Unit 5.1 to 5.4 Pdf.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Unit 5.1 to 5.4 Pdf.Pdf UNIT-V PESTS OF SILKWORM AND MULBERRY 5.1.1: INTRODUCTION TO PEST, PARASTOIDS AND PREDATORS: Pest: Pest is a living organism which causes damage to the human beings or his belongings in terms of economic loss. Example: Pests include insects, nematodes, mites, snails, slugs, etc. and vertebrates like rats and birds etc. The word pest id drived from French word ‘Peste’ and Latin term ‘Pestis’ meaning plague or contagious disease. Pest is any animal which is noxious, destructive or troublesome to man or his interests. A pest is any organism which occurs in large numbers and conflict with man’s welfare, convenience and profit. Some important definitions of pests include: 1. A pest is an organism which harms man or his property significantly or is likely to do so (Woods, 1976) 2. Insects are pests when they are sufficiently numerous to cause economic damage (Debacli, 1964) Pests are organisms which impose burdens on human population by causing (i) Injury to crop plants, forests and ornamentals (ii) Annoyance, injury and death to humans and domesticated animals (iii) Destruction or value depreciation of stored products. Depending upon the importance, pests may be agricultural forest, household, medical, aesthetic and veterinary pests. CATEGORIES OF PESTS Based on occurrence following are pest categories Regular pest: Frequently occurs on crop - Close association e.g. Rice stem borer, Brinjal fruit borer Occasional pest: Infrequently occurs, no close association e.g. Caseworm on rice, Mango stem borer Seasonal pest: Occurs during a particular season every year e.g. Red hairy caterpillar on groundnut, Mango hoppers Persistent pests: Occurs on the crop throughout the year and is difficult to control e.g. Chilli thrips, mealy bug on guava Sporadic pests: Pest occurs in isolated localities during some period. e.g. Coconut slug caterpillar Based on level of infestation Pest epidemic: Sudden outbreak of a pest in a severe form in a region at a particular time e.g. BPH in Tanjore, RHC in Madurai, Pollachi. Endemic pest: Occurrence of the pest in a low level in few pockets, regularly and confined to particular area e.g. Rice gall midge in Madurai, Mango hoppers in Periyakulam Parameters of insect population levels General equilibrium position (GEP) The average density of a population over a long period of time, around which the pest population tends to fluctuate due to biotic and abiotic factors and in the absence of permanent environmental changes. Economic threshold level (ETL) Population density at which control measure should be implemented to prevent an increasing pest population from reaching the ETL. Economic injury level (EIL) The lowest population density that will cause economic damage Damage boundary (DB) The lowest level of damage which can be measured. ETL is always less than EIL. Provides sufficient time for control measures. PEST CATEGORIES ACCORDING TO EIL, GEP AND DB (i) Key pest - Most severe and damaging pests - GEP lies above EIL always - Spray temporarily bring population below EIL - These are persistent pests - The environment must be changed to bring GEP below EIL. e.g. Cotton bollworm, Diamond backmoth (ii) Major pest - GEP lies very close to EIL or coincides with EIL - Economic damage can be prevented by timely and repeated sprays e.g. Cotton jassid, Rice stem borer (iii) Minor pest/Occasional pest - GEP is below the EIL usually - Rarely they cross EIL - Can be controlled by spraying e.g. Cotton stainers, Rice hispa, Ash weevils (iv) Sporadic pests - GEP generally below EIL - Sometimes it crosses EIL and cause severe loss in some places/periods e.g. Sugarcane pyrilla, White grub, Hairy caterpillar (v) Potential pests - They are not pests at present - GEP always less than EIL - If environment changed may cause economic loss e.g. S. litura is potentia pest in North India CAUSES OF PEST OUTBREAK Activity of human beings which upsets the biotic balance of ecosystem is the prime cause for pest outbreak. The following are some human interventions. – Reason for outbreak i. Deforestation an bringing under cultivation - Pest feeding on forest trees are forced to feed on cropped - Biomass/unit area more in forests than agricultural land - Weather factors also altered - Affects insect development ii. Destruction of natural enemies - Due to excess use of insecticides, natural enemies are killed - This affects the natural control mechanism and pest outbreak occurs, e.g. Synthetic pyrethroid insecticides kill NE. iii. Intensive and Extensive cultivation Monoculture (Intensive) leads to multiplication of pests Extensive cultivation of susceptible variety in large area - No competition for food - multiplication increases e.g. Stem borers in rice and sugarcane iv. Introduction of new varieties and crops. Varieties with favourable physiological and morphological factors cause multiplication of insects. e.g. Succulent, dwarf rice varieties favour leaf folder Combodia cotton favours stem weevil and spotted bollworm Hybrid sorghum (CSH 1), cumbu (HB1) favour shoot flies and gall midges v. Improved agronomic practices o Increased N fertilizer - High leaf folder incidence on rice o Closer planting - BPH and leaf folder increases o Granular insecticides - Possess phytotonic effect on rice vi. Introduction of new pest in new environment Pest multiplies due to absence of natural enemies in new area Apple wooly aphid Eriosoma lanigerum multiplied fast due to absence of Aphelinus mali (Parasit) vii. Accidental introduction of pests from foreign countries (through air/sea ports) e.g. a. Diamondback moth on cauliflower (Plutella xylostella) b. Potato tuber moth Phthorimaea operculella c. Cottony cushion scale Icerya purchasi on wattle tree d. Wooly aphid - Eriosoma lanigerum on apple e. Psyllid - Heteropsylla cubana on subabul f. Spiralling whitefly - Adeyrodichus dispersus on most of horticultural crops viii. Large scale storage of food grains Serve as reservoir for stored grain pests Urbanisation - changes ecological balance. Rats found in underground drainage Resurgence Tremendous increase in pest population brought about by insecticides despite good initial reduction in pest population at the time of treatment. o Deltamethrin, Quinalphos, Phorate - Resurgence of BPH in rice o Synthetic pyrethroids - Whitefly in cotton o Carbofuran - Leaf folder in rice o Losses caused by pests o Crop loss from all factors - 500 billion US $ annually world wide o Insect pests - 15.6% loss of production o Plant pathogens - 13.3% o Weeds - 13.2% Parasitoids: Parasitoids are insects that parasitize other insects. The immature stages of parasitoids develop on or within its host, eventually killing it. Parasitoids may attack all stages of their host (eggs, larvae, nymphs, pupae, adults). The parasitoids are a group of insects that belong mainly to the order Hymenoptera, but also include many Diptera. They are free-living as adults, but lay their eggs in, on or near other insects (or, more rarely, in spiders or woodlice). The larval parasitoid then develops inside or on its host. Initially, it does little apparent harm, but eventually it almost totally consumes the host and therefore kills it. An adult parasitoid emerges from what is apparently a developing host. Often, just one parasitoid develops from each host, but in some cases several or many individuals share a host. Thus, parasitoids are intimately associated with a single host individual (like parasites), they do not cause immediate death of the host (like parasites and grazers), but their eventual lethality is inevitable (like predators). For parasitoids, and also for the many herbivorous insects that feed as larvae on plants, the rate of ‘predation’ is determined very largely by the rate at which the adult females lay eggs. Each egg is an ‘attack’ on the prey or host, even though it is the larva that hatches from the egg that does the eating. Parasitoids might seem to be an unusual group of limited general importance. However, it has been estimated that they account for 10% or more of the world’s species (Godfray, 1994). This is not surprising given that there are so many species of insects that most of these are attacked by at least one parasitoid, and that parasitoids may in turn be attacked by parasitoids. A number of parasitoid species have been intensively studied by ecologists, and they have provided a wealth of information relevant to predation generally. Predators: Predators capture and eat other organisms such as insects or mites. Predators include ladybird beetles, ground beetles, lacewings, syrphid (hover) flies, aphid midges (Aphidoletes) and yellow jacket wasps. Common Predators and Parasitoids Ladybird beetles Appearance: There are many species of ladybird beetles that vary in size, colour and pattern. Depending on species, colours are black, red, orange-red to almost yellow. Most species have coloured spots or markings on their backs. Body length: Adult - 1.0-5.0mm; Mature larva- 1.0-7.5mm Life Cycle: Overwinter as adults. Eggs (orange, elongated) are laid in clusters on underside of leaves and branches. Usually only one generation per year. Both the larvae and adults feed on pests. Insect Pests Attacked: Aphids, whiteflies, scales, mites, mealybugs and other soft- bodied insects. Monitoring: Inspect colonies of aphids for adults and/or larvae. Fig. 1: Two spotted ladybird beetle Fig. 1.2: Multicolored Asian ladybird beetle adult Fig. 1.3: Ladybird beetle eggs Fig. 1.4: Ladybird beetle larva Lacewings Appearance: Common species of lacewings include two green lacewing species, Chrysoperla carnea and Chrysopa oculata, and one brown lacewing species, Hemerobius pacifus. Lacewing eggs are white and laid singly or in groups on long stalks on the underside of leaves or branches. The brown and green lacewing larvae are very similar except for small differences in body shape and the brown lacewing's habit of moving its head from side to side while walking. Body length: Adult - 10.0-20.0 mm; Mature larva - 6.0-10.0 mm Life Cycle: Chrysoperla carnea and Hemerobius pacificus overwinter as adults; Chrysopa oculata as pupae.
Recommended publications
  • Wolbachia: a Friend Or Foe for Uzi Flies IS SN 2320-7078 JEZS 2014; 2 (2): 130-132 © 2014 JEZS B
    Journal of Entomology and Zoology Studies 2014; 2(2): 130-132 Wolbachia: a friend or foe for Uzi flies IS SN 2320-7078 JEZS 2014; 2 (2): 130-132 © 2014 JEZS B. M. Prakash, A. Prathima, H. C. Huchesh, H. Ravikumar, H. P. Puttaraju Received: 08-02-2014 Accepted: 02-03-2014 1. Short Note B.M. Prakash The Uzi fly, Exorista sorbillans a tachinid endo-larval parasitoid of silkworm, Bombyx mori causes severe Evolutionary biology Laboratory, loss to the farming community of India. The exponential multiplication of this pest has alerted the number of Evolutionary and Organismal Biology scientist since three decades, though complete curable measures for this fly pest has not been investigated. In Unit, Jawaharlal Nehru Centre for this direction, scientists are investigating integrated approach for the management of the Uzi fly. Here we Advance Scientific Research, Jakkur, have investigated totally new approach for the management of the fly pest by using Wolbachia endobacteria [1-3] Bangalore – 560 064. Email: [email protected] The bacteria of the genus Wolbachia have been recently recognized to infect a wide range of arthropods Tel: +91-9008719144 including insects, mites, isopods and filarial nematodes [4, 5]. The intracellular bacteria were first reported from the culicine mosquitoes Culex pipiens by Hertig and Wolbach in the year 1924 and later named it as A. Prathima Wolbachia pipientis by Hertig in the year 1936 in the honor of his collaborator Wolbach. Later it was found Department of Biological Sciences, that, these bacteria were not only infects mosquitoes but also infects Drosophila and subsequently many Bangalore University, Bangalore- more insects.
    [Show full text]
  • View the PDF File of the Tachinid Times, Issue 8
    The Tachinid Times ISSUE 8 February 1995 Jim O'Hara, editor Agriculture & Agri-Food Canada, Biological Resources Division Centre for Land & Biological Resources Research C.E.F., Ottawa, Ontario, Canada, K1A 0C6 This issue marks the eighth year of The Tachinid Basic methodology: A team of (currently 9) Costa Rican Times. It is the largest issue so far, with the largest paraecologists range throughout all habitats night and mailing list as well (90). I hope you find this issue of day searching opportunistically and directedly for Lepid- interest. To keep this newsletter going, remember to optera larvae. These habitats are "wild", though they contribute some news from time to time. As usual, the represent the earliest stages of succession to virtually next issue will be distributed next February. undisturbed forest. When a caterpillar is found it is placed in a plastic bag with its presumed food (normally The Caterpillars and their Parasitoids of a Tropical this is the plant on which it was found). If it feeds, it is Dry Forest (by D.H. Janzen) then given a unique voucher number (e.g., 94-SRNP- Project name: The caterpillars and their parasitoids of 7857; this would be the 7857th caterpillar recorded in a tropical dry forest, Guanacaste Conservation Area, 1994; SRNP stands for Santa Rosa National Park, which northwestern Costa Rica. is today the Santa Rosa Sector of the GCA). That vou- Project goal: To determine the host-plant specificity of cher number is written on the plastic bag. The collection the entire set of macro caterpillars (and miners where information is recorded in field notebooks by the feasible) for the tropical dry forest in the Guanacaste collectors, and this information is later computer- Conservation Area in northwestern Costa Rica (0-300 m captured into a Filemaker Pro 2.0 flatfile database (de- elevation, six month dry season, total annual rainfall tails available on request).
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • The Tachinid Times
    The Tachinid Times ISSUE 24 February 2011 Jim O’Hara, editor Invertebrate Biodiversity Agriculture & Agri-Food Canada ISSN 1925-3435 (Print) C.E.F., Ottawa, Ontario, Canada, K1A 0C6 ISSN 1925-3443 (Online) Correspondence: [email protected] or [email protected] My thanks to all who have contributed to this year’s announcement before the end of January 2012. This news- issue of The Tachinid Times. This is the largest issue of the letter accepts submissions on all aspects of tachinid biology newsletter since it began in 1988, so there still seems to be and systematics, but please keep in mind that this is not a a place between peer-reviewed journals and Internet blogs peer-reviewed journal and is mainly intended for shorter for a medium of this sort. This year’s issue has a diverse news items that are of special interest to persons involved assortment of articles, a few announcements, a listing of in tachinid research. Student submissions are particularly recent literature, and a mailing list of subscribers. The welcome, especially abstracts of theses and accounts of Announcements section is more sizable this year than usual studies in progress or about to begin. I encourage authors and I would like to encourage readers to contribute to this to illustrate their articles with colour images, since these section in the future. This year it reproduces the abstracts add to the visual appeal of the newsletter and are easily of two recent theses (one a Ph.D. and the other a M.Sc.), incorporated into the final PDF document.
    [Show full text]
  • Zooj(J))Gicaj1 Short Note 0J1I!Jj](Dli(F}§
    Zoological Studies 34(1) 62-66 (1995) Zooj(j))gicaJ1 Short Note 0J1I!Jj](dli(f}§ Surface Morphology of Egg Chorion of the Uzi Fly, Exorista bombycis (Louis), (Diptera: Tachinidae) - an Endoparasite of the Silkworm, Bombyx mori Linn. Sunil K. Tewari ' , Vineet Kumar, Arvind K. Awasthi and Rajat K. Datta Electron Microscopy Unit, Central Sericultural Research and Training Institute, Mysore - 570008, India (Accepted July 1, 1994) ., Sunil K. Tewari, Vineet Kumar, Arv ind K. Aw asthi and Rajat K. Datt a (1995) Surface morphology of egg chorion of the Uzi fly, Exorista bombycis (Louis), (Diptera: Tachinidae) - an endoparasite of the silkworm, Bombyx mori Linn . Zoological Studies 34(1): 62-66. Scanning electron microscope observations on the egg chorio n of the Uzi fly Exorista bombycis (Louis) (Diptera : Tachinidae) were carried out to obtain further understanding -of the probable function and developm ent of chor ionic structures of eggs. The study reveals morphologically and physiologically important structures viz. aeropyles, micropyles, a circular lid with a well defined hatch ing line, a chorionic respiratory network, etc. The egg of E. bombycis is considered indehiscent, i.e., the egg chorion is not modified for hatchin g and the larva emerges from the ventral egg surface. However , a lid surrounded by a well defined hatching line is present in E. bombycis, but is genera lly found in dehiscent Tach inid eggs and is used for hatching . Further, the type of chorionic respiratory systems in the family Tachin idae are discussed in detail. Key wo rds: Eggshell, Chorionic respiratory system, Hatching line, Uzi fly, Scanning electron microscope.
    [Show full text]
  • Mass Production of Silkworm (Bombyx Mori L.) Uzi Fly Exorista Bombycis (Louis)
    Int.J.Curr.Microbiol.App.Sci (2017) 6(12): 5412-5415 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 12 (2017) pp. 5412-5415 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.612.505 Mass Production of Silkworm (Bombyx mori L.) uzi fly Exorista bombycis (Louis) K. Vasudha Prabhakar, G. V. Vishaka and T. K. Narayanaswamy* Department of Sericulture, University of Agricultural Sciences, GKVK, Bangalore-65, Karnataka, India *Corresponding author ABSTRACT The studies conducted on the mass production of uzipupae by providing silkworm as host. K e yw or ds The different number of worm’s viz., 50, 100, 200 and 300 fourth instar worms were provided. Among the various parameters studied viz., number of eggs laid (657.00), Mass production, number of maggots formed (562.00), number of pupae formed (544.00) and number of pupal weight, pupal adult flies emerged (534.00) was found maximum when 300 silkworms were provided as length, Silkworms host, followed by 200 silkworms supplied batches. The minimum number of malformed and mated female pupae (10.00) was observed in 300 silkworms supplied batches. However, number of eggs uzi flies laid by 2 mated female uzi flies was inversely proportional to the number of silkworms, Article Info whereas maximum number of eggs (657.00) was laid by 2 mated femaleuzi flies, when 300 fourth instar silkworms were provided. The maximum male uzi fly pupal and female Accepted: pupal weight was observed in 300 worms supplied batches i.e., 1.26 g and 0.96 g.
    [Show full text]
  • Area-Wide Control of Insect Pests: Integrating the Sterile Insect and Related Nuclear and Other Techniques
    051346-CN131-Book.qxd 2005-04-19 13:34 Page 1 FAO/IAEA International Conference on Area-Wide Control of Insect Pests: Integrating the Sterile Insect and Related Nuclear and Other Techniques 9 - 13 May 2005 Vienna International Centre Vienna, Austria BOOK OF EXTENDED SYNOPSES FAO Food and Agriculture Organization of the United Nations IAEA-CN-131 051346-CN131-Book.qxd 2005-04-19 13:34 Page 2 The material in this book has been supplied by the authors and has not been edited. The views expressed remain the responsibility of the named authors and do not necessarily reflect those of the government(s) of the designating Member State(s). The IAEA cannot be held responsible for any material reproduced in this book. TABLE OF CONTENTS OPENING SESSION: SETTING THE SCENE..................................................................................1 Area-wide Pest Management: Environmental and Economic Issues .......................................................3 D. Pimentel Regional Management Strategy of Cotton Bollworm in China ...............................................................4 K. Wu SESSION 1: LESSONS LEARNED FROM OPERATIONAL PROGRAMMES...........................7 Boll Weevil Eradication in the United States...........................................................................................9 O. El-Lissy and W. Grefenstette Integrated Systems for Control of Pink Bollworm in Cotton.................................................................10 T. J. Henneberry SESSION 2: LESSONS LEARNED FROM OPERATIONAL PROGRAMMES.........................13
    [Show full text]
  • 1--120--Gruenwaldand 2017
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/326651933 Web-Based system for study of pest dynamics in relation to climate change Article in Indian Journal of Entomology · January 2018 DOI: 10.5958/0974-8172.2018.00081.0 CITATION READS 1 13 3 authors, including: Sengottaiyan Vennila National Centre for Integrated Pest Management 158 PUBLICATIONS 661 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Interaction effects of cultivars,agrotechniques and pest management of entomofauna of cotton View project CROPSAP View project All content following this page was uploaded by Sengottaiyan Vennila on 14 January 2021. The user has requested enhancement of the downloaded file. Sale Commercial for Not Copy, www.entosocindia.org Members THE ENTOMOLOGICAL SOCIETY OF INDIA www.entosocindia.org (Registration No. S 2434 of 1963-64 dt. 12.3.1964) NITI AAYOG ID: VO/NGO-DL/2016/0104219 President DR. S.N. PURI Vice Presidents DR. N.K. KRISHNAKUMAR DR. B.V. PATIL DR. M. PREMJIT SINGH DR. (MS) CHANDISH BALLAL DR. K.S. KHOKHAR (Honorary) (Honorary) General Secretary Joint Secretary DR. J.P. SINGH DR. SUBHASH CHANDER Chief Editor Treasurer DR. V.V. RAMAMURTHY DR. N.M. MESHRAM Councillors Dr. H.K. SINGH Dr. S.S.Suroshe CHAPTERS MADURAI (DR. K. SURESH)* UMIAM, MEGHALAYA (DR. G.T. BEHERE)** *Approved in 2017; **Approved in 2018 — Subject to terms and conditions of ESI EDITORIAL ADVISORY BOARD Chairman- Dr. S. Subramanian, New Delhi I) Toxicology: Chemical Ecology: Sale IV) VII) IPM/ Acarology: Section Editor- Dr.
    [Show full text]
  • Integrated Pest Management of Uzi Fly (Exorista Sorbillans) in Muga Silkworm Antheraea Assamensis Helfer
    Journal of Entomology and Zoology Studies 2020; 8(4): 341-343 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Integrated pest management of uzi fly (Exorista www.entomoljournal.com JEZS 2020; 8(4): 341-343 sorbillans) in Muga silkworm Antheraea © 2020 JEZS Received: 08-05-2020 assamensis Helfer (Lepidoptera: saturniidae): A Accepted: 10-06-2020 review JP Baruah Department of studies in Sericulture Science, University of Mysore Manasagangothri, JP Baruah and Chinmoyee Kalita Mysore, Karnataka, India Abstract Chinmoyee Kalita Muga silkworm rearing being an outdoor crop due to insect pests is a major problem encountered by the Department of studies in muga rearers. It is mostly high in the pre-seed (Aherua and Jarua) and seed crop (Chotua and Bhodia) Sericulture Science, University of Mysore Manasagangothri, compared to the commercial crops. A preliminary study from 2010 to 2011 revealed 12 (Twelve) insect Mysore, Karnataka, India pests belonging to family Tachinidae, Vespidae, Ichneumonidae, Braconidae, Formicidae, Pentatomidae, and Mantidae infesting the silkworm. Among these families, the Tachinidae family infest the silkworm more and the uzi fly belongs to the Tachinidae family. Exorista sorbillans, Widemann, otherwise called the uzi fly is a serious pest of muga silkworm and is a problem for silkworm rearing. The incidence of this fly is very high in tropical Sericultural regions. Uzi fly damages 25% crop loss in the 4th to 5th instar and 20% at harvesting stage of cocoons during Chotua crop (March-April). Applications of insecticides for control of the uzi fly is not advocated in muga rearing as it is lethal to the muga silkworm itself.
    [Show full text]
  • Molecular Characterization of the Gene Pool of Exorista Sorbillans (Diptera
    NOTE Eur. J. Entomol. 100: 195-200, 2003 ISSN 1210-5759 Molecular characterization of the geneExorista pool sorbillans of (Diptera: Tachinidae) a parasitoid of silkworm,Bombyx mori , in India Shankar N. CHATTERJEE*, Thampiyath P. MOHANDAS and Tanushree TARAPHDAR Molecular Genetics, SeriBiotech Laboratory, Central Silk Board, Campus-Kodathi; Sarjapur Road, P.O: Carmelram, Bangalore-560035,Kamataka, India Key words.Population genetic structure, microevolution,Exorista sorbillans, endoparasitoid, Bombyx mori, molecular fingerprints, molecular ecology Abstract.Exorista sorbillans, the uzi fly, is a serious tachinid pest of silkworm and is present in all silk producing areas of Asia. Assuming thatE.sorbillans was accidentally transported from West Bengal to southern states of India, its population genetic struc­ ture was studied using 13 ISSR, 3 RAPD, two sets of universal primers and two sets of primers designed from a lepidopteran repeat sequence. Statistical analyses of DNA markers revealed significant genetic variability betweenE. thesorbillans populations from 4 different geographic locations (within 400 km of one another) in the southern states and the one from West Bengal (Murshidabad). Multivariate and discriminant function analyses indicate that theE. sorbillans from south India has diverged from the original gene pool of West Bengal and is suitable for studying the microevolution of adaptation to the conditions prevailing in the different cocoon producing areas in India. Abbreviations used. GP = geographic population; ISSR = Inter Simple Sequence Repeat; PCR = Polymerase Chain Reaction; RAPD = Random Amplified Polymorphic DNA; SPSS = Statistical Package for Social Sciences; UBC = University of British Columbia; UNIV = Universal. INTRODUCTION in Bangalore are only 10 km apart and cater for the needs of Exorista sp., is well known as uzi flies in those areas of the sericulture farmers of the area, near and far.
    [Show full text]
  • PESTS of SILKWORM Compiled by DR
    PESTS OF SILKWORM Compiled by DR. NIDHI GARG PESTS OF SILKWORM • Any (insect or non-insect) organism, which interferes with human welfare, leading to economic loss is termed a pest. • Two important pests are found to cause economic loss of silkworm crop. • The silkworm in larval stage is attacked by a tachinid fly (Exorista bombycis), commonly known as uzi fly, leading to considerable decline in cocoon yield. • In cocoon stage (seed / stifled /moth pierced cocoons), the silkworms are attacked by dermestid beetles (Dermestes spp.) These beetles are commonly referred to as carpet beetles. They are reported to cause considerable reduction in egg production in silkworm egg production centers (grainages). Uzi Fly Exorista bombycis (Diptera : Tachinidae) • The adult Uzi fly is blackish grey in colour. • It is bigger than the common Housefly, Musca domestica and is more efficient in flight. • It has four longitudinal black stripes on the dorsum of the thorax and three cross-wise stripes on the abdomen. • Male are 11.9 mm to 12.00 mm and the female 10.20 mm to 10.40 mm in length. Width varies from 3.60 to 3.90 mm. • Wing span is about 10 mm and the wings are covered with dark grey hairs. • Eyes are chocolate brown in colour. Uzi fly (Exorcista bombycis) : a dipteran fly of the family Tachinidae, commonly known as Uzi or Uji fly, is a serious pest of silkworms. LIFE CYCLE OF Uzi Fly • A female lays 500 - 600 eggs during her life time (18 - 22 days), each day laying about 20-30 eggs. • Eggs hatch in 48 - 60 hours.
    [Show full text]
  • Management of Beneficial Insects for B.Sc
    PRACTICAL MANUAL Management of Beneficial Insects 2(1+1) For B.Sc. (Hons.) Horticulture Prof. Neerja Agrawal Emeritus Professor (ICAR) 2021 Department of Entomology 1 College of Agriculture Chandra Shekhar Azad University of Agriculture and Technology, Kanpur- 208002 Syllabus: Honey bee species, casts of bees. Beekeeping appliances and seasonal management, bee enemies and disease. Bee pasturage, bee foraging and communication. Types of silkworm. Mulberry cultivation, mulberry varieties and methods of harvesting and preservation of leaves. Species of lac insect, host plant identification. Identification of other important pollinators, weed killers and scavengers. Visit to research and training institutions devoted to beekeeping, sericulture, lac culture and natural enemies. Identification and techniques for mass multiplication of natural enemies. Name of Student ......................................................................................... I D No. .......................................................................................................... Batch ............................................................................................................ Session ........................................................................................................ Semester ...................................................................................................... Course Name : ............................................................................................ Course No. : ................................................................................................
    [Show full text]