Supplement II to the Japaneses Pharmacopoeia Fourteenth Edition

Total Page:16

File Type:pdf, Size:1020Kb

Supplement II to the Japaneses Pharmacopoeia Fourteenth Edition The Ministry of Health, Labour and Welfare Ministerial Notiˆcation No. 461 In accordance with the provisions of Article 41, Paragraph 1 of the Pharmaceutical AŠairs Law (Law No. 145, 1960), we hereby revise a part of the Japanese Phar- macopoeia (Ministerial Notiˆcation No. 111, 2001) as follows, and the revised Japanese Pharmacopoeia shall come into eŠect on January 1, 2005, [including dele- tion from O‹cial Monographs fro Part II in The Japanese Pharmacopoeia, Four- teenth Edition of the articles of Absorbent Cotton, Puriˆed Absorbent Cotton, Sterile Absorbent Cotton, Sterile Puriˆed Absorbent Cotton and Absorbent Gauze and Sterile Absorbent Gauze (hereinafter referred to as ``sanitary materials'')]. Provi- so: With respect to the drugs which are included in the Japanese Pharmacopoeia (hereinafter referred to as ``the old Japanese Pharmacopoeia'') [limited to those included in the Japanese Pharmacopoeia whose standards are changed with this notiˆcation published (hereinafter referred to as ``the new Japanese Phar- macopoeia'')] and those which are approved as of January 1, 2005 pursuant to the provisions of Article 14, Paragraph 1 of this Law (including cases where it shall apply mutatis mutandis under Article 23 of this Law; the same hereinafter) [including the drugs designated as those exempted from approval (hereinafter referred to as ``the drugs exempted from approval'') among the drugs etc. designated by the Minister of Health, Labour and Welfare as those exempted from manufacturing or import approval pursuant to the provisions of Article 14, Paragraph 1 of the Pharmaceutical AŠairs Law (Ministerial Notiˆcation No. 104, 1994), the standards established in the old Japanese Pharmacopoeia (limited to the standards for the relevant drugs) shall be recognized, up to June 30, 2006, as the standards established in the new Japanese Pharmacopoeia. With respect the drugs which are included in the new Japanese Pharmacopoeia (excluding those which are included in the old Japanese Phar- macopoeia) and those which are approved as of January 1, 2005 pursuant to the provisions of Article 14, Paragraph 1 of this Law (including the drugs exempted from approval), the drugs may be treated, up to June 30, 2006, as those which are not included in the new Japanese Pharmacopoeia. Further, sanitary materials may be treated, up to September 30, 2006, under the previous regulation. Hidehisa Otsuji The Minister of Health, Labour and Welfare December 28, 2004 (The texts referred to by the term ``as follows'' are omitted here. All of them are made available for public exhibition at the Evaluation and Licensing Division, Phar- maceutical and Medical Safety Bureau, Ministry of Health, Labour and Welfare, at each Regional Bureau of Health and Welfare and at each Prefectural O‹ce in Japan.) The term ``as follows'' here indicates the contents from Part I to Ultraviolet-visible Reference SpectraintheSupplementIItotheJapanesePharmacopoeiaFourteenthEdition(pp.1669 – 1866). CONTENTS Preface ...................................................... i Supplement II to The Japanese Pharmacopoeia, Supplement II to The Japanese Pharmacopoeia, Fourteenth Edition, Part II................ 1755–1778 Fourteenth Edition, Part I................. 1669–1754 General Rules for Crude Drugs ............... 1755 General Tests, Processes and Apparatus ... 1669 O‹cial Monographs ............................. 1757 6. Bacterial Endotoxins Test................. 1669 39. Nuclear Magnetic Resonance Infrared Reference Spectra ................ 1779–1789 Spectroscopy ................................. 1669 Part I ................................................ 1779 47. Pyrogen Test ................................. 1672 Part II ............................................... 1789 52. Residue on Ignition Test .................. 1672 53. Speciˆc Surface Area Determination... 1673 Ultraviolet-visible Reference Spectra .... 1791–1799 54. Sterility Test .................................. 1673 Part I ................................................ 1791 70. Reference Standards; Reagents, Test Solu- tions; Standard Solutions for Volumetric General Information Analysis; Standard Solutions; Matching 5. International Harmonization Implemented Fluids for Color; Optical Filters for in the Japanese Pharmacopoeia Fourteenth Wavelength and Transmission Rate Edition ......................................... 1801 Calibration; and Measuring Instruments, 20. Amino Acid Analysis ...................... 1814 Appliances .................................... 1677 21. Capillary Electrophoresis.................. 1822 (1) Reference Standards ................. 1677 22. Isoelectric Focusing......................... 1828 (2) Reagents, Test Solutions............ 1677 23. Peptide Mapping ............................ 1830 (3) Standard Solutions for Volumetric 24. Rapid Identiˆcation of Microorganisms Analysis ................................. 1685 Based on Molecular Biological 74. Powder Particle Density Method ........................................ 1833 Determination................................ 1685 25. Solid and Particle Densities .............. 1835 O‹cial Monographs ............................. 1687 26. Total Protein Assay ........................ 1836 Index.................................................... 1841 Index in Japanese.................................... 1857 Preface The Fourteenth Edition of the Japanese Phar- and to securing and maintaining international con- macopoeia was promulgated on March 30, 2001 by sistency. Ministerial Notiˆcation No. 111 of the Ministry of It was also agreed that JP articles should cover Health, Labour and Welfare. To keep pace with drugs which are important from the viewpoint of progress in medical and pharmaceutical sciences, in health care and medical treatment, clinical results and November 2001, the Council, at a meeting of the frequency of use, as soon as possible after they reach Committee on Japanese Pharmacopoeia (JP), estab- the market. lished the basic principles for the preparation of the It was also decided to make a deˆnite rule for selec- JP Fifteenth Edition, setting out the characteristics tion of articles by clarifying the standards for selec- and roles of the JP, the deˆnite measures for the tion. The rule was shown in the verdict ``What the revision, the date of the revision, and the organization future Japanese Pharmacopoeia should be'' by the of the Subcommittee on JP. Pharmaceutical AŠairs and Food Sanitation Council At the above meeting, the following ``ˆve pillars'' (PAFSC) on December 2002. The JP Fifteenth were established as the basic principles of the JP: Edition was decided to be slated for completion in Making it more substantial by including all drugs April 2006. which are important from the viewpoint of health care The panels on JP was reorganized into the following and medical treatment; Making prompt partial eleven panels in accordance with the recommendation revision as necessary and facilitating smooth adminis- of the PAFSC: Panel on Planning and Revisions; trative operation; Promoting international harmoni- Panel on Nomenclature for Pharmaceuticals; Panel zation; Ensuring transparency regarding the revision on Excipients; Panel on Physico-chemical Tests; Panel and dissemination to the public of the JP; and on Medicinal Chemicals; Panel on Biologically Positively introducing contemporary analytical tests Derived Drugs; Panel on Biological Tests; Panel on and developing reference standards. It was decided at Antibiotics; Panel on Crude Drugs; Provisional Panel the meeting that each panel set up under the Subcom- on Planning and Revisions and Panel on Phar- mittee on JP should make eŠorts, on the basis of these macopoeial Harmonization (PDG), followed by the principles, to ensure that the JP is used more eŠective- establishment of new panels: Panel on Water for ly in the ˆelds of health care and medical treatment by Pharmaceutical Preparations, Panel on JP Reference taking appropriate measures, including getting the Standards, and three working groups under Panel on understanding and cooperation of other parties con- Medicinal Chemicals to expedite discussion of revision cerned. drafts of drug monographs. The JP should comprise an o‹cial standard being In the Committee on Japanese Pharmacopoeia, required to assure the quality of drugs in this country Mitsuru Uchiyama took the role of chairman from in response to the progress in science and technology January 2001 to December 2002, Tadao Terao from and clinical demands at the time, it should deˆne the January to June 2003, and Takao Hayakawa from standards for speciˆcations as well as the methods of July 2003 to December 2004. tests to assure the overall quality of all drugs in It was decided that the JP will be revised not only principle, and it should have a role in clarifying the every ˆve years, in line with the basic principles for the criteria for quality of drugs which are recognized to be preparation of the JP Fifteenth Edition, but also as important from the viewpoint of medical treatment. necessary to take account of recent progress of science At the same time, it was agreed that the JP should and in the interests of international harmonization. be prepared with the aid of the knowledge and In accordance with the revision principles, the experience of many persons involved in the phar- panels continued discussions on selection of articles, maceuticals, that it should have the characteristics of and revisions for General Notices, General Rules for an o‹cial standard, which
Recommended publications
  • The National Drugs List
    ^ ^ ^ ^ ^[ ^ The National Drugs List Of Syrian Arab Republic Sexth Edition 2006 ! " # "$ % &'() " # * +$, -. / & 0 /+12 3 4" 5 "$ . "$ 67"5,) 0 " /! !2 4? @ % 88 9 3: " # "$ ;+<=2 – G# H H2 I) – 6( – 65 : A B C "5 : , D )* . J!* HK"3 H"$ T ) 4 B K<) +$ LMA N O 3 4P<B &Q / RS ) H< C4VH /430 / 1988 V W* < C A GQ ") 4V / 1000 / C4VH /820 / 2001 V XX K<# C ,V /500 / 1992 V "!X V /946 / 2004 V Z < C V /914 / 2003 V ) < ] +$, [2 / ,) @# @ S%Q2 J"= [ &<\ @ +$ LMA 1 O \ . S X '( ^ & M_ `AB @ &' 3 4" + @ V= 4 )\ " : N " # "$ 6 ) G" 3Q + a C G /<"B d3: C K7 e , fM 4 Q b"$ " < $\ c"7: 5) G . HHH3Q J # Hg ' V"h 6< G* H5 !" # $%" & $' ,* ( )* + 2 ا اوا ادو +% 5 j 2 i1 6 B J' 6<X " 6"[ i2 "$ "< * i3 10 6 i4 11 6! ^ i5 13 6<X "!# * i6 15 7 G!, 6 - k 24"$d dl ?K V *4V h 63[46 ' i8 19 Adl 20 "( 2 i9 20 G Q) 6 i10 20 a 6 m[, 6 i11 21 ?K V $n i12 21 "% * i13 23 b+ 6 i14 23 oe C * i15 24 !, 2 6\ i16 25 C V pq * i17 26 ( S 6) 1, ++ &"r i19 3 +% 27 G 6 ""% i19 28 ^ Ks 2 i20 31 % Ks 2 i21 32 s * i22 35 " " * i23 37 "$ * i24 38 6" i25 39 V t h Gu* v!* 2 i26 39 ( 2 i27 40 B w< Ks 2 i28 40 d C &"r i29 42 "' 6 i30 42 " * i31 42 ":< * i32 5 ./ 0" -33 4 : ANAESTHETICS $ 1 2 -1 :GENERAL ANAESTHETICS AND OXYGEN 4 $1 2 2- ATRACURIUM BESYLATE DROPERIDOL ETHER FENTANYL HALOTHANE ISOFLURANE KETAMINE HCL NITROUS OXIDE OXYGEN PROPOFOL REMIFENTANIL SEVOFLURANE SUFENTANIL THIOPENTAL :LOCAL ANAESTHETICS !67$1 2 -5 AMYLEINE HCL=AMYLOCAINE ARTICAINE BENZOCAINE BUPIVACAINE CINCHOCAINE LIDOCAINE MEPIVACAINE OXETHAZAINE PRAMOXINE PRILOCAINE PREOPERATIVE MEDICATION & SEDATION FOR 9*: ;< " 2 -8 : : SHORT -TERM PROCEDURES ATROPINE DIAZEPAM INJ.
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • Download This PDF File
    Med J Chin PLA, Vol. 42, No. 12, December 1, 2017 ǂ1029 䃲eڝeᠳࢃ̺ ӵϔߙᡇ੢ϊҍᣴ໓͌ܠ੠ᣴ̹ࢴҝᣱ ͙఩ࡧጴࡻцᕑ䃶ܲц ᕑ᩽ࡧ႒̿͆ༀ঄цۇ͙఩Ϧℽ㼏ᩪ 䛹⫳ࡧ႒̿͆ༀ঄цۇ͙఩Ϧℽ㼏ᩪ ͙఩ࡧጴࡻцᕑ䃶ܲцᕑ䃶โ⻽̿͆ༀ঄ц 喞ᕑ᩽ٷ䩚䃹]Ȟ݇ѐ喞๝㵬ᕓнڟ] [͙పܲㆧण]ȞR605.97ȞȞȞȞ[᪳⡚ᴳᔃⴭ]ȞAȞȞȞȞ[᪳「㑂ण]Ȟ0577-7402(2017)12-1029-10 [DOI]Ȟ10.11855/j.issn.0577-7402.2017.12.02 Chinese emergency medicine expert consensus on diagnosis and treatment of traumatic hemorrhagic shock Emergency Medicine Branch of Chinese Medical Doctor Association People’s Liberation Army Professional Committee of Emergency Medicine People’s Liberation Army Professional Committee of Critical Care Medicine Professional Committee of Emergency Surgery, Emergency Medicine Branch of Chinese Medical Doctor Association 1ȞẮȞȞ䔜 ㏒10%⤯ڔѐ᭛ᠳᱦᷜ߇҈⩔κϦѿऺᝬ䕌᜼⮰ᱦѿ㏿ᲰႸ᪠ᕓ⮰ⵠ౻সߋ㘩䯈ⶹȠᢚWHO㐋䃍喏݇ 40ᆭБ̷Ϧ㓐⮰仂㺭₧ఌ[1]Ƞ⤯ڔ⮰₧ύস16%⮰㜠₷⫱ҷఌ݇ѐᝬ㜠喏सᬢ݇ѐ΋᭛ ᄽȟ㏰㏳╸∔̹䋟ȟ㏲㘊Џ䅎㈶Νসۻ᭛ᠳ݇ѐ䕌᜼ᱦѿ๓䛻๝㵬ᝬ㜠ᰵᩴᓖ⣛㵬䛻ٷѐ๝㵬ᕓн݇ ፤፤ऴᎢѺ㵬ࢷ(჆͵ͦᩢ㑕ࢷ┯90mmHg喏㘵ࢷ┯20mmHg喏ᝂ࣋ᰵ倄㵬ٷஔჄߋ㘩ःᢋ⮰⫱⤲⩋⤲䓳⼷Ƞн ࢷ㔱ᩢ㑕ࢷ㜖ദ㏫̷䭹Ĺ40mmHg)Ƞ30%~40%⮰݇ѐᗏ㔱₧ύ᭛ఌ๝㵬䓳ๆᝬ㜠喏ₐㆧᗏ㔱͙喏ᰵ̬䘔ܲ ఌͦ䩅䄛⮰᩽⇧᫥ᵴࣶ̹ᖜᑿ⮰⇧⫃ᣖ᫩㔸₧ύ喏ࢌ10%~20%Ƞᕑᕓ๝㵬᭛݇ѐ仂㺭⮰छ䶰䭞ᕓ₧ఌ[2-3]Ƞ ᄽๆஔჄߋ㘩䯈ⶹ㐨ऴᒭۻ䛹㺭喏छᰵᩴڟᄥκ͑䛹݇ѐᗏ㔱㜟ٷ㵬喏㏌₏๝㵬ᕓнܦࣶᬢȟᔗ䕋ᣓݢ (multiple organ dysfunction syndrome喏MODS)⮰ࣽ⩋喏䭹Ѻ₧ύ⢳Ƞ ⮰ᕑ䃶᩽ٷ䃲ᬔ౔㻰㠯স᣼倄݇ѐ๝㵬ᕓнڝᠳࢃȠ᱘ڟᕑ᩽⇧⮰Ⱔ㉓ٷⰚݹ᜽఩ᅆᬌ݇ѐ๝㵬ᕓн ⇧喏ͦᕑ䃶ࡧጴ᣼Ӈ䃶⫃ӉᢚȠ ⤲⩋⤲⫱⮰ٷ2Ȟ݇ѐ๝㵬ᕓн ᭛㵬ქ䛻̺㵬ネქ⼛⮰̹ࡥ䙹喏䕌᜼โঔ㏰㏳╸∔̹䋟喏Ϻ㔸ᑁٴ⮰⫱⤲⩋⤲ऄࡂ仂ٷѐ๝㵬ᕓн݇ 㘻ஔჄ⮰㐓ࣽᕓᢋჟȠڱ㵬䯈ⶹБࣶ܉䊣ᓚᓖ⣛ऄࡂȟ⅓Џ䅎ߔ߇႒ᐮ፤ȟ►⫳ࣹᏀȟ ᭛䛹㺭㘻ڢᰬᵥ᱘⮰⫱⤲⩋⤲ᩥऄ᭛๝㵬ᝬ㜠⮰ᓚᓖ⣛ߋ㘩䯈ⶹ喏ᅐٷ2.1Ȟᓚᓖ⣛ऄࡂȞ݇ѐ๝㵬ᕓн ၼὍᐻ(damage associatedܲڟϓ⩋ᢋѐⰤٷஔᓚᓖ⣛ᩥऄȠᄨ㜠ᓚᓖ⣛ߋ㘩䯈ⶹ⮰ͧ㺭ᱦݢ࠱᠘喝Ŗн Ꮐむࣶ๝ᣓᕓ►⫳ࣹᏀ喏ᑁ䊣㵬⫗ٹ㯷⮩স倄䓭⼧⢳᫻㯷⮩1㼒ࣽٷmolecular patterns喏DAMP)[4-5]喏ຮ☙н 㵬㈧܉⯚ᢋѐᑁ䊣ڱᄽ喏ᰬ㏴ᄨ㜠㏰㏳╸∔̹䋟ȟ㏲㘊㑦⅓喞ŗۻ⯚ᢋѐȟℇ㏲㵬ネ⍃␻ȟᓖ⣛ქ䛻ڱネ 㐋⓬≧ȟᓚ㵬ᴿᒎ᜼喏䭧ඊℇ㏲㵬ネࣶ㵬ネ㜾㑕ߋ㘩䯈ⶹ喏ߌ䛹㏰㏳㑦㵬㑦⅓喞Ř݇ѐᝬ㜠⮰ᠭ㐙ȟᑦ◴ ᓚᓖ⣛䯈ⶹȠޓߋ㘩喏ᄨ㜠ࣹᄰᕓ㵬ネ㜾㑕ߋ㘩㈶Ν喏ߌ⇸ܲڱ⮰ݦ⓬ᒝ৹⺊㏻ ⅓̺(ᗏ㔱ႄ౔⅓Џ䅎ߔ߇႒ᐮ፤喏࢟⅓ӇᏀ(DO2ٷ2.2Ȟ⅓Џߔ߇႒ᐮ፤ࣶ㏲㘊Џ䅎ᩥऄȞ݇ѐ๝㵬ᕓн
    [Show full text]
  • Urinary Trypsin Inhibitor: Miraculous Medicine in Many Surgical Situations?
    Korean J Anesthesiol 2010 Apr; 58(4): 325-327 Editorial DOI: 10.4097/kjae.2010.58.4.325 Urinary trypsin inhibitor: miraculous medicine in many surgical situations? Jong In Han Department of Anesthesiology and Pain Medicine, School of Medicine, Ewha Womans University, Seoul, Korea Recently, we encounter several articles regarding urinary Trypsin inhibitors act to suppress the proteolytic action trypsin inhibitor (UTI) published nationally [1,2]. When we take of trypsin on a variety of tissues and exert a localized anti- a glance at these articles, it feels like UTI acts as a miraculous inflammatory effect [8]. Therefore UTI is indicated for acute medicine on patients under general anesthesia because of inflammatory disorders, including acute pancreatitis, systemic its protection effect against surgical stress. Yet, even after the inflammatory reaction syndrome, circulatory insufficiency, first report on antitryptic action of urine by Bauer and Reich Stevens-Johnson syndrome, Toxic epidermal necrolysis (TEN), III in 1909 [3]; the start of use of the term UTI by Astrup and disseminated intravascular coagulation (DIC) and multiple Sterndorff in 1955 [4]; and numerous animal experiments and organ failure [9]. Previous studies of UTI have focused mainly clinical research done about UTI (803 articles about UTI and on modulating inflammatory reaction. UTI attenuates the 982 articles about ulinastatin in SCOPUS), UTI is not yet to elevation of neutrophil elastase release, thereby blunting the be used commonly. Therefore, it is important to understand rise of pro-inflammatory cytokine level; however, the actual the reason behind this situation. According to the webpage of mechanism in vivo is not clear [10].
    [Show full text]
  • Tranexamic Acid in the Treatment of Residual Chronic Subdural Hematoma: a Single-Centre, Observer-Blinded, Randomized Controlled Trial (Trace)
    TRANEXAMIC ACID IN THE TREATMENT OF RESIDUAL CHRONIC SUBDURAL HEMATOMA: A SINGLE-CENTRE, OBSERVER-BLINDED, RANDOMIZED CONTROLLED TRIAL (TRACE) by Adriana Micheline Workewych A thesis submitted in conformity with the requirements for the degree of Master of Science Institute of Medical Science University of Toronto © Copyright by Adriana Micheline Workewych 2018 TRANEXAMIC ACID IN THE TREATMENT OF RESIDUAL CHRONIC SUBDURAL HEMATOMA: A SINGLE-CENTRE, OBSERVER-BLINDED, RANDOMIZED CONTROLLED TRIAL (TRACE) Adriana Micheline Workewych Master of Science Institute of Medical Science University of Toronto 2018 ABSTRACT Chronic subdural hematoma (CSDH) is a frequent consequence of head trauma, particularly in older individuals. Given the aging of populations globally, its incidence is projected to increase substantially. Hyperfibrinolysis may be central to CSDH enlargement by causing excessive clot degradation and liquefaction, impeding resorption. The only current standard treatment for CSDH is surgery, however, up to 31% of residual hematomas enlarge, requiring reoperation. Tranexamic acid (TXA), an antifibrinolytic medication that prevents excessively rapid clot breakdown, may help prevent CSDH enlargement, potentially eliminating the need for repeat surgery. To evaluate the feasibility of conducting a trial investigating TXA efficacy in residual CSDH, we conducted an observer-blinded, pilot randomized controlled trial (RCT). We showed this trial was feasible and safe, reporting only minor to moderate AEs, and an attrition rate of 4%. The results from this study will inform the conduct of a double-blinded RCT investigating TXA efficacy in post-operative CSDH management. ii ACKNOWLEDGEMENTS First, I would like to thank my supervisor Dr. Michael Cusimano, my mentor for nearly six years. You have always given me more opportunity than I could have ever hoped for – I could not ask for a more dedicated teacher.
    [Show full text]
  • No Benefit of Hemostatic Drugs on Acute Upper Gastrointestinal Bleeding in Cirrhosis
    Hindawi BioMed Research International Volume 2020, Article ID 4097170, 11 pages https://doi.org/10.1155/2020/4097170 Research Article No Benefit of Hemostatic Drugs on Acute Upper Gastrointestinal Bleeding in Cirrhosis Yang An,1,2 Zhaohui Bai,1,2 Xiangbo Xu,1,2 Xiaozhong Guo ,1 Fernando Gomes Romeiro ,3 Cyriac Abby Philips,4 Yingying Li,5 Yanyan Wu,1,6 and Xingshun Qi 1 1Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang 110840, China 2Postgraduate College, Shenyang Pharmaceutical University, Shenyang 110016, China 3Department of Internal Medicine, Botucatu Medical School, UNESP-Univ Estadual Paulista. Av. Prof. Mário Rubens Guimarães Montenegro, s/n Distrito de Rubião Jr, Botucatu, Brazil 4The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, 682028 Kerala, India 5Department of Gastroenterology, The First People’s Hospital of Huainan, Huainan 232007, China 6Postgraduate College, Jinzhou Medical University, Jinzhou 121001, China Correspondence should be addressed to Xingshun Qi; [email protected] Received 28 February 2020; Revised 25 May 2020; Accepted 1 June 2020; Published 27 June 2020 Academic Editor: Hongqun Liu Copyright © 2020 Yang An et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background and Aims. Acute upper gastrointestinal bleeding (AUGIB) is one of the most life-threatening emergency conditions. Hemostatic drugs are often prescribed to control AUGIB in clinical practice but have not been recommended by major guidelines and consensus.
    [Show full text]
  • Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
    Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine
    [Show full text]
  • Multiple Technology Appraisal Avatrombopag and Lusutrombopag
    Multiple Technology Appraisal Avatrombopag and lusutrombopag for treating thrombocytopenia in people with chronic liver disease needing an elective procedure [ID1520] Committee papers © National Institute for Health and Care Excellence 2019. All rights reserved. See Notice of Rights. The content in this publication is owned by multiple parties and may not be re-used without the permission of the relevant copyright owner. NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE MULTIPLE TECHNOLOGY APPRAISAL Avatrombopag and lusutrombopag for treating thrombocytopenia in people with chronic liver disease needing an elective procedure [ID1520] Contents: 1 Pre-meeting briefing 2 Assessment Report prepared by Kleijnen Systematic Reviews 3 Consultee and commentator comments on the Assessment Report from: • Shionogi 4 Addendum to the Assessment Report from Kleijnen Systematic Reviews 5 Company submission(s) from: • Dova • Shionogi 6 Clarification questions from AG: • Questions to Shionogi • Clarification responses from Shionogi • Questions to Dova • Clarification responses from Dova 7 Professional group, patient group and NHS organisation submissions from: • British Association for the Study of the Liver (BASL) The Royal College of Physicians supported the BASL submission • British Society of Gastroenterology (BSG) 8 Expert personal statements from: • Vanessa Hebditch – patient expert, nominated by the British Liver Trust • Dr Vickie McDonald – clinical expert, nominated by British Society for Haematology • Dr Debbie Shawcross – clinical expert, nominated by Shionogi © National Institute for Health and Care Excellence 2019. All rights reserved. See Notice of Rights. The content in this publication is owned by multiple parties and may not be re-used without the permission of the relevant copyright owner. MTA: avatrombopag and lusutrombopag for treating thrombocytopenia in people with chronic liver disease needing an elective procedure Pre-meeting briefing © NICE 2019.
    [Show full text]
  • A Study on Ulinastatin in Preventing Post ERCP Pancreatitis
    International Journal of Advances in Medicine Vedamanickam R et al. Int J Adv Med. 2017 Dec;4(6):1528-1531 http://www.ijmedicine.com pISSN 2349-3925 | eISSN 2349-3933 DOI: http://dx.doi.org/10.18203/2349-3933.ijam20175083 Original Research Article A study on ulinastatin in preventing post ERCP pancreatitis R. Vedamanickam1, Vinoth Kumar2*, Hariprasad2 1Department of Medicine, 2Department of Gasto and Hepatology , SREE Balaji Medical College and Hospital, Chrompet, Chennai, Tamil Nadu, India Received: 19 September 2017 Accepted: 25 October 2017 *Correspondence: Dr. Vinothkumar, E-mail: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Background: Pancreatitis remains the major complication of endoscopic retrograde cholangiopancreatography (ERCP), and hyperenzymemia after ERCP is common. Ulinastatin, a protease inhibitor, has proved effective in the treatment of acute pancreatitis. The aim of this study was to assess the efficacy of ulinastatin, compare to placebo study to assess the incidence of complication due to ERCPP procedure. Methods: In this study a randomized placebo controlled trial, patients undergoing the first ERCP was randomizing to receive ulinastatin one lakh units (or) placebo by intravenous infusion one hour before ERCP for ten minutes duration. Clinical evaluation, serum amylase, ware analysed before the procedure 4 hours and 24 hours after the procedure. Results: Total of 46 patients were enrolled (23 in ulinastatin and 23 in placebo group).
    [Show full text]
  • Prohibited Substances List
    Prohibited Substances List This is the Equine Prohibited Substances List that was voted in at the FEI General Assembly in November 2009 alongside the new Equine Anti-Doping and Controlled Medication Regulations(EADCMR). Neither the List nor the EADCM Regulations are in current usage. Both come into effect on 1 January 2010. The current list of FEI prohibited substances remains in effect until 31 December 2009 and can be found at Annex II Vet Regs (11th edition) Changes in this List : Shaded row means that either removed or allowed at certain limits only SUBSTANCE ACTIVITY Banned Substances 1 Acebutolol Beta blocker 2 Acefylline Bronchodilator 3 Acemetacin NSAID 4 Acenocoumarol Anticoagulant 5 Acetanilid Analgesic/anti-pyretic 6 Acetohexamide Pancreatic stimulant 7 Acetominophen (Paracetamol) Analgesic/anti-pyretic 8 Acetophenazine Antipsychotic 9 Acetylmorphine Narcotic 10 Adinazolam Anxiolytic 11 Adiphenine Anti-spasmodic 12 Adrafinil Stimulant 13 Adrenaline Stimulant 14 Adrenochrome Haemostatic 15 Alclofenac NSAID 16 Alcuronium Muscle relaxant 17 Aldosterone Hormone 18 Alfentanil Narcotic 19 Allopurinol Xanthine oxidase inhibitor (anti-hyperuricaemia) 20 Almotriptan 5 HT agonist (anti-migraine) 21 Alphadolone acetate Neurosteriod 22 Alphaprodine Opiod analgesic 23 Alpidem Anxiolytic 24 Alprazolam Anxiolytic 25 Alprenolol Beta blocker 26 Althesin IV anaesthetic 27 Althiazide Diuretic 28 Altrenogest (in males and gelidngs) Oestrus suppression 29 Alverine Antispasmodic 30 Amantadine Dopaminergic 31 Ambenonium Cholinesterase inhibition 32 Ambucetamide Antispasmodic 33 Amethocaine Local anaesthetic 34 Amfepramone Stimulant 35 Amfetaminil Stimulant 36 Amidephrine Vasoconstrictor 37 Amiloride Diuretic 1 Prohibited Substances List This is the Equine Prohibited Substances List that was voted in at the FEI General Assembly in November 2009 alongside the new Equine Anti-Doping and Controlled Medication Regulations(EADCMR).
    [Show full text]
  • Early Local Drug Therapy for Pancreatic Contusion and Laceration
    Pancreatology 19 (2019) 285e289 Contents lists available at ScienceDirect Pancreatology journal homepage: www.elsevier.com/locate/pan Early local drug therapy for pancreatic contusion and laceration Cong Feng a, 1, Hao Yang e, 1, Sai Huang c, 1, Xuan Zhou a, 1, Lili Wang a, Xiang Cui d, *** ** * Li Chen a, , 2, Faqin Lv b, , 2, Tanshi Li a, , 2 a Department of Emergency, First Medical Center, General Hospital of the PLA, Beijing, 100853, China b Department of Ultrasound, Hainan Hospital of the PLA General Hospital, Sanya, 572000, China c Department of Hematology, First Medical Center, General Hospital of the PLA, Beijing, 100853, China d Department of Orthopedics, First Medical Center, General Hospital of the PLA, Beijing, 100853, China e Department of Radiation Oncology, Inner Mongolia Cancer Hospital & Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010020, China article info abstract Article history: Objectives: To study the therapeutic effect of early local drug therapy on pancreatic contusion and Received 18 September 2018 laceration. Received in revised form Methods: Twenty pigs were divided into 4 groups: model(PL), 1 ml of saline; medical protein glue (EC), 12 December 2018 1 ml of medical protein glue; ulinastatin (UL), 50000U of ulinastatin; combined treatment (UE), 1 ml of Accepted 16 January 2019 medical protein glue and 50000U of ulinastatin. 30 min after model establishment, different groups Available online 17 January 2019 received different local drug treatments. The pancreatic function, peritoneal effusion and pancreatic pathology were observed. Keywords: Pancreatic contusion and laceration Results: The UE group got the best therapeutic effect.
    [Show full text]
  • ( 12 ) United States Patent
    US010131766B2 (12 ) United States Patent (10 ) Patent No. : US 10 , 131, 766 B2 Hazen et al. (45 ) Date of Patent: Nov . 20 , 2018 ( 54 ) UNSATURATED POLYESTER RESIN 6 ,619 ,886 B1 9 /2003 Harrington 6 ,692 , 802 B1 2 / 2004 Nava SYSTEM FOR CURED IN - PLACE PIPING 7 , 135 ,087 B2 11/ 2006 Blackmore et al. 7 ,799 ,228 B2 9 /2010 Bomak et al . (71 ) Applicant : Interplastic Corporation , Saint Paul, 8 , 047, 238 B2 11/ 2011 Wiessner et al . MN (US ) 8 ,053 ,031 B2 11/ 2011 Stanley et al. 8 ,092 ,689 B2 1 / 2012 Gosselin (72 ) Inventors : Benjamin R . Hazen , Roseville , MN 8 , 298 , 360 B2 10 / 2012 Da Silveira et al. 8 ,418 , 728 B1 4 / 2013 Kiest , Jr . (US ) ; David J . Herzog , Maple Grove , 8 ,586 ,653 B2 11 / 2013 Klopsch et al. MN (US ) ; Louis R . Ross, Cincinnati , 8 ,636 , 869 B2 1 / 2014 Wiessner et al . OH (US ) ; Joel R . Weber , Moundsview , 8 ,741 , 988 B2 6 /2014 Klopsch et al. MN (US ) 8 , 877 , 837 B2 11/ 2014 Yu et al. 9 ,068 , 045 B2 6 /2015 Nava et al. 9 ,074 , 040 B2 7 / 2015 Turshani et al. ( 73 ) Assignee : Interplastic Corporation , St. Paul , MN 9 , 150 , 709 B2 10 / 2015 Klopsch et al . (US ) 9 , 207 , 155 B1 12 / 2015 Allouche et al. 9 ,273 ,815 B2 3 / 2016 Gillanders et al. ( * ) Notice : Subject to any disclaimer, the term of this 9 , 371, 950 B2 6 / 2016 Hairston et al. patent is extended or adjusted under 35 9 , 550 , 933 B2 1 /2017 Chatterji et al .
    [Show full text]