Assessment of the Conservation Values of the Norfolk Seamounts Area

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of the Conservation Values of the Norfolk Seamounts Area Assessment of the conservation values of the Norfolk Seamounts area A component of the Commonwealth Marine Conservation Assessment Program 2002-2004 • A. Williams • F. Althaus • D. Furlani Report to the Department of the Environment and Heritage March 2006 BLANK PAGE Assessment of the conservation values of the Norfolk Seamounts area A component of the Commonwealth Marine Conservation Assessment Program 2002-2004 A. Williams F. Althaus D. Furlani Report to: Department of the Environment and Heritage March 2006 Assessment of the conservation values of the Norfolk Seamounts area: a component of the Commonwealth Marine Conservation Assessment Program 2002-2004: Report to the Australian Government Department of the Environment and Heritage Bibliography. ISBN 1 876 996 96 X. 1. Seamounts – Norfolk Island. 2. Marine ecology Norfolk Island 3. Conservation of natural resources Norfolk Island. I. Williams, A. (Alan) -. II. CSIRO. Marine and Atmospheric Research. CREDITS: Design: CSIRO Marine and Atmospheric Research Printing: PML Hobart, Tasmania Published by CSIRO Marine and Atmospheric Research Conservation values assessment – Norfolk Seamounts Table of contents TABLE OF CONTENTS .......................................................................................................... I LIST OF TABLES ................................................................................................................. V LIST OF FIGURES..............................................................................................................VII SUMMARY.......................................................................................................................... 1 BACKGROUND.................................................................................................................... 9 Scope of the Conservation Values Assessments (CVAs) ................................................ 9 The Norfolk Seamounts area – original outline........................................................... 10 The Norfolk Island Seamounts Area (NISA) – definition............................................. 12 METHODS......................................................................................................................... 13 Stakeholder engagement and data collation................................................................ 13 Data analysis ............................................................................................................... 14 FINDINGS ......................................................................................................................... 15 Physical Environment.................................................................................................. 15 Bathymetry............................................................................................................... 20 Geomorphology........................................................................................................ 21 Physical oceanography............................................................................................. 27 Distinct sub-regions within the assessment area ...................................................... 31 Biological Environment ............................................................................................... 32 Bioregionalisation .................................................................................................... 32 List of species........................................................................................................... 35 Key species............................................................................................................... 36 Key processes........................................................................................................... 42 Discrete biological units within assessment area ..................................................... 43 Special locations....................................................................................................... 44 MPA identification criteria.......................................................................................... 44 Representativeness ................................................................................................... 44 Comprehensiveness.................................................................................................. 46 Ecological importance.............................................................................................. 46 International / national importance........................................................................... 47 Uniqueness ............................................................................................................... 48 Productivity .............................................................................................................. 48 Vulnerability ............................................................................................................ 48 i Conservation values assessment – Norfolk Seamounts Biogeographic importance........................................................................................ 49 Naturalness ............................................................................................................... 49 Current and potential uses and existing management regimes.................................... 50 Fisheries.................................................................................................................... 50 Minerals and Petroleum............................................................................................ 55 Tourism and recreation (non-fishing)....................................................................... 55 Maritime transport.................................................................................................... 56 Indigenous interests/ values...................................................................................... 57 Legislation/ management arrangements ................................................................... 58 Current and potential impacts on natural values......................................................... 61 DISCUSSION...................................................................................................................... 63 Seamounts and their natural values .......................................................................... 63 The Norfolk Island Seamounts Area in the national and regional context............... 64 Conservation values of seamounts in the Norfolk Island Seamounts Area.............. 65 Threats to conservation values of the NISA............................................................. 67 Factors for future conservation planning.................................................................. 67 CONCLUSION.................................................................................................................... 71 ACKNOWLEDGEMENTS .................................................................................................... 72 REFERENCES .................................................................................................................... 73 APPENDIX 1...................................................................................................................... 85 APPENDIX 2...................................................................................................................... 87 APPENDIX 3...................................................................................................................... 91 Form letter to potential stakeholders and data holders............................................... 91 Form letter to managers and participants in the NORFANZ survey ........................... 96 APPENDIX 4...................................................................................................................... 99 Norfolk Seamounts CVA – Workshop — AGENDA ..................................................... 99 Norfolk Seamounts CVA – Workshop — OUTCOMES.............................................. 100 Introductory comments........................................................................................... 100 Main discussion points ........................................................................................... 100 Data descriptions .................................................................................................... 101 Norfolk Seamounts CVA – Workshop — RECOMMENDATIONS ............................ 108 Conclusions ............................................................................................................ 109 APPENDIX 5 — FAUNAL DISTRIBUTION IN THE CORAL AND TASMAN SEAS — REGIONAL DATA ANALYSIS ............................................................................................................ 111 ii Conservation values assessment – Norfolk Seamounts Background................................................................................................................ 111 Methods...................................................................................................................... 112 Regional distribution of surveys and data sets ....................................................... 112 Regional data available for analyses ...................................................................... 113 Data conditioning ..................................................................................................
Recommended publications
  • High Seas Bottom Trawl Fisheries and Their Impacts on the Biodiversity Of
    High Seas Bottom Trawl Fisheries and their Impacts on the Biodiversity of Vulnerable Deep-Sea Ecosystems: Options for International Action Matthew Gianni Cover Photography The author wishes to thank the following contributors for use of their photography. Clockwise from top right: A rare anglerfish or sea toad (Chaunacidae: Bathychaunax coloratus), measuring 20.5 cm in total length, on the Davidson Seamount (2461 meters). Small, globular, reddish, cirri or hairy protrusions cover the body. The lure on the forehead is used to attract prey. Credit: NOAA/MBARI 2002 Industrial fisheries of Orange roughy. Emptying a mesh full of Orange roughy into a trawler. © WWF / AFMA, Credit: Australian Fisheries Management Authority White mushroom sponge (Caulophecus sp). on the Davidson Seamount (1949 meters). Credit: NOAA/MBARI 2002 Bubblegum coral (Paragorgia sp.) and stylasterid coral (Stylaster sp.) at 150 meters depth off Adak Island, Alaska. Credit: Alberto Lindner/NOAA Cover design: James Oliver, IUCN Global Marine Programme Printing of this publication was made possible through the generous support of HIGH SEAS BOTTOM TRAWL FISHERIES AND THEIR IMPACTS ON THE BIODIVERSITY OF VULNERABLE DEEP-SEA ECOSYSTEMS: OPTIONS FOR INTERNATIONAL ACTION Matthew Gianni IUCN – The World Conservation Union 2004 Report prepared for IUCN - The World Conservation Union Natural Resources Defense Council WWF International Conservation International The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN, WWF, Conservation International or Natural Resources Defense Council concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Brittle-Star Mass Occurrence on a Late Cretaceous Methane Seep from South Dakota, USA Received: 16 May 2018 Ben Thuy1, Neil H
    www.nature.com/scientificreports OPEN Brittle-star mass occurrence on a Late Cretaceous methane seep from South Dakota, USA Received: 16 May 2018 Ben Thuy1, Neil H. Landman2, Neal L. Larson3 & Lea D. Numberger-Thuy1 Accepted: 29 May 2018 Articulated brittle stars are rare fossils because the skeleton rapidly disintegrates after death and only Published: xx xx xxxx fossilises intact under special conditions. Here, we describe an extraordinary mass occurrence of the ophiacanthid ophiuroid Brezinacantha tolis gen. et sp. nov., preserved as articulated skeletons from an upper Campanian (Late Cretaceous) methane seep of South Dakota. It is uniquely the frst fossil case of a seep-associated ophiuroid. The articulated skeletons overlie centimeter-thick accumulations of dissociated skeletal parts, suggesting lifetime densities of approximately 1000 individuals per m2, persisting at that particular location for several generations. The ophiuroid skeletons on top of the occurrence were preserved intact most probably because of increased methane seepage, killing the individuals and inducing rapid cementation, rather than due to storm-induced burial or slumping. The mass occurrence described herein is an unambiguous case of an autochthonous, dense ophiuroid community that persisted at a particular spot for some time. Thus, it represents a true fossil equivalent of a recent ophiuroid dense bed, unlike other cases that were used in the past to substantiate the claim of a mid-Mesozoic predation-induced decline of ophiuroid dense beds. Brittle stars, or ophiuroids, are among the most abundant and widespread components of the marine benthos, occurring at all depths and latitudes of the world oceans1. Most of the time, however, ophiuroids tend to live a cryptic life hidden under rocks, inside sponges, epizoic on corals or buried in the mud (e.g.2) to such a point that their real abundance is rarely appreciated at frst sight.
    [Show full text]
  • Vulnerable Marine Ecosystems – Processes and Practices in the High Seas Vulnerable Marine Ecosystems Processes and Practices in the High Seas
    ISSN 2070-7010 FAO 595 FISHERIES AND AQUACULTURE TECHNICAL PAPER 595 Vulnerable marine ecosystems – Processes and practices in the high seas Vulnerable marine ecosystems Processes and practices in the high seas This publication, Vulnerable Marine Ecosystems: processes and practices in the high seas, provides regional fisheries management bodies, States, and other interested parties with a summary of existing regional measures to protect vulnerable marine ecosystems from significant adverse impacts caused by deep-sea fisheries using bottom contact gears in the high seas. This publication compiles and summarizes information on the processes and practices of the regional fishery management bodies, with mandates to manage deep-sea fisheries in the high seas, to protect vulnerable marine ecosystems. ISBN 978-92-5-109340-5 ISSN 2070-7010 FAO 9 789251 093405 I5952E/2/03.17 Cover photo credits: Photo descriptions clockwise from top-left: Acanthagorgia spp., Paragorgia arborea, Vase sponges (images courtesy of Fisheries and Oceans, Canada); and Callogorgia spp. (image courtesy of Kirsty Kemp, the Zoological Society of London). FAO FISHERIES AND Vulnerable marine ecosystems AQUACULTURE TECHNICAL Processes and practices in the high seas PAPER 595 Edited by Anthony Thompson FAO Consultant Rome, Italy Jessica Sanders Fisheries Officer FAO Fisheries and Aquaculture Department Rome, Italy Merete Tandstad Fisheries Resources Officer FAO Fisheries and Aquaculture Department Rome, Italy Fabio Carocci Fishery Information Assistant FAO Fisheries and Aquaculture Department Rome, Italy and Jessica Fuller FAO Consultant Rome, Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2016 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Phylogenomic Resolution of Sea Spider Diversification Through Integration Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929612; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Phylogenomic resolution of sea spider diversification through integration of multiple data classes 1Jesús A. Ballesteros†, 1Emily V.W. Setton†, 1Carlos E. Santibáñez López†, 2Claudia P. Arango, 3Georg Brenneis, 4Saskia Brix, 5Esperanza Cano-Sánchez, 6Merai Dandouch, 6Geoffrey F. Dilly, 7Marc P. Eleaume, 1Guilherme Gainett, 8Cyril Gallut, 6Sean McAtee, 6Lauren McIntyre, 9Amy L. Moran, 6Randy Moran, 5Pablo J. López-González, 10Gerhard Scholtz, 6Clay Williamson, 11H. Arthur Woods, 12Ward C. Wheeler, 1Prashant P. Sharma* 1 Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI, USA 2 Queensland Museum, Biodiversity Program, Brisbane, Australia 3 Zoologisches Institut und Museum, Cytologie und Evolutionsbiologie, Universität Greifswald, Greifswald, Germany 4 Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), c/o Biocenter Grindel (CeNak), Martin-Luther-King-Platz 3, Hamburg, Germany 5 Biodiversidad y Ecología Acuática, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain 6 Department of Biology, California State University-Channel Islands, Camarillo, CA, USA 7 Départment Milieux et Peuplements Aquatiques, Muséum national d’Histoire naturelle, Paris, France 8 Institut de Systématique, Emvolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Concarneau, France 9 Department of Biology, University of Hawai’i at Mānoa, Honolulu, HI, USA Page 1 of 31 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929612; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • A New Bathyal Ophiacanthid Brittle Star (Ophiuroidea: Ophiacanthidae) with Caribbean Affinities from the Plio-Pleistocene of the Mediterranean
    Zootaxa 4820 (1): 019–030 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4820.1.2 http://zoobank.org/urn:lsid:zoobank.org:pub:ED703EC8-3124-413F-8B17-3C1695B789C5 A new bathyal ophiacanthid brittle star (Ophiuroidea: Ophiacanthidae) with Caribbean affinities from the Plio-Pleistocene of the Mediterranean LEA D. NUMBERGER-THUY & BEN THUY* Natural History Museum Luxembourg, Department of Palaeontology, 25, rue Münster, 2160 Luxembourg, Luxembourg; https://orcid.org/0000-0001-6097-995X *corresponding author: [email protected]; https://orcid.org/0000-0001-8231-9565 Abstract Identifiable remains of large deep-sea invertebrates are exceedingly rare in the fossil record. Thus, every new discovery adds to a better understanding of ancient deep-sea environments based on direct fossil evidence. Here we describe a collection of dissociated skeletal parts of ophiuroids (brittle stars) from the latest Pliocene to earliest Pleistocene of Sicily, Italy, preserved as microfossils in sediments deposited at shallow bathyal depths. The material belongs to a previously unknown species of ophiacanthid brittle star, Ophiacantha oceani sp. nov. On the basis of morphological comparison of skeletal microstructures, in particular spine articulations and vertebral articular structures of the lateral arm plates, we conclude that the new species shares closest ties with Ophiacantha stellata, a recent species living in the present-day Caribbean at bathyal depths. Since colonization of the deep Mediterranean following the Messinian crisis at the end of the Miocene was only possibly via the Gibraltar Sill, the presence of tropical western Atlantic clades in the Plio-Pleistocene of the Mediterranean suggests a major deep-sea faunal turnover yet to be explored.
    [Show full text]
  • Translation 3204
    4 of 6 I' rÉ:1°.r - - - Ï''.ec.n::::,- - — TRANSLATION 3204 and Van, else--- de ,-0,- SERIES NO(S) ^4p €'`°°'°^^`m`^' TRANSLATION 3204 5 of 6 serceaesoe^nee SERIES NO.(S) serv,- i°- I' ann., Canada ° '° TRANSLATION 3204 6 of 6 SERIES NO(S) • =,-""r I FISHERIES AND MARINE SERVICE ARCHIVE:3 Translation Series No. 3204 Multidisciplinary investigations of the continental slope in the Gulf of Alaska area by Z.A. Filatova (ed.) Original title: Kompleksnyye issledovaniya materikovogo sklona v raione Zaliva Alyaska From: Trudy Instituta okeanologii im. P.P. ShirshoV (Publications of the P.P. Shirshov Oceanpgraphy Institute), 91 : 1-260, 1973 Translated by the Translation Bureau(HGC) Multilingual Services Division Department of the Secretary of State of Canada Department of the Environment Fisheries and Marine Service Pacific Biological Station Nanaimo, B.C. 1974 ; 494 pages typescriPt "DEPARTMENT OF THE SECRETARY OF STATE SECRÉTARIAT D'ÉTAT TRANSLATION BUREAU BUREAU DES TRADUCTIONS MULTILINGUAL SERVICES DIVISION DES SERVICES DIVISION MULTILINGUES ceÔ 'TRANSLATED FROM - TRADUCTION DE INTO - EN Russian English Ain HOR - AUTEUR Z. A. Filatova (ed.) ri TL E IN ENGLISH - TITRE ANGLAIS Multidisciplinary investigations of the continental slope in the Gulf of Aâaska ares TI TLE IN FORE I GN LANGuAGE (TRANS LI TERA TE FOREIGN CHARACTERS) TITRE EN LANGUE ÉTRANGÈRE (TRANSCRIRE EN CARACTÈRES ROMAINS) Kompleksnyye issledovaniya materikovogo sklona v raione Zaliva Alyaska. REFERENCE IN FOREI GN LANGUAGE (NAME: OF BOOK OR PUBLICATION) IN FULL. TRANSLI TERATE FOREIGN CHARACTERS, RÉFÉRENCE EN LANGUE ÉTRANGÈRE (NOM DU LIVRE OU PUBLICATION), AU COMPLET, TRANSCRIRE EN CARACTÈRES ROMAINS. Trudy Instituta okeanologii im. P.P.
    [Show full text]
  • Chapter 51. Biological Communities on Seamounts and Other Submarine Features Potentially Threatened by Disturbance
    Chapter 51. Biological Communities on Seamounts and Other Submarine Features Potentially Threatened by Disturbance Contributors: J. Anthony Koslow, Peter Auster, Odd Aksel Bergstad, J. Murray Roberts, Alex Rogers, Michael Vecchione, Peter Harris, Jake Rice, Patricio Bernal (Co-Lead members) 1. Physical, chemical, and ecological characteristics 1.1 Seamounts Seamounts are predominantly submerged volcanoes, mostly extinct, rising hundreds to thousands of metres above the surrounding seafloor. Some also arise through tectonic uplift. The conventional geological definition includes only features greater than 1000 m in height, with the term “knoll” often used to refer to features 100 – 1000 m in height (Yesson et al., 2011). However, seamounts and knolls do not appear to differ much ecologically, and human activity, such as fishing, focuses on both. We therefore include here all such features with heights > 100 m. Only 6.5 per cent of the deep seafloor has been mapped, so the global number of seamounts must be estimated, usually from a combination of satellite altimetry and multibeam data as well as extrapolation based on size-frequency relationships of seamounts for smaller features. Estimates have varied widely as a result of differences in methodologies as well as changes in the resolution of data. Yesson et al. (2011) identified 33,452 seamount and guyot features > 1000 m in height and 138,412 knolls (100 – 1000 m), whereas Harris et al. (2014) identified 10,234 seamount and guyot features, based on a stricter definition that restricted seamounts to conical forms. Estimates of total abundance range to >100,000 seamounts and to 25 million for features > 100 m in height (Smith 1991; Wessel et al., 2010).
    [Show full text]
  • Arthropoda: Pycnogonida)
    European Journal of Taxonomy 286: 1–33 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2017.286 www.europeanjournaloftaxonomy.eu 2017 · Sabroux R. et al. This work is licensed under a Creative Commons Attribution 3.0 License. DNA Library of Life, research article urn:lsid:zoobank.org:pub:8B9DADD0-415E-4120-A10E-8A3411C1C1A4 Biodiversity and phylogeny of Ammotheidae (Arthropoda: Pycnogonida) Romain SABROUX 1, Laure CORBARI 2, Franz KRAPP 3, Céline BONILLO 4, Stépahnie LE PRIEUR 5 & Alexandre HASSANIN 6,* 1,2,6 UMR 7205, Institut de Systématique, Evolution et Biodiversité, Département Systématique et Evolution, Sorbonne Universités, Muséum national d’Histoire naturelle, 55 rue Buffon, CP 51, 75005 Paris, France. 3 Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany. 4,5 UMS CNRS 2700, Muséum national d’Histoire naturelle, CP 26, 57 rue Cuvier, 75231 Paris Cedex 05, France. * Corresponding author: [email protected] 1 Email: [email protected] 2 Email: [email protected] 3 Email: [email protected] 4 Email: [email protected] 5 Email: [email protected] 1 urn:lsid:zoobank.org:author:F48B4ABE-06BD-41B1-B856-A12BE97F9653 2 urn:lsid:zoobank.org:author:9E5EBA7B-C2F2-4F30-9FD5-1A0E49924F13 3 urn:lsid:zoobank.org:author:331AD231-A810-42F9-AF8A-DDC319AA351A 4 urn:lsid:zoobank.org:author:7333D242-0714-41D7-B2DB-6804F8064B13 5 urn:lsid:zoobank.org:author:5C9F4E71-9D73-459F-BABA-7495853B1981 6 urn:lsid:zoobank.org:author:0DCC3E08-B2BA-4A2C-ADA5-1A256F24DAA1 Abstract. The family Ammotheidae is the most diversified group of the class Pycnogonida, with 297 species described in 20 genera.
    [Show full text]
  • Biogenic Habitats on New Zealand's Continental Shelf. Part II
    Biogenic habitats on New Zealand’s continental shelf. Part II: National field survey and analysis New Zealand Aquatic Environment and Biodiversity Report No. 202 E.G. Jones M.A. Morrison N. Davey S. Mills A. Pallentin S. George M. Kelly I. Tuck ISSN 1179-6480 (online) ISBN 978-1-77665-966-1 (online) September 2018 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-and-resources/publications http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright – Fisheries New Zealand TABLE OF CONTENTS EXECUTIVE SUMMARY 1 1. INTRODUCTION 3 1.1 Overview 3 1.2 Objectives 4 2. METHODS 5 2.1 Selection of locations for sampling. 5 2.2 Field survey design and data collection approach 6 2.3 Onboard data collection 7 2.4 Selection of core areas for post-voyage processing. 8 Multibeam data processing 8 DTIS imagery analysis 10 Reference libraries 10 Still image analysis 10 Video analysis 11 Identification of biological samples 11 Sediment analysis 11 Grain-size analysis 11 Total organic matter 12 Calcium carbonate content 12 2.5 Data Analysis of Core Areas 12 Benthic community characterization of core areas 12 Relating benthic community data to environmental variables 13 Fish community analysis from DTIS video counts 14 2.6 Synopsis Section 15 3. RESULTS 17 3.1
    [Show full text]
  • User Guide to Identifying Candidate Areas for a Regional
    Australia’s South-east Marine Region: A User’s Guide to Identifying Candidate Areas for a Regional Representative System of Marine Protected Areas August 2003 http://www.ea.gov.au/coasts/mpa/ © Commonwealth of Australia 2003 Information contained in this publication may be copied or reproduced for study, research, information or educational purposes, subject to inclusion of an acknowledgment of the source and provided no commercial usage or sale of the material occurs. Reproduction for purposes other than those given above requires written permission from Environment Australia. Requests for permission should be addressed to: Assistant Secretary Parks Australia South Environment Australia GPO Box 787 CANBERRA ACT 2601 Disclaimer: This paper was prepared by Environment Australia, CSIRO Marine Research and the National Oceans Office to assist with the process of identifying marine areas for inclusion within a representative system of marine protected areas as part of the South-east Regional Marine Plan. The views and opinions expressed in this publication are not necessarily those of the Commonwealth. The Commonwealth does not accept responsibility for the contents of this report, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. ISBN: 0 642 54950 8 Contents About this user’s guide iii Your input to the process iv PART A 1 Section 1 Introduction 1 1.1 Policy context 1 1.2 Future representative marine protected area proposals in
    [Show full text]
  • Proposal to Study Subduction Initiation in Northern Zealandia Tim Stern1
    Proposal to study subduction initiation in northern Zealandia Tim Stern1, Rupert Sutherland2 1 Victoria University of Wellington; 2 GNS Science, Lower Hutt [email protected] Back-arc regions of subduction zones contain sedimentary records that hold clues to the subduction initiation process, and provide complementary insights to fore-arc studies (e.g. Izu-Bonin-Mariana and Tonga). The basins and sedimentary platforms northwest of New Zealand record onset of the Tonga –Kermadec (TK) system during the Eocene- Oligocene (see Gurnis et al. white paper). We propose (mainly) marine geophysical studies that will reveal clues as to how and why TK, and Hikurangi, subduction started. Key features that require study are: Norfolk Ridge (NR); New Caledonia Trough (NCT); Taranaki-Wanganui basins; and Three Kings Ridge (TKR). The NR is where surface convergence was associated with initial subduction. What was the vergence and timing of thrusting, what vertical motions took place, and how do these observations compare and discriminate alternate geodynamic model predictions? The New Caledonia Trough lies adjacent to Norfolk Ridge, was deformed in the subduction initiation event and subsided with large magnitude (Sutherland and al., 2010) that is precisely quantified (1.5 km) at its southern end near the north end of Taranaki Basin (Baur et al., 2013). What was the regional timing of NCT subsidence in relation to other aspects of subduction initiation, and what is its significance? Does the 1.5 km of Oligocene “platform subsidence” seen in oil company drill hole data from South Taranaki Basin at ~ 30 Ma (Stern and Holt, 1994) have a common cause as that in the NCT ? If so, the process occurs on a ~1000 km scale and is clearly geodynamically significant.
    [Show full text]
  • 32-1 Arculus.Pdf
    OceTHE OFFICIALa MAGAZINEn ogOF THE OCEANOGRAPHYra SOCIETYphy CITATION Arculus, R.J., M. Gurnis, O. Ishizuka, M.K. Reagan, J.A. Pearce, and R. Sutherland. 2019. How to cre- ate new subduction zones: A global perspective. Oceanography 32(1):160–174, https://doi.org/ 10.5670/oceanog.2019.140. DOI https://doi.org/10.5670/oceanog.2019.140 PERMISSIONS Oceanography (ISSN 1042-8275) is published by The Oceanography Society, 1 Research Court, Suite 450, Rockville, MD 20850 USA. ©2019 The Oceanography Society, Inc. Permission is granted for individuals to read, download, copy, distribute, print, search, and link to the full texts of Oceanography articles. Figures, tables, and short quotes from the magazine may be republished in scientific books and journals, on websites, and in PhD dissertations at no charge, but the materi- als must be cited appropriately (e.g., authors, Oceanography, volume number, issue number, page number[s], figure number[s], and DOI for the article). Republication, systemic reproduction, or collective redistribution of any material in Oceanography is permitted only with the approval of The Oceanography Society. Please contact Jennifer Ramarui at [email protected]. Permission is granted to authors to post their final pdfs, provided byOceanography , on their personal or institutional websites, to deposit those files in their institutional archives, and to share the pdfs on open-access research sharing sites such as ResearchGate and Academia.edu. DOWNLOADED FROM HTTPS://TOS.ORG/OCEANOGRAPHY SPECIAL ISSUE ON SCIENTIFIC OCEAN DRILLING: LOOKING TO THE FUTURE HOW TO CREATE NEW SUBDUCTION ZONES A Global Perspective By Richard J. Arculus, Michael Gurnis, Osamu Ishizuka, Mark K.
    [Show full text]