glass type with glass stoppers. For fm:­ 3.2. Visual Method ther study of the effect of storage, half of the 1940 alkaline solu tion prepared from K2Cr04 and half of The Konig- Martens spectrophotometer [13 , 14] is the 1940 neutral solu tions were stored in similar a visual instrument. The slit wid ths lI sed on this bottles lined with ceresin. The tips of the l"ll bber instrument are varied, depending upon th e wave­ stoppers used were also covered with ceresin. Also length and th e spectral ch aracteristics of th e sample half of the alkaline solutions prepared by methods At being measured. With an incande cent so urce th e and A2 in 1949 were stored in alkali-resistant g l as~ equivalent slit widths in millimicrons used for two (Corning glass 728) . wavelengths and for two settings of the sli ts ar c N one of the solu tions was exposed to light excep t given below: when actually in use to fill the cells for their measure­ I ment. No solution was ever poured out of its bottle. Wavelength Slit widths In filling th e cell s a pipette was used to draw off the solution.
Recommended publications
  • Photocatalytic Performance of Cuxo/Tio2 Deposited by Hipims on Polyester Under Visible Light Leds: Oxidants, Ions Effect, and Reactive Oxygen Species Investigation
    materials Article Photocatalytic Performance of CuxO/TiO2 Deposited by HiPIMS on Polyester under Visible Light LEDs: Oxidants, Ions Effect, and Reactive Oxygen Species Investigation Hichem Zeghioud 1 , Aymen Amine Assadi 2,*, Nabila Khellaf 3, Hayet Djelal 4, Abdeltif Amrane 2 and Sami Rtimi 5,* 1 Department of Process Engineering, Faculty of Engineering, Badji Mokhtar University, P.O. Box 12, 23000 Annaba, Algeria; [email protected] 2 Ecole Nationale Supérieure de Chimie de Rennes, Université de Rennes 1, CNRS, UMR 6226, Allée de Beaulieu, CS 50837, 35708 Rennes CEDEX 7, France; [email protected] 3 Laboratory of Organic Synthesis-Modeling and Optimization of Chemical Processes, Badji Mokhtar University, P.O. Box 12, 23000 Annaba, Algeria; [email protected] 4 Ecole des Métiers de l’Environnement, Campus de Ker Lann, 35170 Bruz, France; [email protected] 5 Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-LTP, Station 12, CH-1015 Lausanne, Switzerland * Correspondence: [email protected] (A.A.A.); sami.rtimi@epfl.ch (S.R.) Received: 29 December 2018; Accepted: 22 January 2019; Published: 29 January 2019 Abstract: In the present study, we propose a new photocatalytic interface prepared by high-power impulse magnetron sputtering (HiPIMS), and investigated for the degradation of Reactive Green 12 (RG12) as target contaminant under visible light light-emitting diodes (LEDs) illumination. The CuxO/TiO2 nanoparticulate photocatalyst was sequentially sputtered on polyester (PES). The photocatalyst formulation was optimized by investigating the effect of different parameters such as the sputtering time of CuxO, the applied current, and the deposition mode (direct current magnetron sputtering, DCMS or HiPIMS).
    [Show full text]
  • Working with Hazardous Chemicals
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • 1.1 10 Oxidation of Alcohols and Aldehydes
    1.1 10 Oxidation of alcohols and aldehydes By the end of this spread, you should be able to … 1Describe the oxidation of primary alcohols to form aldehydes and carboxylic acids. 1Describe the oxidation of secondary alcohols to form ketones. 1Describe the oxidation of aldehydes to form carboxylic acids. Key definition Oxidation of alcohols You will recall from your AS chemistry studies that primary and secondary alcohols can A redox reaction is one in which both reduction and oxidation take place. be oxidised using an oxidising agent. s !SUITABLEOXIDISINGAGENTISASOLUTIONCONTAININGACIDIlEDDICHROMATEIONS + 2− H /Cr2O7 . s 4HEOXIDISINGMIXTURECANBEMADEFROMPOTASSIUMDICHROMATE +2Cr2O7, and sulfuric acid, H2SO. During the reaction, the acidified potassium dichromate changes from orange to green. Remember that tertiary alcohols are not oxidised by acidified dichromate ions. Primary alcohols Primary alcohols can be oxidised to aldehydes and to carboxylic acids (see AS Chemistry spread 2.2.3). H H H O H O Oxidation Oxidation H CCOH H CC H CC H H H H H OH Primary alcohol Aldehyde Carboxylic acid Figure 1 Ethanol oxidised to ethanal, and finally to ethanoic acid The equation for the oxidation of ethanol to the aldehyde ethanal is shown below. Note that the oxidising agent is shown as [O] – this simplifies the equation. CH3CH2OH + [O] }m CH3CHO + H2O When preparing aldehydes in the laboratory, you will need to distil the aldehyde from the reaction mixture as it is formed. This prevents the aldehyde from being oxidised further to a carboxylic acid. Key definition When making the carboxylic acid, the reaction mixture is usually heated under reflux before distilling the product off.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Preparation Date: 06/23/2015 Revision Date: 10/27/2015 Revision Number: G2 1. IDENTIFICATION Product identifier Product code: P1282 Product Name: POTASSIUM DICHROMATE, CRYSTAL, REAGENT, ACS Other means of identification Synonyms: Bichromate of potash Chromium potassium oxide (K2Cr2O7) Dichromic acid dipotassium salt Dipotassium bichromate Dipotassium dichromate Dipotassium dichromium heptaoxide Iopezite Kaliumdichromat [German] Potassium bichromate Potassium chromate (K2Cr2O7) Potassium dichromate Potassium dichromate (K2(Cr2O7)) Potassium dichromate (K2Cr2O7) Potassium dichromate(VI) SRM 935a CAS #: 7778-50-9 RTECS # HX7680000 CI#: Not available Recommended use of the chemical and restrictions on use Recommended use: Analytical reagent. In tanning, printing, painting, electroplating and pyrotechnics. Uses advised against No information available Supplier: Spectrum Chemical Mfg. Corp 14422 South San Pedro St. Gardena, CA 90248 (310) 516-8000 Order Online At: https://www.spectrumchemical.com Emergency telephone number Chemtrec 1-800-424-9300 Contact Person: Martin LaBenz (West Coast) Contact Person: Ibad Tirmiz (East Coast) 2. HAZARDS IDENTIFICATION Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Product code: P1282 Product name: POTASSIUM 1 / 16 DICHROMATE, CRYSTAL, REAGENT, ACS Acute toxicity - Oral Category 2 Acute toxicity - Dermal Category 1 Acute toxicity - Inhalation (Gases) Category 2 Acute toxicity - Inhalation (Dusts/Mists) Category 2 Skin
    [Show full text]
  • Manufacturing of Potassium Permanganate Kmno4  This Is the Most Important and Well Known Salt of Permanganic Acid
    Manufacturing of Potassium Permanganate KMnO4 This is the most important and well known salt of permanganic acid. It is prepared from the pyrolusite ore. It is prepared by fusing pyrolusite ore either with KOH or K2CO3 in presence of atmospheric oxygen or any other oxidising agent such as KNO3. The mass turns green with the formation of potassium manganate, K2MnO4. 2MnO2 + 4KOH + O2 →2K2MnO4 + 2H2O 2MnO2 + 2K2CO3 + O2 →2K2MnO4 + 2CO2 The fused mass is extracted with water. The solution is now treated with a current of chlorine or ozone or carbon dioxide to convert manganate into permanganate. 2K2MnO4 + Cl2 → 2KMnO4 + 2KCl 2K2MnO4 + H2O + O3 → 2KMnO4 + 2KOH + O2 3K2MnO4 + 2CO2 → 2KMnO4 + MnO2 + 2K2CO3 Now-a-days, the conversion is done electrolytically. It is electrolysed between iron cathode and nickel anode. Dilute alkali solution is taken in the cathodic compartment and potassium manganate solution is taken in the anodic compartment. Both the compartments are separated by a diaphragm. On passing current, the oxygen evolved at anode oxidises manganate into permanganate. At anode: 2K2MnO4 + H2O + O → 2KMnO4 + 2KOH 2- - - MnO4 → MnO4 + e + - At cathode: 2H + 2e → H2 Properties: It is purple coloured crystalline compound. It is fairly soluble in water. When heated alone or with an alkali, it decomposes evolving oxygen. 2KMnO4 → K2MnO4 + MnO2 + O2 4KMnO4 + 4KOH → 4K2MnO4 + 2H2O + O2 On treatment with conc. H2SO4, it forms manganese heptoxide via permanganyl sulphate which decomposes explosively on heating. 2KMnO4+3H2SO4 → 2KHSO4 + (MnO3)2SO4 + 2H2O (MnO3)2SO4 + H2O → Mn2O7 + H2SO4 Mn2O7 → 2MnO2 + 3/2O2 Potassium permanganate is a powerful oxidising agent. A mixture of sulphur, charcoal and KMnO4 forms an explosive powder.
    [Show full text]
  • Chemical Compatibility Guide
    Chemical Compatibility Guide Guide Applicable to the Following: PIG Portable Spill Containment Pool Guide Information This report is offered as a guide and was developed from information which, to the best of New Pig’s knowledge, was reliable and accurate. Due to variables and conditions of application beyond New Pig’s control, none of the data shown in this guide is to be construed as a guarantee, expressed or implied. New Pig assumes no responsibility, obligation, or liability in conjunction with the use or misuse of the information. PIG Spill Containment Pools are constructed from PVC-coated polyester fabric. The chemical resistance guide that follows shows the chemical resistance for the PVC layer only. This guide has been compiled to provide the user with general chemical resistance information. It does not reflect actual product testing. Ratings / Key or Ratings – Chemical Effect 1. Satisfactory to 72°F (22°C) 2. Satisfactory to 120°F (48°C) A = Excellent D = Severe Effect, not recommended for ANY use. B = Good — Minor Effect, slight corrosion or discoloration. N/A = Information not available. C = Fair — Moderate Effect, not recommended for continuous use. Softening, loss of strength, swelling may occur. Due to variables and conditions beyond our control, New Pig cannot guarantee that this product(s) will work to your satisfaction. To ensure effectiveness and your safety, we recommend that you conduct compatibility and absorption testing of your chemicals with this product prior to purchase. For additional questions or information,
    [Show full text]
  • Perkin's Mauve: the History of the Chemistry
    REFLECTIONS Perkin’s Mauve: The History of the Chemistry Andrew Filarowski Those of us who owe our living in part to the global dyestuff and chemical industry should pause today and remember the beginnings of this giant industry which started 150 years ago today with William Perkins’ discovery of mauveine whilst working in his home laboratory during the Easter holiday on April 28, 1856. Prior to this discovery, all textiles were dyed with natural dyestuffs and pigments. What did Perkin’s Reaction Entail? William Henry Perkin carried out his experiments at his home laboratory in the Easter break of 1856. He was trying to produce quinine (C20H24N2O2). This formula was known but not the structural formula. Because chemistry was in such an early stage of development Perkin thought that by simply balancing the masses (simple additive and subtractive chemistry) in an equation he would obtain the required compound. He therefore believed that if he took two allyltoluidine molecules, C10H13N, and oxidised them with three oxygen atoms (using potassium dichromate) he would get quinine (C20H24N2O2) and water. 2 (C10H13N) + 3O C20H24N2O2 + H2O It is unsurprising to us now but Perkin reported “that no quinine was formed, but only a dirty reddish brown precipitate.” However, he continued in his trials and decided to use aniline (C6H5NH2) and its sulphate, and to oxidise them using potassium dichromate. This produced a black precipitate that Perkin at first took to be a failed experiment, but he noticed on cleaning his equipment with alcohol that a coloured solution was obtained. Perkin’s Patent W H Perkin filed his patent on the 26th August 1856 for “Producing a new colouring matter for the dyeing with a lilac or purple color stuffs of silk, cotton, wool, or other materials.” (sic) Patent No.
    [Show full text]
  • Reactions of Alcohols & Ethers 1
    REACTIONS OF ALCOHOLS & ETHERS 1. Combustion (Extreme Oxidation) alcohol + oxygen carbon dioxide + water 2 CH3CH2OH + 6 O2 4 CO2 + 6 H2O 2. Elimination (Dehydration) ° alcohol H 2 S O 4/ 1 0 0 C alkene + water H2SO4/100 ° C CH3CH2CH2OH CH3CH=CH2 + H2O 3. Condensation ° excess alcohol H 2 S O 4 / 1 4 0 C ether + water H2SO4/140 ° C 2 CH3CH2OH CH3CH2OCH2CH3 + H2O 4. Substitution Lucas Reagent alcohol + hydrogen halide Z n C l2 alkyl halide + water ZnCl2 CH3CH2OH + HCl CH3CH2Cl + H2O • This reaction with the Lucas Reagent (ZnCl2) is a qualitative test for the different types of alcohols because the rate of the reaction differs greatly for a primary, secondary and tertiary alcohol. • The difference in rates is due to the solubility of the resulting alkyl halides • Tertiary Alcohol→ turns cloudy immediately (the alkyl halide is not soluble in water and precipitates out) • Secondary Alcohol → turns cloudy after 5 minutes • Primary Alcohol → takes much longer than 5 minutes to turn cloudy 5. Oxidation • Uses an oxidizing agent such as potassium permanganate (KMnO4) or potassium dichromate (K2Cr2O7). • This reaction can also be used as a qualitative test for the different types of alcohols because there is a distinct colour change. dichromate → chromium 3+ (orange) → (green) permanganate → manganese (IV) oxide (purple) → (brown) Tertiary Alcohol not oxidized under normal conditions CH3 KMnO4 H3C C OH NO REACTION K2Cr2O7 CH3 tertbutyl alcohol Secondary Alcohol ketone + hydrogen ions H O KMnO4 H3C C CH3 + K2Cr2O7 C + 2 H H3C CH3 OH propanone 2-propanol Primary Alcohol aldehyde + water carboxylic acid + hydrogen ions O KMnO4 O H H KMnO H H 4 + CH3CH2CH2OH C C C H C C C H + 2 H K2Cr2O7 + H2O K Cr O H H H 2 2 7 HO H H 1-propanol propanal propanoic acid 6.
    [Show full text]
  • Potassium Dichromate Safety Data Sheet According to Federal Register / Vol
    Potassium Dichromate Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Date of issue: 12/11/2014 Version: 1.0 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product form : Substance Substance name : Potassium Dichromate Chemical name : potassium dichromate CAS No : 7778-50-9 Product code : LC18940 Formula : K2Cr2O7 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : For laboratory and manufacturing use only. 1.3. Details of the supplier of the safety data sheet LabChem Inc Jackson's Pointe Commerce Park Building 1000, 1010 Jackson's Pointe Court Zelienople, PA 16063 - USA T 412-826-5230 - F 724-473-0647 [email protected] - www.labchem.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 or 011-703-527-3887 SECTION 2: Hazards identification 2.1. Classification of the substance or mixture Classification (GHS-US) Ox. Sol. 2 H272 Acute Tox. 3 (Oral) H301 Acute Tox. 4 (Dermal) H312 Acute Tox. 2 (Inhalation) H330 Skin Corr. 1B H314 Resp. Sens. 1 H334 Skin Sens. 1 H317 Muta. 1B H340 Carc. 1B H350 Repr. 1B H360 STOT RE 1 H372 Aquatic Acute 1 H400 Aquatic Chronic 1 H410 Full text of H-phrases: see section 16 2.2. Label elements GHS-US labeling Hazard pictograms (GHS-US) : GHS03 GHS05 GHS06 GHS08 GHS09 Signal word (GHS-US) : Danger Hazard statements (GHS-US) : H272 - May intensify fire; oxidizer H301 - Toxic if swallowed H312 - Harmful in contact with skin H314 - Causes severe skin burns and eye damage H317 - May cause an allergic skin reaction H330 - Fatal if inhaled H334 - May cause allergy or asthma symptoms or breathing difficulties if inhaled H340 - May cause genetic defects H350 - May cause cancer H360 - May damage fertility or the unborn child H372 - Causes damage to organs (kidneys, liver, Skin) through prolonged or repeated 12/11/2014 EN (English US) Page 1 Potassium Dichromate Safety Data Sheet according to Federal Register / Vol.
    [Show full text]
  • The Colours of Chromium from Rubies to Rolls-Royce, Anders Lennartson Explores the Colourful History of Chromium and Its Coordination Compounds
    in your element The colours of chromium From rubies to Rolls-Royce, Anders Lennartson explores the colourful history of chromium and its coordination compounds. s a boy, I set up my own makeshift colour — by Louis Nicholas Vauquelin, laboratory in my parents’ who discovered the element in 1797. The Abasement. During my early metal was not an immediate commercial chemical investigations, I acquired some success. Fifteen years after its discovery, chromium(iii) chloride hexahydrate, Sir Humphrey Davy did not know much a green salt that gave an equally green about chromium or its compounds when solution when dissolved in water. When he wrote his famous text book Elements of I came back the next day, however, to my Chemical Philosophy, but he did remark great surprise I found that the solution was that chromic acid has a sour taste1. Tasting now a violet colour. How could that be, chemicals was obviously the order of the I wondered? OF PETRA RÖNNHOLM COURTESY IMAGE day, because in that very same year Jöns An important property of chromium(iii) Jacob Berzelius wrote in his textbook that complexes is that ligand exchange is slow. turns yellow. This colour change stems the aftertaste of the toxic chromic acid was 2 When I dissolved CrCl3∙6H2O — which is from the formation of potassium chromate, harsh and metallic . Berzelius also noted more properly represented by the formula K2CrO4, in which chromium is found in that the metal, although brittle, was very [CrCl2(H2O)4]∙Cl(H2O)2 — in water, it oxidation state vi. resistant to both acids and oxidation in air.
    [Show full text]
  • JAERI-Data/Code 98-009 THERMLIB
    JAERI-Data/Code--98-009 JAERI-Data/Code 98-009 JP9805014 THERMLIB: A MATERIAL PROPERTY DATA LIBRARY FOR THERMAL ANALYSIS OF RADIOACTIVE MATERIAL TRANSPORT CASKS March 1998 Takeshi IKUSHIMA Japan Atomic Energy Research Institute (=r319-l 195 9- (T319-1195 d &-J T Jo 0 J-to This report is issued irregularly. Inquiries about availability of the reports should be addressed to Research Information Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken, 319-1195, Japan. ©Japan Atomic Energy Research Institute, 1998 £|J «ij t > If ^ $ f-fl WJ (ft) JAERI-Data/Code 98-009 THERMLIB: A Material Property Data Library for Thermal Analysis of Radioactive Material Transport Casks Takeshi IKUSHIMA Department of Fuel Cycle Safety Research Nuclear Safety Research Center Tokai Research Establishment Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibarakiken (Received January 30, 1998) The paper describes an heat conduction data library and graphical program for analysis of radioactive material transport casks. More than 1000 of material data are compiled in the data library which was produced by Lawrence Livermore Laboratory. Thermal data such as, density, thermal conductivity, specific heat, phase-change or solid-state, transition temperature and latent heat have been tabulated. Using this data library, a data library processing program THERMLIB for thermal analysis has been developed. Main features of THERMLIB are as follows: (1) data have been tabulated against temperature, (2) more than 1000 material data are available, (3) it is capable of graphical representations for thermal data and (4) not only main frame computer but also work stations (OS UNIX) and personal computer (OS Windows) are available for use of THERMLIB.
    [Show full text]
  • Excessive Risk Chemicals
    Excessive Risk Chemicals - Risk Exceeds Educational Utility ChemicalName Hazards Acetic Anhydride Explosive potential, corrosive Acetyl Chloride Corrosive, dangerous fire risk,reacts violently with water and alcohol Acrylamide Toxic by absorption, suspected carcinogen Acrylonitrile Flammable, poison Adipoyl Chloride Corrosive; absorbs through skin, lachrymator Aluminum Chloride, anhydrous Water reactive, corrosive Ammonia, gas Corrosive lachrymator Ammonium Bifluoride Reacts with water, forms Hydrofluoric Acid Ammonium Bichromate May explode on contact with organics, suspected carcinogen Ammonium Chromate Oxidizer, poison; may explode when heated Ammonium Dichromate Reactive, may cause fire and explosion Ammonium Perchlorate Explosive; highly reactive Ammonium Sulfide Poison, Corrosive, Reacts with Water & Acids Aniline Carcinogen, toxic, absorbs through skin Aniline Hydrochloride Poison Antimony Oxide Health and contact hazard Antimony Powder Flammable as dust, health hazard Antimony Trichloride Corrosive; emits hydrogen chloride gas if moistened Arsenic compounds Poison, carcinogen Asbestos, Friable Inhalation Health Hazard, Carcinogen Azide Compounds Explosive in contact with metals, extremely reactive, highly toxic Barium Chromate Poison Benzene Flammable, carcinogen Benzoyl Peroxide Organic peroxide, flammable, oxidizer Beryllium and its compounds Poison. Dust is P-listed & highly toxic. Carcinogen Bromine Corrosive, oxidizer, volatile liquid Cadmium compounds Toxic heavy metal, carcinogen Calcium Fluoride (Fluorspar) Teratogen. Emits
    [Show full text]