Basics of Blood Management

Total Page:16

File Type:pdf, Size:1020Kb

Basics of Blood Management Basics of Blood Management Petra Seeber MD Department of Anesthesiology Critical Care Medicine Pain Management, Emergency Medicine HELIOS Klinik Blankenhain Wirthstr. 5 99444 Blankenhain Germany Aryeh Shander MD, FCCM, FCCP, Chief Department of Anesthesiology, Critical Care Medicine Pain Management and Hyperbaric Medicine Englewood Hospital and Medical Center 350 Engle Street Englewood, NJ 07631 and Clinical Professor of Anesthesiology, Medicine and Surgery Mount Sinai School of Medicine, Mount Sinai Hospital, New York first edition Basics of Blood Management Basics of Blood Management Petra Seeber MD Department of Anesthesiology Critical Care Medicine Pain Management, Emergency Medicine HELIOS Klinik Blankenhain Wirthstr. 5 99444 Blankenhain Germany Aryeh Shander MD, FCCM, FCCP, Chief Department of Anesthesiology, Critical Care Medicine Pain Management and Hyperbaric Medicine Englewood Hospital and Medical Center 350 Engle Street Englewood, NJ 07631 and Clinical Professor of Anesthesiology, Medicine and Surgery Mount Sinai School of Medicine, Mount Sinai Hospital, New York first edition C 2007 Petra Seeber and Aryeh Shander Published by Blackwell Publishing Blackwell Publishing, Inc., 350 Main Street, Malden, Massachusetts 02148-5020, USA Blackwell Publishing Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK Blackwell Publishing Asia Pty Ltd, 550 Swanston Street, Carlton, Victoria 3053, Australia The right of the Author to be identified as the Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. First published 2007 1 2007 Library of Congress Cataloging-in-Publication Data Seeber, Petra. Basics of blood management / Petra Seeber, Aryeh Shander. – 1st ed. p. ; cm. Includes bibliographical references and index. ISBN: 978-1-4051-5131-3 1. Transfusion-free surgery. 2. Blood–Transfusion. 3. Bland banks. I. Shander, Aryeh. II. Title. [DNLM: 1. Blood Substitutes–therapeutic use. 2. Blood Banks–organization & administration. 3. Blood Loss, Surgical–prevention & control. 4. Blood Transfusion. WH 450 S451b 2008] RD33.35.S44 2008 617–dc22 2007005030 ISBN: 978-1-4051-5131-3 A catalogue record for this title is available from the British Library Set in 9.25/11.5 Minion by Aptara Inc., New Delhi, India Printed and bound in Singapore by Fabulous Printers Pte Ltd Development Editor: Rebecca Huxley Commissioning Editor: Maria Khan Editorial Assistant: Jennifer Seward Production Controller: Debbie Wyer For further information on Blackwell Publishing, visit our website: http://www.blackwellpublishing.com The publisher’s policy is to use permanent paper from mills that operate a sustainable forestry policy, and which has been manufactured from pulp processed using acid-free and elementary chlorine-free practices. Furthermore, the publisher ensures that the text paper and cover board used have met acceptable environmental accreditation standards. Blackwell Publishing makes no representation, express or implied, that the drug dosages in this book are correct. Readers must therefore always check that any product mentioned in this publication is used in accordance with the prescribing information prepared by the manufacturers. The author and the publishers do not accept responsibility or legal liability for any errors in the text or for the misuse or misapplication of material in this book. Contents Preface to the first edition, vii Acknowledgments, viii Introduction, ix 1 History and organization of blood management, 1 2 Physiology of anemia and oxygen transport, 9 3 Anemia therapy I: erythropoiesis stimulating proteins, 21 4 Anemia therapy II (hematinics), 35 5 Growth factors, 50 6 Fluid therapy, 65 7 The chemistry of hemostasis, 77 8 Recombinant blood products, 96 9 Artificial blood components, 110 10 Oxygen therapy, 125 11 Preparation of the patient for surgery, 139 12 Iatrogenic blood loss, 160 13 The physics of hemostasis, 172 14 Anesthesia—more than sleeping, 191 15 The use of autologous blood, 200 16 Cell salvage, 211 17 Blood banking, 227 18 Transfusions. Part I: cellular components and plasma, 243 19 Transfusions. Part II: plasma fractions, 265 20 Law, ethics, religion, and blood management, 287 21 Step by step to an organized blood management program, 299 Appendix A: Detailed information, 322 Appendix B: Sources of information for blood management, 329 Appendix C: Program tools and forms, 334 Appendix D: Teaching aids: research and projects, 346 Appendix E: Address book, 350 Index, 376 v Preface to first edition The benefit-to-risk ratio of blood products needs con- The benefit-to-risk ratio of blood products needs con- stant evaluation. Blood products, as therapeutic agents, stant evaluation. Blood products, as therapeutic agents, have had the test of time but lack the evidence we ex- have had the test of time but lack the evidence we ex- pect from other medicinals. Blood, an organ, is used as pect from other medicinals. Blood, an organ, is used as a pharmaceutical agent by the medical profession, due to a pharmaceutical agent by the medical profession, due to the achievements in collection, processing, banking, and the achievements in collection, processing, banking, and distribution. The fact that the most common risk of blood distribution. The fact that the most common risk of blood transfusionisblooddeliveryerrorsupportsthenotionthat transfusionisblooddeliveryerrorsupportsthenotionthat blood is handled as a pharmaceutical agent. Over the last blood is handled as a pharmaceutical agent. Over the last few decades, the risk of blood transfusion and associated few decades, the risk of blood transfusion and associated complications has raised concerns about safety of blood complications has raised concerns about safety of blood by both the public and health-care providers. At the same by both the public and health-care providers. At the same time, experience with patients refusing blood and data on time, experience with patients refusing blood and data on blood conservation brought to light the real possibility of blood conservation brought to light the real possibility of other modalities to treat perisurgical anemia and to avoid other modalities to treat perisurgical anemia and to avoid it with blood conservation methods. In addition to risks it with blood conservation methods. In addition to risks and complications, data became available demonstrating and complications, data became available demonstrating the behavioral aspect of transfusion practice versus an the behavioral aspect of transfusion practice versus an evidence-based practice. In this book, the authors address evidence-based practice. In this book, the authors address many aspects of modern transfusion medicine, known many aspects of modern transfusion medicine, known blood conservation modalities, and new approaches to the blood conservation modalities, and new approaches to the treatment of perisurgical anemia, as well as special clinical treatment of perisurgical anemia, as well as special clinical considerations. This approach, now termed “blood man- considerations. This approach, now termed “blood man- agement” by the Society for the Advancement of Blood agement” by the Society for the Advancement of Blood Management, incorporates appropriate transfusion prac- Management, incorporates appropriate transfusion prac- tice and blood conservation to deliver the lowest risk and tice and blood conservation to deliver the lowest risk and highest benefit to the patient. In addition, it brings all highest benefit to the patient. In addition, it brings all these modalities to the patient’s bedside and above all is a these modalities to the patient’s bedside and above all is a patient-centered approach. Blood management is a mul- patient-centered approach. Blood management is a mul- tidisciplinary, multimodality concept that focuses on the tidisciplinary, multimodality concept that focuses on the patient by improving patient outcome, making it one of patient by improving patient outcome, making it one of the most intriguing and rewarding fields in medicine. the most intriguing and rewarding fields in medicine. vii Acknowledgments We thank the following individuals for their review David Grant, Renate Lange, Gregg Lobel, MD, FAAP, and valuable comments: Philip Battiade, Dr Charles and David Moskowitz, MD, Barbara Shackford, CRNA, MS, Nicole Beard, Prof. Dr Jochen Erhard, Shannon Farmer, Mark Venditti, MD, and Prof. Max Woernhard. viii Introduction The benefit-to-risk ratio of blood products needs con- various techniques. This publication introduces the reader stant evaluation. Blood products, as therapeutic agents, to blood management and explains how to improve medi- have had the test of time but lack the evidence we expect cal outcomes by avoiding undue blood loss, enhancing the from other medicinals. Blood, an organ, is used as a phar- patient’s own blood, and improving tolerance of anemia maceutical agent by the medical profession, due to the and coagulopathy until any of these underlying conditions achievements in collection, processing, banking, and dis- are successfully remedied. tribution. The fact that the most common risk of blood This introduction to blood management is intended for transfusion is blood delivery
Recommended publications
  • The National Drugs List
    ^ ^ ^ ^ ^[ ^ The National Drugs List Of Syrian Arab Republic Sexth Edition 2006 ! " # "$ % &'() " # * +$, -. / & 0 /+12 3 4" 5 "$ . "$ 67"5,) 0 " /! !2 4? @ % 88 9 3: " # "$ ;+<=2 – G# H H2 I) – 6( – 65 : A B C "5 : , D )* . J!* HK"3 H"$ T ) 4 B K<) +$ LMA N O 3 4P<B &Q / RS ) H< C4VH /430 / 1988 V W* < C A GQ ") 4V / 1000 / C4VH /820 / 2001 V XX K<# C ,V /500 / 1992 V "!X V /946 / 2004 V Z < C V /914 / 2003 V ) < ] +$, [2 / ,) @# @ S%Q2 J"= [ &<\ @ +$ LMA 1 O \ . S X '( ^ & M_ `AB @ &' 3 4" + @ V= 4 )\ " : N " # "$ 6 ) G" 3Q + a C G /<"B d3: C K7 e , fM 4 Q b"$ " < $\ c"7: 5) G . HHH3Q J # Hg ' V"h 6< G* H5 !" # $%" & $' ,* ( )* + 2 ا اوا ادو +% 5 j 2 i1 6 B J' 6<X " 6"[ i2 "$ "< * i3 10 6 i4 11 6! ^ i5 13 6<X "!# * i6 15 7 G!, 6 - k 24"$d dl ?K V *4V h 63[46 ' i8 19 Adl 20 "( 2 i9 20 G Q) 6 i10 20 a 6 m[, 6 i11 21 ?K V $n i12 21 "% * i13 23 b+ 6 i14 23 oe C * i15 24 !, 2 6\ i16 25 C V pq * i17 26 ( S 6) 1, ++ &"r i19 3 +% 27 G 6 ""% i19 28 ^ Ks 2 i20 31 % Ks 2 i21 32 s * i22 35 " " * i23 37 "$ * i24 38 6" i25 39 V t h Gu* v!* 2 i26 39 ( 2 i27 40 B w< Ks 2 i28 40 d C &"r i29 42 "' 6 i30 42 " * i31 42 ":< * i32 5 ./ 0" -33 4 : ANAESTHETICS $ 1 2 -1 :GENERAL ANAESTHETICS AND OXYGEN 4 $1 2 2- ATRACURIUM BESYLATE DROPERIDOL ETHER FENTANYL HALOTHANE ISOFLURANE KETAMINE HCL NITROUS OXIDE OXYGEN PROPOFOL REMIFENTANIL SEVOFLURANE SUFENTANIL THIOPENTAL :LOCAL ANAESTHETICS !67$1 2 -5 AMYLEINE HCL=AMYLOCAINE ARTICAINE BENZOCAINE BUPIVACAINE CINCHOCAINE LIDOCAINE MEPIVACAINE OXETHAZAINE PRAMOXINE PRILOCAINE PREOPERATIVE MEDICATION & SEDATION FOR 9*: ;< " 2 -8 : : SHORT -TERM PROCEDURES ATROPINE DIAZEPAM INJ.
    [Show full text]
  • Bioimpedance Monitoring System for Pervasive Biomedical Applications
    Bioimpedance monitoring system for pervasive biomedical applications Jaime Punter Villagrasa ADVERTIMENT . La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX ( www.tdx.cat ) i a través del Dipòsit Digital de la UB ( diposit.ub.edu ) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en ac tivitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposici ó des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB . No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora . ADVERTENCIA . La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR ( www.tdx.cat ) y a través del Repositorio Digital de la UB ( diposit.ub.edu ) ha sido auto rizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un si tio ajeno al servicio TDR o al Repositorio Digital de la UB .
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • How Do We Treat Life-Threatening Anemia in a Jehovah's Witness
    HOW DO I...? How do we treat life-threatening anemia in a Jehovah’s Witness patient? Joseph A. Posluszny Jr and Lena M. Napolitano he management of Jehovah’s Witness (JW) The refusal of allogeneic human blood and blood prod- patients with anemia and bleeding presents a ucts by Jehovah’s Witness (JW) patients complicates clinical dilemma as they do not accept alloge- the treatment of life-threatening anemia. For JW neic human blood or blood product transfu- patients, when hemoglobin (Hb) levels decrease Tsions.1,2 With increased understanding of the JW patient beyond traditional transfusion thresholds (<7 g/dL), beliefs and blood product limitations, the medical com- alternative methods to allogeneic blood transfusion can munity can better prepare for optimal treatment of severe be utilized to augment erythropoiesis and restore life-threatening anemia in JW patients. endogenous Hb levels. The use of erythropoietin- Lower hemoglobin (Hb) is associated with increased stimulating agents and intravenous iron has been mortality risk in JW patients. In a study of 300 patients shown to restore red blood cell and Hb levels in JW who refused blood transfusion, for every 1 g/dL decrease patients, although these effects may be significantly in Hb below 8 g/dL, the odds of death increased 2.5-fold delayed. When JW patients have evidence of life- (Fig. 1).3 A more recent single-center update of JW threatening anemia (Hb <5 g/dL), oxygen-carrying patients (n = 293) who declined blood transfusion capacity can be supplemented with the administration reported an overall mortality rate of 8.2%, with a twofold of Hb-based oxygen carriers (HBOCs).
    [Show full text]
  • Guidelines for Transfusion and Patient Blood Management, and Discuss Relevant Transfusion Related Topics
    Guidelines for Transfusion and Community Transfusion Committee Patient Blood Management Community Transfusion Committee CHAIR: Aina Silenieks, M.D., [email protected] MEMBERS: A.Owusu-Ansah, M.D. S. Dunder, M.D. M. Furasek, M.D. D. Lester, M.D. D. Voigt, M.D. B. J. Wilson, M.D. COMMUNITY Juliana Cordero, Blood Bank Coordinator, CHI Health Nebraska Heart REPRESENTATIVES: Becky Croner, Laboratory Services Manager, CHI Health St. Elizabeth Mackenzie Gasper, Trauma Performance Improvement, Bryan Medical Center Kelly Gillaspie, Account Executive, Nebraska Community Blood Bank Mel Hanlon, Laboratory Specialist - Transfusion Medicine, Bryan Medical Center Kyle Kapple, Laboratory Quality Manager, Bryan Medical Center Lauren Kroeker, Nurse Manager, Bryan Medical Center Christina Nickel, Clinical Laboratory Director, Bryan Medical Center Rachael Saniuk, Anesthesia and Perfusion Manager, Bryan Medical Center Julie Smith, Perioperative & Anesthesia Services Director, Bryan Medical Center Elaine Thiel, Clinical Quality Improvement/Trans. Safety Officer, Bryan Med Center Kelley Thiemann, Blood Bank Lead Technologist, CHI Health St. Elizabeth Cheryl Warholoski, Director, Nebraska Operations, Nebraska Community Blood Bank Jackie Wright, Trauma Program Manager, Bryan Medical Center CONSULTANTS: Jed Gorlin, M.D., Innovative Blood Resources [email protected] Michael Kafka, M.D., LifeServe Blood Center [email protected] Alex Smith, D.O., LifeServe Blood Center [email protected] Nancy Van Buren, M.D., Innovative
    [Show full text]
  • Reducing the Risk of Iatrogenic Anemia and Catheter-Related Bloodstream Infections Using Closed Blood Sampling
    WHITE PAPER WHITE Reducing the Risk of Iatrogenic Anemia and Catheter-Related Bloodstream Infections Using Closed Blood Sampling INTRODUCTION In the Intensive Care Unit (ICU), critically ill patients are more numerous and severely ill than ever before.1 To effectively care for these patients, clinicians rely on physiologic monitoring of blood-flow, oxygen transport, coagulation, metabolism, and organ function. This type of monitoring has made the collection of blood for testing an essential part of daily management of the critically ill patient, yet it is widely recognized that excessive phlebotomy has a deleterious effect on patient health. The result is a clinical paradox in which diligent care may contribute to iatrogenic anemia. RISKS ASSOCIATED WITH CONVENTIONAL DIAGNOSTIC BLOOD SAMPLING Iatrogenic Anemia The process of obtaining a blood sample from an indwelling central venous or arterial Use of blood sampling techniques that rely catheter requires a volume of diluted blood on discarding a volume of blood for each (2–10 mL) to be discarded or “cleared” from the catheter before a sample can be taken.2,3 sample may contribute to iatrogenic anemia, Studies have shown that patients with central which remains a prevalent issue affecting venous or arterial catheters have more blood sampling than ICU patients who don’t have the vast majority of patients in the ICU. these catheters and the total blood volume drawn from patients with arterial catheters is 44% higher than patients without arterial catheters (See Table 1).4,5 It has also been
    [Show full text]
  • Basic Science of ITP
    CHAPTER 1 Basic sc*ience of ITP Editor: John W. Semple 1.1 Megakaryocyte differentiation and platelet produc*tion A.S. Weyrich 1.2 Autoimmune mechanisms and T regula*tory cell disturbances in ITP K. Yazdanbakhsh 1.3 Mouse models o*f ITP J.W. Semple 1.4 Peptide therapy for patients with* ITP S.J. Urbaniak * Basic science of ITP 1.1 Megakaryocyte differen*tiation and platelet production Andrew S. Weyrich CHAPTER 1.1 • Megakaryocyte differentiation and platelet production 1. Introduction Platelets are anucleate cells that circulate in the bloodstream for approximately 10 days. The average adult must produce roughly 1 x 10 11 platelets per day to maintain normal platelet counts, a level of production that increases dramatically in a variety of clinical scenarios (1). In 1906, Wright provided the first evidence that megakaryocytes give rise to blood platelets. Since then, our understanding of the molecular basis of thrombopoiesis has progressed substantially and is arguably in a logarithmic growth phase. This chapter will review our current understanding of thrombopoiesis and highlight how the field is evolving. The history of megakaryocytes and platelets is fairly young. In 1841, Addison first described platelets and in 1882, Bizzozero named and identified platelets in the circulation and determined that they could induce clotting. In 1890, Howell named megakaryocytes, and 16 years later, Wright discovered that these were actually the precursors of platelets. Thus, the late 1880’s and early 1900’s were a period of prolific activity in the elucidation of megakaryocytes. Several discoveries were made about platelets and also about erythropoietin, which implied that a humoral substance also regulated platelet production though its exact nature was not yet known.
    [Show full text]
  • 6.5 X 11 Double Line.P65
    Cambridge University Press 978-0-521-53026-2 - The Cambridge Historical Dictionary of Disease Edited by Kenneth F. Kiple Index More information Name Index A Baillie, Matthew, 80, 113–14, 278 Abercrombie, John, 32, 178 Baillou, Guillaume de, 83, 224, 361 Abreu, Aleixo de, 336 Baker, Brenda, 333 Adams, Joseph, 140–41 Baker, George, 187 Adams, Robert, 157 Balardini, Lodovico, 243 Addison, Thomas, 22, 350 Balfour, Francis, 152 Aesculapius, 246 Balmis, Francisco Xavier, 303 Aetius of Amida, 82, 232, 248 Bancroft, Edward, 364 Afzelius, Arvid, 203 Bancroft, Joseph, 128 Ainsworth, Geoffrey C., 128–32, 132–34 Bancroft, Thomas, 87, 128 Albert, Jose, 48 Bang, Bernhard, 60 Alexander of Tralles, 135 Bannwarth, A., 203 Alibert, Jean Louis, 147, 162, 359 Bard, Samuel, 83 Ali ibn Isa, 232 Barensprung,¨ F. von, 360 Allchin, W. H., 177 Bargen, J. A., 177 Allison, A. C., 25, 300 Barker, William H., 57–58 Allison, Marvin J., 70–71, 191–92 Barthelemy,´ Eloy, 31 Alpert, S., 178 Bartlett, Elisha, 351 Altman, Roy D., 238–40 Bartoletti, Fabrizio, 103 Alzheimer, Alois, 14, 17 Barton, Alberto, 69 Ammonios, 358 Bartram, M., 328 Amos, H. L., 162 Bassereau, Leon,´ 317 Andersen, Dorothy, 84 Bateman, Thomas, 145, 162 Anderson, John, 353 Bateson, William, 141 Andral, Gabriel, 80 Battistine, T., 69 Annesley, James, 21 Baumann, Eugen, 149 Arad-Nana, 246 Beard, George, 106 Archibald, R. G., 131 Beet, E. A., 24, 25 Aretaeus the Cappadocian, 80, 82, 88, 177, 257, 324 Behring, Emil, 95–96, 325 Aristotle, 135, 248, 272, 328 Bell, Benjamin, 152 Armelagos, George, 333 Bell, J., 31 Armstrong, B.
    [Show full text]
  • Tranexamic Acid in the Treatment of Residual Chronic Subdural Hematoma: a Single-Centre, Observer-Blinded, Randomized Controlled Trial (Trace)
    TRANEXAMIC ACID IN THE TREATMENT OF RESIDUAL CHRONIC SUBDURAL HEMATOMA: A SINGLE-CENTRE, OBSERVER-BLINDED, RANDOMIZED CONTROLLED TRIAL (TRACE) by Adriana Micheline Workewych A thesis submitted in conformity with the requirements for the degree of Master of Science Institute of Medical Science University of Toronto © Copyright by Adriana Micheline Workewych 2018 TRANEXAMIC ACID IN THE TREATMENT OF RESIDUAL CHRONIC SUBDURAL HEMATOMA: A SINGLE-CENTRE, OBSERVER-BLINDED, RANDOMIZED CONTROLLED TRIAL (TRACE) Adriana Micheline Workewych Master of Science Institute of Medical Science University of Toronto 2018 ABSTRACT Chronic subdural hematoma (CSDH) is a frequent consequence of head trauma, particularly in older individuals. Given the aging of populations globally, its incidence is projected to increase substantially. Hyperfibrinolysis may be central to CSDH enlargement by causing excessive clot degradation and liquefaction, impeding resorption. The only current standard treatment for CSDH is surgery, however, up to 31% of residual hematomas enlarge, requiring reoperation. Tranexamic acid (TXA), an antifibrinolytic medication that prevents excessively rapid clot breakdown, may help prevent CSDH enlargement, potentially eliminating the need for repeat surgery. To evaluate the feasibility of conducting a trial investigating TXA efficacy in residual CSDH, we conducted an observer-blinded, pilot randomized controlled trial (RCT). We showed this trial was feasible and safe, reporting only minor to moderate AEs, and an attrition rate of 4%. The results from this study will inform the conduct of a double-blinded RCT investigating TXA efficacy in post-operative CSDH management. ii ACKNOWLEDGEMENTS First, I would like to thank my supervisor Dr. Michael Cusimano, my mentor for nearly six years. You have always given me more opportunity than I could have ever hoped for – I could not ask for a more dedicated teacher.
    [Show full text]
  • No Benefit of Hemostatic Drugs on Acute Upper Gastrointestinal Bleeding in Cirrhosis
    Hindawi BioMed Research International Volume 2020, Article ID 4097170, 11 pages https://doi.org/10.1155/2020/4097170 Research Article No Benefit of Hemostatic Drugs on Acute Upper Gastrointestinal Bleeding in Cirrhosis Yang An,1,2 Zhaohui Bai,1,2 Xiangbo Xu,1,2 Xiaozhong Guo ,1 Fernando Gomes Romeiro ,3 Cyriac Abby Philips,4 Yingying Li,5 Yanyan Wu,1,6 and Xingshun Qi 1 1Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang 110840, China 2Postgraduate College, Shenyang Pharmaceutical University, Shenyang 110016, China 3Department of Internal Medicine, Botucatu Medical School, UNESP-Univ Estadual Paulista. Av. Prof. Mário Rubens Guimarães Montenegro, s/n Distrito de Rubião Jr, Botucatu, Brazil 4The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, 682028 Kerala, India 5Department of Gastroenterology, The First People’s Hospital of Huainan, Huainan 232007, China 6Postgraduate College, Jinzhou Medical University, Jinzhou 121001, China Correspondence should be addressed to Xingshun Qi; [email protected] Received 28 February 2020; Revised 25 May 2020; Accepted 1 June 2020; Published 27 June 2020 Academic Editor: Hongqun Liu Copyright © 2020 Yang An et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background and Aims. Acute upper gastrointestinal bleeding (AUGIB) is one of the most life-threatening emergency conditions. Hemostatic drugs are often prescribed to control AUGIB in clinical practice but have not been recommended by major guidelines and consensus.
    [Show full text]
  • Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
    Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine
    [Show full text]
  • Prohibited Substances List
    Prohibited Substances List This is the Equine Prohibited Substances List that was voted in at the FEI General Assembly in November 2009 alongside the new Equine Anti-Doping and Controlled Medication Regulations(EADCMR). Neither the List nor the EADCM Regulations are in current usage. Both come into effect on 1 January 2010. The current list of FEI prohibited substances remains in effect until 31 December 2009 and can be found at Annex II Vet Regs (11th edition) Changes in this List : Shaded row means that either removed or allowed at certain limits only SUBSTANCE ACTIVITY Banned Substances 1 Acebutolol Beta blocker 2 Acefylline Bronchodilator 3 Acemetacin NSAID 4 Acenocoumarol Anticoagulant 5 Acetanilid Analgesic/anti-pyretic 6 Acetohexamide Pancreatic stimulant 7 Acetominophen (Paracetamol) Analgesic/anti-pyretic 8 Acetophenazine Antipsychotic 9 Acetylmorphine Narcotic 10 Adinazolam Anxiolytic 11 Adiphenine Anti-spasmodic 12 Adrafinil Stimulant 13 Adrenaline Stimulant 14 Adrenochrome Haemostatic 15 Alclofenac NSAID 16 Alcuronium Muscle relaxant 17 Aldosterone Hormone 18 Alfentanil Narcotic 19 Allopurinol Xanthine oxidase inhibitor (anti-hyperuricaemia) 20 Almotriptan 5 HT agonist (anti-migraine) 21 Alphadolone acetate Neurosteriod 22 Alphaprodine Opiod analgesic 23 Alpidem Anxiolytic 24 Alprazolam Anxiolytic 25 Alprenolol Beta blocker 26 Althesin IV anaesthetic 27 Althiazide Diuretic 28 Altrenogest (in males and gelidngs) Oestrus suppression 29 Alverine Antispasmodic 30 Amantadine Dopaminergic 31 Ambenonium Cholinesterase inhibition 32 Ambucetamide Antispasmodic 33 Amethocaine Local anaesthetic 34 Amfepramone Stimulant 35 Amfetaminil Stimulant 36 Amidephrine Vasoconstrictor 37 Amiloride Diuretic 1 Prohibited Substances List This is the Equine Prohibited Substances List that was voted in at the FEI General Assembly in November 2009 alongside the new Equine Anti-Doping and Controlled Medication Regulations(EADCMR).
    [Show full text]