Biocontrol Science and Technology, Vol

Total Page:16

File Type:pdf, Size:1020Kb

Biocontrol Science and Technology, Vol Biocontrol Science and Technology, Vol. 19, S1, 2009, 3Á22 REVIEW ARTICLE Improving the cost-effectiveness, trade and safety of biological control for agricultural insect pests using nuclear techniques Jorge Hendrichsa*, Kenneth Bloemb, Gernot Hochc, James E. Carpenterd, Patrick Greanye, and Alan S. Robinsona aJoint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagramerstrasse 5, A-1400 Vienna, Austria; bCenter for Plant Health Science & Technology (CPHIST), USDA-APHIS-PPQ, 1730 Varsity Drive, Suite 400, Raleigh, NC 27606, USA; cDepartment of Forest and Soil Sciences, BOKU Á University of Natural Resources and Applied Life Sciences, Vienna Hasenauerstrasse 38, A-1190 Vienna, Austria; dUSDA-ARS Crop Protection and Management Research Unit, Tifton, GA 31793, USA; e2770 Pine Ridge Road, Tallahassee, FL 32308, USA If appropriately applied, biological control offers one of the most promising, environmentally sound, and sustainable control tactics for arthropod pests and weeds for application as part of an integrated pest management (IPM) approach. Public support for biological control as one of the preferred methods of managing non-indigenous and indigenous pests is increasing in many countries. An FAO/ IAEA Coordinated Research Project (CRP) addressed constraints related to costly production systems for biological control agents, and the presence of accompanying pest organisms during their shipment. These constraints can be alleviated using nuclear techniques such as ionizing radiation or X-rays to reduce production and handling costs (e.g., by expanding the period of host suitability, increasing shelf life, avoiding unnecessary sorting steps before shipment, etc.), and to eliminate the risk of shipping fertile host or prey pest individuals or other hitchhiking pests. These nuclear techniques can also help to reduce the risks associated with the introduction of exotic biological control agents, which can become pests of non-target organisms if not carefully screened under semi-natural or natural conditions. Radiation is also a very useful tool to study host-parasitoid physiological interactions, such as host immune responses, by suppressing Downloaded By: [Hendrichs, Jorge] At: 16:18 4 November 2009 defensive reactions of natural or factitious hosts. Applied at a very low-dose, radiation may be used to stimulate reproduction of some entomophagous insects. Additionally, radiation can be applied to semi- or completely sterilize hosts or prey for deployment in the field to increase the initial survival and build-up of natural or released biological control agents in advance of seasonal pest population build-up. Finally, the work carried out under this CRP has demonstrated the feasibility of integrating augmentative and sterile insect releases in area-wide IPM programmes, and to utilise by-products from insect mass- rearing facilities in augmentative biological control programmes. This special issue provides an overview of the research results of the CRP. Keywords: biological control; radiation; biocontrol agents; weeds; irradiated host; prey; insects; nematodes; parasitoids; sterile insects; sterile insect technique; inherited sterility; F1 sterility *Corresponding author. Email: [email protected] First Published Online 18 June 2009 ISSN 0958-3157 print/ISSN 1360-0478 online # 2009 Taylor & Francis DOI: 10.1080/09583150902985620 http://www.informaworld.com 4 J. Hendrichs et al. Introduction Many pests, including arthropods and weeds, adversely affect agricultural produc- tion, and pre- and post-harvest losses of the order of 30Á40% are common (Yudelman, Ratta, and Nygaard 1998). Management of these pests still relies heavily on the use of pesticides with their associated limitations. For these reasons there is pressure to develop improved methods of pest control, with an emphasis on biologically and ecologically based tactics that can be applied as part of an area-wide integrated pest management (AW-IPM) approach (Vreysen, Robinson, and Hen- drichs 2007). If appropriately applied, biological control offers one of the most promising, environmentally sound, and sustainable tools for control of arthropod pests and weeds (van Lenteren, Bale, Bigler, Hokkanen, and Loomans 2006; van Driesche, Hoddle, and Center 2008). Public support for biological control as one of the preferred methods of managing non-indigenous and indigenous pests is increasing in many countries. There appear to be significant opportunities for increasing the use and cost-effectiveness of the application of classical and augmentative biological control through nuclear techniques for the production, shipping and release of biological control agents. Nuclear techniques are already applied in certain areas of entomology (Bakri, Heather, Hendrichs, and Ferris 2005a) and include the use of radiation sources for (1) studying sperm precedence, parasitoidÁhost interaction studies, etc., (2) post-harvest disinfestation for quarantine or phytosanitary security in support of agricultural international trade (IDIDAS 2004), and (3) insect sterilization as part of the application of the Sterile Insect Technique (SIT) (Dyck, Hendrichs, and Robinson 2005), where exposure to carefully selected irradiation doses of gamma or X-rays maximizes the induction of dominant lethal mutations in germ cells of pest insects, while minimizing other physiological changes (Bakri, Mehta, and Lance 2005b). Nuclear techniques in a wider sense also include the use of stable isotopes to study insect biology, behaviour, and physiology (IAEA 2009), although their use in biological control will not be considered here. In classical biological control, non-indigenous biological control agents, usually selected from the suite of parasitoids, predators and diseases that co-evolved with the pest, are introduced into the target area. One of the key concerns in this approach is Downloaded By: [Hendrichs, Jorge] At: 16:18 4 November 2009 the host specificity and host range of the introduced biological control agents. There are numerous examples of situations where introduced biological control agents have ‘jumped hosts’ (Follet and Duan 2000; Lockwood, Purcell, and Howarth 2001; Wajnberg, Scott and Quimby 2001), prompting some serious criticisms of this control method (Hamilton 2000; Louda, Pemberton, Johnson, and Follett 2003). In view of the growing awareness and concern, countries and their respective national plant protection organizations are increasingly implementing stringent environmen- tal risk assessment methods in order to screen potential biological control agents before release (van Lenteren et al. 2006). In cases where doubts remain about very promising natural enemies of weeds or insect pests, the release of such biological control agents that have been radiation-sterilized would enable a more definite and safe assessment of host specificity under natural conditions without any risk of permanent establishment. Inundative biological control involves the use of indigenous or non-indigenous biological control agents against indigenous or non-indigenous pests. These control Biocontrol Science and Technology 5 agents generally do not establish permanently, often because of adverse seasonal eco- climatic conditions in the area of introduction, and are mass-reared and released in very large numbers, often several times each season. Though the commercial biological control agent industry is growing, it still only represents a niche market with less than 3% of pest control sales (Cornell 2007). Regulatory, technical and other constraints on biological control have kept the market share relatively small. Challenges facing augmentative biological control include the high cost of production of biological control agents, adequate quality control and assurance, trade barriers and regulations that complicate shipping. Lack of enabling regulations probably has been amongst the most important barriers to the wider implementation of biological control globally. Appropriate regulations are needed that facilitate the importation and use of natural enemies. In many countries, ‘gatekeeper’ regulations place barriers in the way of efficient introduction of agents. However, the Secretariat of the International Plant Protection Convention, at the Food and Agriculture Organization of the United Nations (FAO) has developed and recently revised the International Standard for Phytosanitary Measures on ‘Guidelines for the export, shipment, import, and release of biological control agents and other beneficial organisms’ (ISPM No. 3) (FAO 2005), which should help to solve some of these problems and therefore increase cross-boundary trade in biological control agents. There are several ways in which nuclear techniques can improve the efficiency of augmentative biological control and the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture initiated a 6-year Coordinated Research Project (CRP) entitled ‘Evaluating the Use of Nuclear Techniques for the Colonization and Production of Natural Enemies of Agricultural Insect Pests’ (Greany and Carpenter 1999) to address some of these aspects. For example, the cost of production may be decreased by simplifying the rearing process, increasing host suitability and shelf life, improving diets and dealing with disease and contamination. Possible trade barriers related to shipment of biological control agents include the accidental inclusion of fertile pest individuals or other hitchhikers, or the deliberate inclusion
Recommended publications
  • Entomofauna Ansfelden/Austria; Download Unter
    ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 28, Heft 28: 377-388 ISSN 0250-4413 Ansfelden, 30. November 2007 Phytophagous Noctuidae (Lepidoptera) of the Western Black Sea Region and their ichneumonid parasitoids Z. OKYAR & M. YURTCAN Abstract Eleven agricultural and silviculturally important species of Noctuidae and their parasitoids were determined in 33 localities from the Western Black Sea region between 2001 and 2004. The ichneumonid biological control agents Enicospilus ramidulus, Barylypa amabilis and Itoplectis alternans were obtained by rearing the host larvae. K e y w o r d s : Lepidoptera, Noctuidae, Hymenoptera, Ichneumonidae, parasitoidism, Western Black Sea Region, Turkey Zusammenfassung 11 land- und forstwirtschaftlich bedeutende Noctuidae-Arten einschließlich ihrer Parasitoide aus 33 Standorten des Gebietes des westlichen Schwarzen Meeres wurden im Zeitraum 2001 bis 2004 studiert. Ichneumonidae der Arten Enicospilus ramidulus, Barylypa amabilis and Itoplectis alternans konnten durch Aufzucht der Wirtslarven festgestellt werden. 377 ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Introduction The Noctuidae is the largest family of the Lepidoptera. Larvae of some species are par- ticularly harmful to agricultural and silvicultural regions worldwide. Consequently, for years intense efforts have been carried out to control them through chemical, biological, and cultural methods (LIBURD et al. 2000; HOBALLAH et al. 2004; TOPRAK & GÜRKAN 2005). In the field, noctuid control is often carried out by parasitoid wasps (CHO et al. 2006). Ichneumonids are one of the most prevalent parasitoid groups of noctuids but they also parasitize on other many Lepidoptera, Coleoptera, Hymenoptera, Diptera and Araneae (KASPARYAN 1981; FITTON et al. 1987, 1988; GAULD & BOLTON 1988; WAHL 1993; GEORGIEV & KOLAROV 1999).
    [Show full text]
  • SYSTEMATICS of the MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of T
    SYSTEMATICS OF THE MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Sibyl Rae Bucheli, M.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Dr. John W. Wenzel, Advisor Dr. Daniel Herms Dr. Hans Klompen _________________________________ Dr. Steven C. Passoa Advisor Graduate Program in Entomology ABSTRACT The phylogenetics, systematics, taxonomy, and biology of Gelechioidea (Insecta: Lepidoptera) are investigated. This superfamily is probably the second largest in all of Lepidoptera, and it remains one of the least well known. Taxonomy of Gelechioidea has been unstable historically, and definitions vary at the family and subfamily levels. In Chapters Two and Three, I review the taxonomy of Gelechioidea and characters that have been important, with attention to what characters or terms were used by different authors. I revise the coding of characters that are already in the literature, and provide new data as well. Chapter Four provides the first phylogenetic analysis of Gelechioidea to include molecular data. I combine novel DNA sequence data from Cytochrome oxidase I and II with morphological matrices for exemplar species. The results challenge current concepts of Gelechioidea, suggesting that traditional morphological characters that have united taxa may not be homologous structures and are in need of further investigation. Resolution of this problem will require more detailed analysis and more thorough characterization of certain lineages. To begin this task, I conduct in Chapter Five an in- depth study of morphological evolution, host-plant selection, and geographical distribution of a medium-sized genus Depressaria Haworth (Depressariinae), larvae of ii which generally feed on plants in the families Asteraceae and Apiaceae.
    [Show full text]
  • Egyptian Cottonworm Spodoptera Littoralis
    Michigan State University’s invasive species factsheets Egyptian cottonworm Spodoptera littoralis The Egyptian cottonworm is a highly polyphagous defoliator of many cultivated plants. Its accidental introduction to Michigan may be a particular concern to vegetable, fruit and ornamental industries. Michigan risk maps for exotic plant pests. Other common names African cotton leafworm, Egyptian cotton leafworm, Mediterranean Brocade moth Systematic position Insecta > Lepidoptera > Noctuidae > Spodoptera littoralis (Boisduval) Global distribution Adult. (Photo: O. Heikinheimo, Bugwood.org) Most parts of Africa. Southern or Mediterranean Europe: Greece, Italy, Malta, Portugal, Spain. Middle East: Israel, Syria, Turkey. Quarantine status The Egyptian cottonworm has been intercepted at least 65 times at U.S. ports of entry since 2004 (Ellis 2004). This insect has been detected in greenhouses in Ohio but was subsequently eradicated (Passoa 2008). It is listed as an exotic organism of high invasive risk to the United States (USDA-APHIS 2008). Plant hosts Larva. (Photo: Biologische Bundesanstalt für Land- und Forstwirtschaft Archive, A wide host range of at least 87 plant species over Biologische Bundesanstalt für Land- und Forstwirtschaft, Bugwood.org) 40 plant families including many vegetable, fruit and ornamental crops. Some examples include alfalfa, white oblique bands; hind wings pale with brown margins. apples, avocados, beets, bell peppers, cabbage, carrots, Larva: Body up to 45 mm long and hairless; newly cauliflower, cereal, clover, corn, cotton, cucurbits, hatched larvae are blackish-grey to dark green; mature eggplants, figs, geraniums, grapes, lettuce, oaks, okra, larvae are reddish-brown or whitish-yellow; larvae have onions, peas, peanuts, pears, pines, poplars, potatoes, dark and light longitudinal bands and two dark, semi- radish, roses, soybeans, spinach, sunflowers, taro, tea, circular spots on their back.
    [Show full text]
  • Methods and Work Profile
    REVIEW OF THE KNOWN AND POTENTIAL BIODIVERSITY IMPACTS OF PHYTOPHTHORA AND THE LIKELY IMPACT ON ECOSYSTEM SERVICES JANUARY 2011 Simon Conyers Kate Somerwill Carmel Ramwell John Hughes Ruth Laybourn Naomi Jones Food and Environment Research Agency Sand Hutton, York, YO41 1LZ 2 CONTENTS Executive Summary .......................................................................................................................... 8 1. Introduction ............................................................................................................ 13 1.1 Background ........................................................................................................................ 13 1.2 Objectives .......................................................................................................................... 15 2. Review of the potential impacts on species of higher trophic groups .................... 16 2.1 Introduction ........................................................................................................................ 16 2.2 Methods ............................................................................................................................. 16 2.3 Results ............................................................................................................................... 17 2.4 Discussion .......................................................................................................................... 44 3. Review of the potential impacts on ecosystem services .......................................
    [Show full text]
  • BIOLOGY of the ANGOUMOIS GRAIN MOTH, SITOTROGA CEREALELLA (Oliver) on STORED RICE GRAIN in LABORATORY CONDITION
    J. Asiat. Soc. Bangladesh, Sci. 39(1): 61-67, June 2013 BIOLOGY OF THE ANGOUMOIS GRAIN MOTH, SITOTROGA CEREALELLA (Oliver) ON STORED RICE GRAIN IN LABORATORY CONDITION T. AKTER, M. JAHAN1 AND M.S. I. BHUIYAN Department of Entomology, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh 1Department of Entomology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh Abstract The experiment was conducted in the laboratory of the Department of Entomology, Sher- e-Bangla Agricultural University, Dhaka during the period from May 2009 to April 2010 to study the biology of the Angoumois grain moth, Sitotroga cerealella (Oliver) in Bangladesh. The ovipositional period, incubation period, larval period, pre-pupal period and pupal period of Angoumois grain moth were 3.67 days, 5.5 days, 25.2 days, 3.0 days and 5.0 days, respectively; male and female longevity of moth were 8.0 and10 days, respectively. The lengths of all five larval instars were 1.0 ± 0.00, 2.0 ± 0.02, 4.0 ± 0.06, 5.0 ± 0.03 and 4.0 ± 0.06 mm, and the widths were 0.10 ± 0.0, 0.4 ± 0.0, 0.6 ± 0.01, 0.8 ± 0.02 and 1.0 ± 0.09 mm, respectively. The length and width of the pre-pupa and the pupa were 4.0 ± 0.02, 3.5 ± 0.01 mm and 1.20 ± 0.05, 1.50 ± 0.03 mm respectively. The length of male and female was 11.2 ± 0.09 and 12.07 ± 0.06 mm respectively. Key words: Biology, Angoumois grain moth, Sitotroga cerealella, Stored rice grain Introduction Angoumois grain moth, Sitotroga cerealella (Oliver) (Lepidoptera: Gelechiidae) is a primary colonizer of stored grain in subtropical and warm temperate regions of the world.
    [Show full text]
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomofauna Jahr/Year: 2007 Band/Volume: 0028 Autor(en)/Author(s): Yefremova Zoya A., Ebrahimi Ebrahim, Yegorenkova Ekaterina Artikel/Article: The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 28, Heft 25: 321-356 ISSN 0250-4413 Ansfelden, 30. November 2007 The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) Zoya YEFREMOVA, Ebrahim EBRAHIMI & Ekaterina YEGORENKOVA Abstract This paper reflects the current degree of research of Eulophidae and their hosts in Iran. A list of the species from Iran belonging to the subfamilies Eulophinae, Entedoninae and Tetrastichinae is presented. In the present work 47 species from 22 genera are recorded from Iran. Two species (Cirrospilus scapus sp. nov. and Aprostocetus persicus sp. nov.) are described as new. A list of 45 host-parasitoid associations in Iran and keys to Iranian species of three genera (Cirrospilus, Diglyphus and Aprostocetus) are included. Zusammenfassung Dieser Artikel zeigt den derzeitigen Untersuchungsstand an eulophiden Wespen und ihrer Wirte im Iran. Eine Liste der für den Iran festgestellten Arten der Unterfamilien Eu- lophinae, Entedoninae und Tetrastichinae wird präsentiert. Mit vorliegender Arbeit werden 47 Arten in 22 Gattungen aus dem Iran nachgewiesen. Zwei neue Arten (Cirrospilus sca- pus sp. nov. und Aprostocetus persicus sp. nov.) werden beschrieben. Eine Liste von 45 Wirts- und Parasitoid-Beziehungen im Iran und ein Schlüssel für 3 Gattungen (Cirro- spilus, Diglyphus und Aprostocetus) sind in der Arbeit enthalten.
    [Show full text]
  • 2 Mechanisms Behind the Usurpation of Thyrinteina Leucocerae By
    Mechanisms behind the Usurpation of Thyrinteina leucocerae by Glyptapanteles sp. Introduction It has frequently been proposed that parasites purposefully manipulate their hosts in order to increase their fitness, usually to the detriment of the host (Lefevre et al. 2008, Poulin & Thomas 1999). A recent hypothesis known as the ‘usurpation hypothesis’ argues that parasites manipulate hosts in such a way that the host guards their larvae from hyperparasitoids, or predators of the parasitoids (Harvey et al. 2008). Examples demonstrating the usurpation hypothesis are limited, but a few compelling instances do exist. In one system, parasitoid wasps cause aphid hosts to mummify in more concealed sites in order to protect diapausing aphid larva (Brodeur & McNeil 1989). The parasitoid Hymenoepimecis sp. has also been shown to induce its spider host Plesiometa argyra to build a specialized web designed to carry developing parasitoid cocoons (Eberhard 2000). It appears that the wasps may utilize some kind of fast acting chemical, as removal of the wasp larva results in spiders reverting back to normal web construction (Eberhard 2001). While these examples are compelling, evidence for the specific mechanisms utilized by parasitoids to alter their host’s behavior is largely unknown. However, a recent system of study may provide interesting insight on the mechanisms behind host usurpation. In this system parasitic wasps lay their eggs in the larva of caterpillars until they are ready to egress from the caterpillar and pupate (Grosman et al. 2008). Following parasite egression the host caterpillars cease to feed and walk, and defend the parsitoid pupae by producing head swings against approaching predators (Grosman et al.
    [Show full text]
  • Saissetia Oleae (Bernard) 65-70% R.H
    ENTOMOLOGIA HELLENICA Vol. 3, 1985 Duration of life-cycle of three parasitic hymenoptera on Saissetia oleαe (Bernard) growing on two different host plants. Macropodi M.V. The Olive Institute, Corfu https://doi.org/10.12681/eh.13923 Copyright © 2017 M.V. Macropodi To cite this article: Macropodi, M.V. (1985). Duration of life-cycle of three parasitic hymenoptera on Saissetia oleαe (Bernard) growing on two different host plants.. ENTOMOLOGIA HELLENICA, 3, 63-64. doi:https://doi.org/10.12681/eh.13923 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 30/09/2021 15:36:41 | SHORT COMMUNICATION ENTOMOLOGIA HELLENICA 3 (1985): 63 - 64 the parasite was finally established. The above parasites can be successfully reared on 5. oleae developed both on potato sprouts and Nerium Duration of Life-Cycle of oleander (DeBach 1964, Blumberg and Swirski Three Parasitic Hymenoptera 1977, Viggiani 1978). The study was carried out at 23±1°C, on Saissetia oleae (Bernard) 65-70% R.H. and 12 hours of artificial light per Growing on Two Different day. For each species, 3 potato sprouts and Host Plants' three plants of Nerium oleander in pots infested with S.oleae were placed in each 60x30x40 cm cage. The host insects were oviposited in M.V. MACROPODI by adult parasites introduced into the cages and left there for two days. The number of emerg­ ing adult parasites in each cage was recorded The Olive Institute of Corfu daily (a total number of adults emerged per 49100 Corfu, Greece cage varied from 23 to 195) and the time taken for 50% emergence was calculated from the correlation equation by plotting the cumulative In this work the duration of the life-cycle of percentage of adults emerged against time.
    [Show full text]
  • (Hymenoptera: Ichneumonidae) from ILAM and KERMANSHAH PROVINCES, WESTERN IRAN
    Entomol. Croat. 2015, Vol. 19. Num 1–2: 55–66 doi: 10.17971/EC.2015.19.07 A FAUNISTIC STUDY OF ICHNEUMONID WASPS (HymenopteRA: Ichneumonidae) FROM ILAM AND KERMANSHAH PROVINCES, WESTERN IRAN Hassan Ghahari1 & Reijo Jussila2 1Department of Plant Protection, Yadegar – e- Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran; email: [email protected] 2Zoological Museum, Section of Biodiversity and Environmental Sciences, Department of Biology, FI 20014 University of Turku, Finland. E-mail: [email protected] Accepted: October 2015 This paper deals with a faunistic survey on ichneumonid wasps (Hyme- noptera, Ichneumonidae) from some regions of Ilam and Kermanshah provin- ces (western Iran). In total 19 species from the nine subfamilies Alomyinae, Cremastinae, Cryptinae, Diplazontinae, Ichneumoninae, Metopiinae, Pimpli- nae, Tersilochinae, and Tryphoninae were collected and identified. Two speci- es Probles (Microdiaparsis) microcephalus (Gravenhorst, 1829) and Tersilochus (Pectinolochus) striola (Thomson, 1889) are new records for Iran. Hymenoptera, Ichneumonidae, Ilam, Kermanshah, new record, Iran H. GHAHARI I R. JUSSILA: Faunističko istraživanje parazitskih osica (Hymenoptera: Ichneumonidae) iz provincija Ilam i Kermanshah, zapadni Iran. Entomol. Croat. Vol. 19. Num. 1–4: 55–66. U radu je prikazano faunističko istraživanje parazitskih osica (Hymenop- tera, Ichneumonidae) iz nekih područja provincija Ilam i Kermanshah (zapad- ni Iran). Ukupno je sakupljeno i determinirano 19 vrsta osica iz 9 podporodica (Alomyinae,
    [Show full text]
  • Identification Key to the Subfamilies of Ichneumonidae (Hymenoptera)
    Identification key to the subfamilies of Ichneumonidae (Hymenoptera) Gavin Broad Dept. of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK Notes on the key, February 2011 This key to ichneumonid subfamilies should be regarded as a test version and feedback will be much appreciated (emails to [email protected]). Many of the illustrations are provisional and more characters need to be illustrated, which is a work in progress. Many of the scanning electron micrographs were taken by Sondra Ward for Ian Gauld’s series of volumes on the Ichneumonidae of Costa Rica. Many of the line drawings are by Mike Fitton. I am grateful to Pelle Magnusson for the photographs of Brachycyrtus ornatus and for his suggestion as to where to include this subfamily in the key. Other illustrations are my own work. Morphological terminology mostly follows Fitton et al. (1988). A comprehensively illustrated list of morphological terms employed here is in development. In lateral views, the anterior (head) end of the wasp is to the left and in dorsal or ventral images, the anterior (head) end is uppermost. There are a few exceptions (indicated in figure legends) and these will rectified soon. Identifying ichneumonids Identifying ichneumonids can be a daunting process, with about 2,400 species in Britain and Ireland. These are currently classified into 32 subfamilies (there are a few more extralimitally). Rather few of these subfamilies are reconisable on the basis of simple morphological character states, rather, they tend to be reconisable on combinations of characters that occur convergently and in different permutations across various groups of ichneumonids.
    [Show full text]
  • Black Scale Saissetia Oleae (Olivier, 1791)
    EENY620 Black Scale Saissetia oleae (Olivier 1791) (Insecta: Hemiptera: Coccoidea: Coccidae)1 Morgan A. Byron, Jennifer L. Gillett-Kaufman, and Sandra A. Allan2 Introduction Synonymy The black scale, Saissetia oleae (Olivier 1791) (Hemiptera: Coccus oleae Olivier (1791) (ITIS 2014) Coccidae) is an important pest of citrus and olive trees. Originally from South Africa, this scale is now distributed Distribution worldwide. In Florida, black scale is found on citrus (Citrus Black scale has a cosmopolitan distribution, with records in spp.), cultivated olive (Olea europaea L.), avocado (Persea Europe, Asia, Africa, Australasia, the Pacific Islands, and in americana Mill.), and many popular landscape plants. the Americas (CABI 1954). It is likely that black scale, like many invasive pests, was imported to the United States on infested nursery plants. Based on their small size and the unique life history of scale Biology insects, these insects are difficult to detect and control. Female black scales deposit eggs from April to September and, like other species in the genus Saissetia, protect them beneath the body until they hatch. Each female can lay from a few hundred to over 2,500 eggs (Tena et al. 2007). Incubation time for the eggs varies due to temperature, with eggs laid in the summer hatching in 16 days and eggs in the winter taking up to six weeks to hatch. Black scale typically has one or two generations per year, but three generations have been observed in certain regions. Reproduction is largely parthenogenetic (a type of asexual reproduction where eggs develop without fertilization), although males Figure 1. Adult female black scales, Saissetia oleae (Olivier) on have been reported.
    [Show full text]