Distinct Molecular Mechanisms Analysis of Obesity Based on Gene Expression Profles

Total Page:16

File Type:pdf, Size:1020Kb

Distinct Molecular Mechanisms Analysis of Obesity Based on Gene Expression Profles Distinct Molecular Mechanisms Analysis of Obesity Based on Gene Expression Proles Harish Joshi Endocrine and Diabetes Care Center, Hubbali, 580029, Karanataka, India Basavaraj Mallikarjunayya Vastrad SET`S College Of Pharmacy, SR Nagar, Dharwad, 580002, Karanataka, India Nidhi Joshi Dr D Y Patil Medical College, Kolhapur, 416006, Maharastra, India Chanabasayya Mallikarjunayya Vastrad ( [email protected] ) Chanabasava Nilaya https://orcid.org/0000-0003-3615-4450 Research Keywords: adiposities, obesity, differentially expressed genes, modules, protein–protein interaction network Posted Date: October 22nd, 2020 DOI: https://doi.org/10.21203/rs.3.rs-95029/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/98 Abstract Background Obesity is the most common metabolic disorder worldwide. Its progression rate has remained high in recent years. Objectives Therefore, the aim of this study was to diagnose important differentially expressed genes (DEGs) associated in its development, which may be used as novel biomarkers or potential therapeutic targets for obesity. Methods The gene expression prole of E-MTAB-6728 was downloaded from the database. After screening DEGs in each ArrayExpress dataset, we further used the robust rank aggregation method to diagnose 876 signicant DEGs including 438 up regulated and 438 down regulated genes. Pathway enrichment analyses and Gene Ontology (GO) were performed by online tool ToppCluster. These DEGs were shown to be signicantly enriched in different obesity related pathways and GO functions. Then, the mentha, miRNet and NetworkAnalyst databases were used to construct the protein–protein interaction network, target genes - miRNA regulatory network and target genes - TF regulatory network. The module analysis was performed by the PEWCC1 plug‐in of Cytoscape based on the whole PPI network. Results We nally ltered out HSPA8, ESR1, YWHAH, RPL14, SOD2, BTG2, LYZ and EFNA1 hub genes. Hub genes were validated by ICH analysis, Receiver operating curve (ROC) analysis and RT-PCR. The robust DEGs linked with the development of obesity were screened through the ArrayExpress database, and integrated bioinformatics analysis was conducted. Conclusions Our study provides reliable molecular biomarkers for screening and diagnosis, prognosis as well as novel therapeutic targets for obesity. Introduction Obesity comes under metabolic disorder and is now so common in global population [1]. Obesity occurs in children age between 5 to 19 years as well as more common in women than in men [2]. It is linked with pathogenesis of many disorders such as heart disease [3], hyperlipidaemia [4], hyperinsulinaemia [5], hypertension [6], atherosclerosis [7], insulin resistance [8] and cancer [9]. Important candidate genes and relevant signaling pathways linked with obesity remains largely unknown. As a result, seek of an earlier diagnosis and better prognosis, deeper understanding of genetic and molecular mechanisms about obesity is necessary. Accumulative evidence suggested that many genes and signaling pathways participate in obesity progression. Polymorphisms in UCP2 and UCP3 were responsible for development of obesity [10]. TNFα and lipoprotein lipase were important for advancement of obesity [11]. SLC6A14 [12] and JHDM2A [13] were lined with pathogenesis of obesity. Human salivary (AMY1) and pancreatic (AMY2) amylase genes were diagnosed with growth of obesity [14]. Signaling pathways such as inammatory signaling pathway [15], TLR4 signaling pathway [16], calcineurin-dependent signaling pathways [17], mTOR Complex1–S6K1 signaling pathway [18] and leptin-signaling pathway [19] were important for development of obesity. Therefore, it is key to understand the molecular mechanisms associated in development of obesity, which facilitates effective diagnosis, prognosis and treatment. However, the essential genes of development of obesity remain largely unknown. In present trends, the application of high-throughput analysis in gene expression is becoming more valuable in clinical and medical research [20], molecular classication [21], prognosis prediction [22], diagnoses [23] and new targeted drug discovery [24]. In this study, the original microarray data (E-MTAB-6728) was downloaded from ArrayExpress. The gene expression proles of adipocytes from obese patients were extracted and compared with those in adipocytes from lean persons (controls) to identify the differently expressed genes (DEGs). Subsequently, the DEGs were screened with the application of limma (http://www.bioconductor.org/packages/release/bioc/html/limma.html) followed by gene ontology (GO), pathway enrichment analysis using different pathway databases, Protein–protein interaction network construction and analysis, module analysis, target gene - miRNA interaction network construction and analysis, and target gene - TF interaction network construction and analysis. The results provide information about the key pathways and genes that will contribute to further research on the diagnosis, prognosis and treatment for obesity. Materials And Methods Microarray Data The microarray expression prole of E-MTAB-6728 was downloaded from ArrayExpress (https://www.ebi.ac.uk/). E-MTAB-6728 was based on A-MEXP-1171 - Illumina HumanHT-12 v3.0 Expression BeadChip and was submitted by Bjune et al [25]. The E-MTAB-6728 dataset about expression of genes from adipocytes from obese patients compared to adipocytes from lean persons (controls). There are twenty-four samples including twelve adipocytes from obese patients and twelve adipocytes from lean persons (controls). The overall design of the experiment was microarray analysis of adiposities from obese patients versus adipocytes from lean persons (controls). Page 2/98 Identication of DEGs between obese patients and lean persons The raw data les were acquired for the analysis as IDAT les (Illumina platform) forms and were converted into gene symbols and then processed to background correction and quartile data normalization using the effective multiarray average algorithm in the beadarray package. The analysis was carried out via R software (version 3.5.2). Hierarchical clustering analysis was applied to categorize the samples into two groups with similar expression patterns in twelve adiposities from obese patients and twelve adipocytes from lean persons (controls). The paired Student’s t-test based on the Limma package in R was used to diagnose DEGs between two experimental conditions. Multiple testing correction was performed by the Benjamini–Hochberg method to obtain the FDR (false discovery rate) value. Then, the Log2 Fold change (log2FC) was determined. DEGs with an FDR < 0.05 and | log2FC | ≥ 0.5 were considered to be statistically signicant. Pathway enrichment analysis of DEGs To further analyses the potential pathway of the overlapping DEGs, the online software ToppCluster (https://toppcluster.cchmc.org/) [26] which integrates different pathway data bases such as BIOCYC (https://biocyc.org/) [27], Kyoto Encyclopedia of Genes and Genomes (KEGG) (http://www.genome.jp/kegg/pathway.html) [28], Pathway Interaction Database (PID) (https://wiki.nci.nih.gov/pages/viewpage.action?pageId=315491760) [29], REACTOME (https://reactome.org/) [30], GenMAPP (http://www.genmapp.org/) [31], MSigDB C2 BIOCARTA (v6.0) (http://software.broadinstitute.org/gsea/msigdb/collections.jsp) [32], PantherDB (http://www.pantherdb.org/) [33], Pathway Ontology (http://www.obofoundry.org/ontology/pw.html) [34] and Small Molecule Pathway Database (SMPDB) (http://smpdb.ca/) [35] were used to perform pathway enrichment analysis. P<0.05 and counts >2 were set as the threshold values. Gene ontology (GO) enrichment analysis of DEGs The DEGs (up and down regulated) were subjected to GO (http://www.geneontology.org/) [36] enrichment analysis. The GO analysis having terms under the three categories such as cellular component (CC), molecular function (MF) and biological process (BP). GO enrichment analyses were performed using ToppCluster (https://toppcluster.cchmc.org/) [26] online tool. The cut-off value for a signicant GO term and pathway was set to p-value<0.05 and count ≥2. Integration of PPI network and module analysis Online tool mentha (https://mentha.uniroma2.it/) [37] is the popular online tool which integrates different PPI databases such as The Molecular INTeraction Database (MINT, https://mint.bio.uniroma2.it/) [38], IntAc (https://www.ebi.ac.uk/intact/) [39], Database of Interacting Proteins (DIP, https://dip.doe- mbi.ucla.edu/dip/Main.cgi) [40], MatrixDB (http://matrixdb.univ-lyon1.fr/) [41] and Biological General Repository for Interaction Datasets (BioGRID, https://thebiogrid.org/) [42] for evaluating protein–protein interaction (PPI) network. Therefore, the interactions of genes (up and down regulated) were analyzed by online tool mentha. To prevent uncertain PPI, a high condence with interaction score more than 0.7 was set as signicance. After that, PPI network was constructed by cytoscape software (version 3.5.1) (http://www.cytoscape.org/) [43]. The plug-in CytoNCA [44] showed hub genes based on 5 centrality mathematical calculation methods such as node degree [45], betweenness [46], stress [47], closeness [48] and clustering coecient [49], the number of genes within 5 centrality mathematical calculation methods were represented the signicance of the disorder. Module analysis was done by the plug-in PEWCC1 [50]. Representative modules were listed by the criteria of both
Recommended publications
  • Functions of the Mineralocorticoid Receptor in the Hippocampus By
    Functions of the Mineralocorticoid Receptor in the Hippocampus by Aaron M. Rozeboom A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in The University of Michigan 2008 Doctoral Committee: Professor Audrey F. Seasholtz, Chair Professor Elizabeth A. Young Professor Ronald Jay Koenig Associate Professor Gary D. Hammer Assistant Professor Jorge A. Iniguez-Lluhi Acknowledgements There are more people than I can possibly name here that I need to thank who have helped me throughout the process of writing this thesis. The first and foremost person on this list is my mentor, Audrey Seasholtz. Between working in her laboratory as a research assistant and continuing my training as a graduate student, I spent 9 years in Audrey’s laboratory and it would be no exaggeration to say that almost everything I have learned regarding scientific research has come from her. Audrey’s boundless enthusiasm, great patience, and eager desire to teach students has made my time in her laboratory a richly rewarding experience. I cannot speak of Audrey’s laboratory without also including all the past and present members, many of whom were/are not just lab-mates but also good friends. I also need to thank all the members of my committee, an amazing group of people whose scientific prowess combined with their open-mindedness allowed me to explore a wide variety of interests while maintaining intense scientific rigor. Outside of Audrey’s laboratory, there have been many people in Ann Arbor without whom I would most assuredly have gone crazy.
    [Show full text]
  • Table S1. List of Proteins in the BAHD1 Interactome
    Table S1. List of proteins in the BAHD1 interactome BAHD1 nuclear partners found in this work yeast two-hybrid screen Name Description Function Reference (a) Chromatin adapters HP1α (CBX5) chromobox homolog 5 (HP1 alpha) Binds histone H3 methylated on lysine 9 and chromatin-associated proteins (20-23) HP1β (CBX1) chromobox homolog 1 (HP1 beta) Binds histone H3 methylated on lysine 9 and chromatin-associated proteins HP1γ (CBX3) chromobox homolog 3 (HP1 gamma) Binds histone H3 methylated on lysine 9 and chromatin-associated proteins MBD1 methyl-CpG binding domain protein 1 Binds methylated CpG dinucleotide and chromatin-associated proteins (22, 24-26) Chromatin modification enzymes CHD1 chromodomain helicase DNA binding protein 1 ATP-dependent chromatin remodeling activity (27-28) HDAC5 histone deacetylase 5 Histone deacetylase activity (23,29,30) SETDB1 (ESET;KMT1E) SET domain, bifurcated 1 Histone-lysine N-methyltransferase activity (31-34) Transcription factors GTF3C2 general transcription factor IIIC, polypeptide 2, beta 110kDa Required for RNA polymerase III-mediated transcription HEYL (Hey3) hairy/enhancer-of-split related with YRPW motif-like DNA-binding transcription factor with basic helix-loop-helix domain (35) KLF10 (TIEG1) Kruppel-like factor 10 DNA-binding transcription factor with C2H2 zinc finger domain (36) NR2F1 (COUP-TFI) nuclear receptor subfamily 2, group F, member 1 DNA-binding transcription factor with C4 type zinc finger domain (ligand-regulated) (36) PEG3 paternally expressed 3 DNA-binding transcription factor with
    [Show full text]
  • Activated Peripheral-Blood-Derived Mononuclear Cells
    Transcription factor expression in lipopolysaccharide- activated peripheral-blood-derived mononuclear cells Jared C. Roach*†, Kelly D. Smith*‡, Katie L. Strobe*, Stephanie M. Nissen*, Christian D. Haudenschild§, Daixing Zhou§, Thomas J. Vasicek¶, G. A. Heldʈ, Gustavo A. Stolovitzkyʈ, Leroy E. Hood*†, and Alan Aderem* *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103; ‡Department of Pathology, University of Washington, Seattle, WA 98195; §Illumina, 25861 Industrial Boulevard, Hayward, CA 94545; ¶Medtronic, 710 Medtronic Parkway, Minneapolis, MN 55432; and ʈIBM Computational Biology Center, P.O. Box 218, Yorktown Heights, NY 10598 Contributed by Leroy E. Hood, August 21, 2007 (sent for review January 7, 2007) Transcription factors play a key role in integrating and modulating system. In this model system, we activated peripheral-blood-derived biological information. In this study, we comprehensively measured mononuclear cells, which can be loosely termed ‘‘macrophages,’’ the changing abundances of mRNAs over a time course of activation with lipopolysaccharide (LPS). We focused on the precise mea- of human peripheral-blood-derived mononuclear cells (‘‘macro- surement of mRNA concentrations. There is currently no high- phages’’) with lipopolysaccharide. Global and dynamic analysis of throughput technology that can precisely and sensitively measure all transcription factors in response to a physiological stimulus has yet to mRNAs in a system, although such technologies are likely to be be achieved in a human system, and our efforts significantly available in the near future. To demonstrate the potential utility of advanced this goal. We used multiple global high-throughput tech- such technologies, and to motivate their development and encour- nologies for measuring mRNA levels, including massively parallel age their use, we produced data from a combination of two distinct signature sequencing and GeneChip microarrays.
    [Show full text]
  • Sanjay Kumar Gupta
    The human CCHC-type Zinc Finger Nucleic Acid Binding Protein (CNBP) binds to the G-rich elements in target mRNA coding sequences and promotes translation Das humane CCHC-Typ-Zinkfinger-Nukleinsäure-Binde-Protein (CNBP) bindet an G-reiche Elemente in der kodierenden Sequenz seiner Ziel-mRNAs und fördert deren Translation Doctoral thesis for a doctoral degree at the Graduate School of Life Sciences, Julius-Maximilians-Universität WürzBurg, Section: Biomedicine suBmitted By Sanjay Kumar Gupta from Varanasi, India WürzBurg, 2016 1 Submitted on: …………………………………………………………..…….. Office stamp Members of the Promotionskomitee: Chairperson: Prof. Dr. Alexander Buchberger Primary Supervisor: Dr. Stefan Juranek Supervisor (Second): Prof. Dr. Utz Fischer Supervisor (Third): Dr. Markus Landthaler Date of Public Defence: …………………………………………….………… Date of Receipt of Certificates: ………………………………………………. 2 Summary The genetic information encoded with in the genes are transcribed and translated to give rise to the functional proteins, which are building block of a cell. At first, it was thought that the regulation of gene expression particularly occurs at the level of transcription By various transcription factors. Recent discoveries have shown the vital role of gene regulation at the level of RNA also known as post-transcriptional gene regulation (PTGR). Apart from non-coding RNAs e.g. micro RNAs, various RNA Binding proteins (RBPs) play essential role in PTGR. RBPs have been implicated in different stages of mRNA life cycle ranging from splicing, processing, transport, localization and decay. In last 20 years studies have shown the presence of hundreds of RBPs across eukaryotic systems many of which are widely conserved. Given the rising numBer of RBPs and their link to human diseases it is quite evident that RBPs have major role in cellular processes and their regulation.
    [Show full text]
  • Transcriptomic Analysis of Pluripotent Stem Cells: Insights Into Health and Disease Jia-Chi Yeo1,2 and Huck-Hui Ng1,2,3,4,5,*
    Yeo and Ng Genome Medicine 2011, 3:68 http://genomemedicine.com/content/3/10/68 REVIEW Transcriptomic analysis of pluripotent stem cells: insights into health and disease Jia-Chi Yeo1,2 and Huck-Hui Ng1,2,3,4,5,* Abstract types, termed ‘pluripotency’, allows researchers to study early mammalian development in an artificial setting and Embryonic stem cells (ESCs) and induced pluripotent offers opportunities for regenerative medicine, whereby stem cells (iPSCs) hold tremendous clinical potential ESCs could generate clinically relevant cell types for because of their ability to self-renew, and to tissue repair. However, this same malleability of ESCs dierentiate into all cell types of the body. This unique also renders it a challenge to obtain in vitro differentiation capacity of ESCs and iPSCs to form all cell lineages of ESCs to specific cell types at high efficacy. erefore, is termed pluripotency. While ESCs and iPSCs are harnessing the full potential of ESCs requires an in-depth pluripotent and remarkably similar in appearance, understanding of the factors and mechanisms regulating whether iPSCs truly resemble ESCs at the molecular ESC pluripotency and cell lineage decisions. level is still being debated. Further research is therefore Early studies on ESCs led to the discovery of the core needed to resolve this issue before iPSCs may be safely pluripotency factors Oct4, Sox2 and Nanog [1], and, applied in humans for cell therapy or regenerative increasingly, the use of genome-level screening assays has medicine. Nevertheless, the use of iPSCs as an in vitro revealed new insights by uncovering additional trans- human genetic disease model has been useful in cription factors, transcriptional cofactors and chromatin studying the molecular pathology of complex genetic remodeling complexes involved in the maintenance of diseases, as well as facilitating genetic or drug screens.
    [Show full text]
  • Prospective Isolation of NKX2-1–Expressing Human Lung Progenitors Derived from Pluripotent Stem Cells
    The Journal of Clinical Investigation RESEARCH ARTICLE Prospective isolation of NKX2-1–expressing human lung progenitors derived from pluripotent stem cells Finn Hawkins,1,2 Philipp Kramer,3 Anjali Jacob,1,2 Ian Driver,4 Dylan C. Thomas,1 Katherine B. McCauley,1,2 Nicholas Skvir,1 Ana M. Crane,3 Anita A. Kurmann,1,5 Anthony N. Hollenberg,5 Sinead Nguyen,1 Brandon G. Wong,6 Ahmad S. Khalil,6,7 Sarah X.L. Huang,3,8 Susan Guttentag,9 Jason R. Rock,4 John M. Shannon,10 Brian R. Davis,3 and Darrell N. Kotton1,2 2 1Center for Regenerative Medicine, and The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA. 3Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA. 4Department of Anatomy, UCSF, San Francisco, California, USA. 5Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA. 6Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA. 7Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA. 8Columbia Center for Translational Immunology & Columbia Center for Human Development, Columbia University Medical Center, New York, New York, USA. 9Department of Pediatrics, Monroe Carell Jr. Children’s Hospital, Vanderbilt University, Nashville, Tennessee, USA. 10Division of Pulmonary Biology, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA. It has been postulated that during human fetal development, all cells of the lung epithelium derive from embryonic, endodermal, NK2 homeobox 1–expressing (NKX2-1+) precursor cells.
    [Show full text]
  • The Zinc-Finger Protein CNBP Is Required for Forebrain Formation In
    Development 130, 1367-1379 1367 © 2003 The Company of Biologists Ltd doi:10.1242/dev.00349 The zinc-finger protein CNBP is required for forebrain formation in the mouse Wei Chen1,2, Yuqiong Liang1, Wenjie Deng1, Ken Shimizu1, Amir M. Ashique1,2, En Li3 and Yi-Ping Li1,2,* 1Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA 2Harvard-Forsyth Department of Oral Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA 3Cardiovascular Research Center, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA *Author for correspondence (e-mail: [email protected]) Accepted 19 December 2002 SUMMARY Mouse mutants have allowed us to gain significant insight (AME), headfolds and forebrain. In Cnbp–/– embryos, the into axis development. However, much remains to be visceral endoderm remains in the distal tip of the conceptus learned about the cellular and molecular basis of early and the ADE fails to form, whereas the node and notochord forebrain patterning. We describe a lethal mutation mouse form normally. A substantial reduction in cell proliferation strain generated using promoter-trap mutagenesis. The was observed in the anterior regions of Cnbp–/– embryos at mutants exhibit severe forebrain truncation in homozygous gastrulation and neural-fold stages. In these regions, Myc mouse embryos and various craniofacial defects in expression was absent, indicating CNBP targets Myc in heterozygotes. We show that the defects are caused by rostral head formation. Our findings demonstrate that disruption of the gene encoding cellular nucleic acid Cnbp is essential for the forebrain induction and binding protein (CNBP); Cnbp transgenic mice were able specification.
    [Show full text]
  • An Interactive Web Application to Explore Regeneration-Associated Gene Expression and Chromatin Accessibility
    Supplementary Materials Regeneration Rosetta: An interactive web application to explore regeneration-associated gene expression and chromatin accessibility Andrea Rau, Sumona P. Dhara, Ava J. Udvadia, Paul L. Auer 1. Table S1. List of cholesterol metabolic genes from MGI database 2. Table S2. List of differentially expressed transcripts during optic nerve regeneration in zebrafish using the MGI cholesterol metabolic gene queries in the Regeneration Rosetta app 3. Table S3. List of transcription factor encoding genes from brain cell bodies following spinal cord injury in lamprey over a course of 12 weeKs 4. Table S4. List of transcription factor encoding genes from spinal cell bodies following spinal cord injury in lamprey over a course of 12 weeks Ensembl ID MGI Gene ID Symbol Name ENSMUSG00000015243 MGI:99607 Abca1 ATP-binding cassette, sub-family A (ABC1), member 1 ENSMUSG00000026944 MGI:99606 Abca2 ATP-binding cassette, sub-family A (ABC1), member 2 ENSMUSG00000024030 MGI:107704 Abcg1 ATP binding cassette subfamily G member 1 ENSMUSG00000026003 MGI:87866 Acadl acyl-Coenzyme A dehydrogenase, long-chain ENSMUSG00000018574 MGI:895149 Acadvl acyl-Coenzyme A dehydrogenase, very long chain ENSMUSG00000038641 MGI:2384785 Akr1d1 aldo-keto reductase family 1, member D1 ENSMUSG00000028553 MGI:1353627 Angptl3 angiopoietin-like 3 ENSMUSG00000031996 MGI:88047 Aplp2 amyloid beta (A4) precursor-like protein 2 ENSMUSG00000032083 MGI:88049 Apoa1 apolipoprotein A-I ENSMUSG00000005681 MGI:88050 Apoa2 apolipoprotein A-II ENSMUSG00000032080 MGI:88051 Apoa4
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • Histone-Binding of DPF2 Mediates Its Repressive Role in Myeloid Differentiation
    Histone-binding of DPF2 mediates its repressive role in myeloid differentiation Ferdinand M. Hubera,1, Sarah M. Greenblattb,1, Andrew M. Davenporta,1, Concepcion Martinezb,YeXub,LyP.Vuc, Stephen D. Nimerb,2, and André Hoelza,2 aDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; bSylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136; and cMolecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Edited by Douglas C. Rees, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, and approved April 26, 2017 (received for review January 6, 2017) Double plant homeodomain finger 2 (DPF2) is a highly evolution- RUNX1 form a methylation-dependent repressive complex in arily conserved member of the d4 protein family that is ubiqui- AML, although it remains unclear whether the two proteins bind tously expressed in human tissues and was recently shown to each other directly or act concertedly as part of a larger complex. inhibit the myeloid differentiation of hematopoietic stem/progen- Here, we present the crystal structure of the human DPF2 itor and acute myelogenous leukemia cells. Here, we present the tandem PHD finger domain at a 1.6-Å resolution. We demon- crystal structure of the tandem plant homeodomain finger domain strate that the DPF2 tandem PHD finger domain binds acetylated of human DPF2 at 1.6-Å resolution. We show that DPF2 interacts H3 and H4 histone tails, identify the primary determinants of with the acetylated tails of both histones 3 and 4 via bipartite histone recognition, and confirm these interactions in vivo.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A Misplaced Lncrna Causes Brachydactyly in Humans
    A misplaced lncRNA causes brachydactyly in humans Philipp G. Maass, … , Friedrich C. Luft, Sylvia Bähring J Clin Invest. 2012;122(11):3990-4002. https://doi.org/10.1172/JCI65508. Research Article Translocations are chromosomal rearrangements that are frequently associated with a variety of disease states and developmental disorders. We identified 2 families with brachydactyly type E (BDE) resulting from different translocations affecting chromosome 12p. Both translocations caused downregulation of the parathyroid hormone-like hormone (PTHLH) gene by disrupting the cis-regulatory landscape. Using chromosome conformation capturing, we identified a regulator on chromosome 12q that interacts in cis with PTHLH over a 24.4-megabase distance and in trans with the sex- determining region Y-box 9 (SOX9) gene on chromosome 17q. The element also harbored a long noncoding RNA (lncRNA). Silencing of the lncRNA, PTHLH, or SOX9 revealed a feedback mechanism involving an expression-dependent network in humans. In the BDE patients, the human lncRNA was upregulated by the disrupted chromosomal association. Moreover, the lncRNA occupancy at the PTHLH locus was reduced. Our results document what we believe to be a novel in cis– and in trans–acting DNA and lncRNA regulatory feedback element that is reciprocally regulated by coding genes. Furthermore, our findings provide a systematic and combinatorial view of how enhancers encoding lncRNAs may affect gene expression in normal development. Find the latest version: https://jci.me/65508/pdf Research article Related Commentary, page 3837 A misplaced lncRNA causes brachydactyly in humans Philipp G. Maass,1,2 Andreas Rump,3 Herbert Schulz,2 Sigmar Stricker,4 Lisanne Schulze,1,2 Konrad Platzer,3 Atakan Aydin,1,2 Sigrid Tinschert,3 Mary B.
    [Show full text]