Spotted Ratfish Hydrolagus Colliei

Total Page:16

File Type:pdf, Size:1020Kb

Spotted Ratfish Hydrolagus Colliei 18 Spotted Ratfish Hydrolagus colliei EGG CASE Diagnosis The only chondrichthyan Range Gulf of Alaska to Baja California in Alaska with a single gill opening on and Gulf of California. each side of the head. Opercle without skeletal support; anterior dorsal fin Depth Intertidal to 971 m. with a long, sharp spine. Remarks The spotted ratfish is Dentition Teeth fused to form quite common throughout the grinding plates. Alexander Archipelago and is regularly encountered on NMFS bottom trawl Coloration Silver to golden brown or surveys as far north as Lituya Bay. In Alaska waters, the spotted ratfish is found in green dorsally with many prominent The three isolated records from the the Gulf of Alaska. white spots; white ventrally; eyes northern and western Gulf of Alaska reflect green. are unverified RACE database records from the mid-1980s. Body shape Caudal region tapering to a point. Similar species The spotted ratfish is the only species of chimaera known Reproduction Oviparous; accessory from Alaska. One or perhaps two clasping organ on head in males. Egg additional undescribed species are case maximum size is 20 cm long. known from deep water off California. Maximum length 100 cm. Spotted Ratfish Hydrolagus colliei 19 20 Spiny Dogfish Squalus acanthias Upper tooth Lower tooth Diagnosis The only Alaska species of Depth Generally benthic, intertidal to shark with a spine on the leading edge 1,244 m. of each dorsal fin; anal fin absent. Remarks Although the spiny dogfish Dentition Upper and lower teeth with has been reported from throughout single low cusp. the Bering Sea and as far north as Kotzebue Sound (Mecklenburg et al. Coloration Gray to medium brown 2002), trawl survey records from the dorsally, with small white spots; pale past 15 years indicate that they are very gray to white ventrally. rare in this region. Body shape Elongate, slim, with In Alaska waters, the spiny dogfish is found Similar species The spiny dogfish is in the Gulf of Alaska and Bering Sea, with one distinctly heterocercal caudal fin. the only shark in Alaska with a spine on record from Kotzebue Sound. the leading edge of each dorsal fin. The Reproduction Viviparous (yolk-sac). only other shark in Alaska that lacks an Maximum length 2 m. anal fin is the Pacific sleeper shark (see p. 22). Range Worldwide in temperate and subarctic waters. Spiny Dogfish Squalus acanthias 21 22 Pacific Sleeper Shark Somniosus pacificus Upper tooth Lower tooth Diagnosis The only Alaska species of Depth Benthic, intertidal to 2,000 m. shark with the combination of no anal fin and no dorsal spines. Remarks The Pacific sleeper shark (sometimes called the mud shark) is Dentition Upper teeth long, narrow, encountered throughout the Gulf of and sharp; lower teeth with short low Alaska and Aleutian Islands, as well cusps. as on the outer shelf and upper slope of the Bering Sea. The Chukchi Sea Coloration Gray to black dorsally; only specimen, reported by Benz et al. slightly lighter ventrally. (2004), washed up onshore near Point In Alaska waters, the Pacific sleeper shark is Hope. found in the Bering Sea, Aleutian Islands, and Body shape Large, stout, and flabby, Gulf of Alaska. with small flaplike, flexible fins. Similar species The Pacific sleeper shark is one of only two sharks in Reproduction Viviparous (yolk-sac). Alaska that have no anal fin. The other Maximum length Documented to is the spiny dogfish, which has a strong 4.4 m, possibly to 7 m or more. spine at the leading edge of each dorsal fin. The small, flexible, flaplike Range North Pacific from Chukchi Sea fins and posterior position of the first to Baja California in the eastern Pacific; dorsal fin are also characteristic of this to Taiwan in the western Pacific. species. Pacific Sleeper Shark Somniosus pacificus 23 24 Bluntnose Sixgill Shark Hexanchus griseus Upper tooth Lower tooth Diagnosis The only Alaska species of Depth Benthic or pelagic, surface to shark with six gill slits on each side of 2,500 m. the head; also the only species with a single dorsal fin. Remarks The bluntnose sixgill shark has only been recorded twice in Alaska Dentition Lower jaw with 6 comb- waters, once south of Unimak Pass shaped teeth. (Larkins 1964) and more recently from Southeast Alaska on a 1999 NMFS Coloration Dark gray to brown bottom trawl survey. dorsally; light gray to white ventrally. The bluntnose sixgill shark has been recorded Similar species The bluntnose sixgill twice in Alaska. Body shape Stout, with broad, shark is the only shark in Alaska with rounded head. six gill slits on each side of the head. The only other sharks in the world Reproduction Viviparous (yolk-sac). with six gill slits are the bigeye sixgill Maximum length 4.8 m. shark (Hexanchus nakamurai), frill shark (Chlamydoselachus anguineus), and Range Tropical and temperate North sixgill sawshark (Pliotrema warreni), all and South Pacific, North and South of which are only found in California Atlantic, and Indian Ocean; eastern waters and farther south. Aleutian Islands. Bluntnose Sixgill Shark Hexanchus griseus 25 26 Basking Shark Cetorhinus maximus Upper tooth Lower tooth Diagnosis The only Alaska species of Range Worldwide in temperate seas; shark with gill slits that nearly encircle northern Gulf of Alaska. the head. Also the largest species found in Alaska waters. Depth Pelagic, near surface. Dentition Teeth minute, hooked. Remarks According to Compagno (1984), the range of the basking shark Coloration Brown to gray or black extends to the Kenai Peninsula. The dorsally, often with irregular light indicated record in the western Gulf patches; lighter ventrally, often with of Alaska is from a 1981 NMFS bottom In Alaska waters, the basking shark is found in white blotches and spots. trawl survey. the Gulf of Alaska. Body shape Large and robust, with Similar species The basking shark is elongate snout. the second largest fish in the world (the whale shark is the largest). Its extremely Reproduction Viviparous large gill slits and minute hooked teeth (oophagous). distinguish it from all other sharks. Maximum length 10 m or more. Basking Shark Cetorhinus maximus 27 28 Brown Cat Shark Apristurus brunneus Upper tooth EGG CASE Lower tooth Diagnosis The only Alaska species Range Southeast Alaska to Central or of shark with two dorsal fins and the South America. leading edge of the first dorsal fin posterior to the leading edge of the Depth Benthic, 33-1,306 m. pelvic fin. Remarks The brown cat shark is Dentition Teeth with 3-5 cusps, the known from only two Alaska records, central cusp largest. both from Southeast Alaska. The northern record was reported by Coloration Uniform dark brown; fin Wilson and Hughes (1978), and the In Alaska waters, the brown cat shark is known margins darker brown to black. southern record was collected on a from only two records in the Gulf of Alaska. 2005 NMFS bottom trawl survey. Body shape Elongate, small; caudal fin long, almost entirely below body Similar Species The brown cat shark midline. is the smallest shark in Alaska. The longnose cat shark (Apristurus kampae) Reproduction Oviparous. Egg case does not occur north of southern 50 mm. Oregon, and can be distinguished from the brown cat shark by its larger gill Maximum size 71 cm. slits, and white fin edges. Brown Cat Shark Apristurus brunneus 29.
Recommended publications
  • Shark Cartilage, Cancer and the Growing Threat of Pseudoscience
    [CANCER RESEARCH 64, 8485–8491, December 1, 2004] Review Shark Cartilage, Cancer and the Growing Threat of Pseudoscience Gary K. Ostrander,1 Keith C. Cheng,2 Jeffrey C. Wolf,3 and Marilyn J. Wolfe3 1Department of Biology and Department of Comparative Medicine, Johns Hopkins University, Baltimore, Maryland; 2Jake Gittlen Cancer Research Institute, Penn State College of Medicine, Hershey, Pennsylvania; and 3Registry of Tumors in Lower Animals, Experimental Pathology Laboratories, Inc., Sterling, Virginia Abstract primary justification for using crude shark cartilage extracts to treat cancer is based on the misconception that sharks do not, or infre- The promotion of crude shark cartilage extracts as a cure for cancer quently, develop cancer. Other justifications represent overextensions has contributed to at least two significant negative outcomes: a dramatic of experimental observations: concentrated extracts of cartilage can decline in shark populations and a diversion of patients from effective cancer treatments. An alleged lack of cancer in sharks constitutes a key inhibit tumor vessel formation and tumor invasions (e.g., refs. 2–5). justification for its use. Herein, both malignant and benign neoplasms of No available data or arguments support the medicinal use of crude sharks and their relatives are described, including previously unreported shark extracts to treat cancer (6). cases from the Registry of Tumors in Lower Animals, and two sharks with The claims that sharks do not, or rarely, get cancer was originally two cancers each. Additional justifications for using shark cartilage are argued by I. William Lane in a book entitled “Sharks Don’t Get illogical extensions of the finding of antiangiogenic and anti-invasive Cancer” in 1992 (7), publicized in “60 Minutes” television segments substances in cartilage.
    [Show full text]
  • Sharks for the Aquarium and Considerations for Their Selection1 Alexis L
    FA179 Sharks for the Aquarium and Considerations for Their Selection1 Alexis L. Morris, Elisa J. Livengood, and Frank A. Chapman2 Introduction The Lore of the Shark Sharks are magnificent animals and an exciting group Though it has been some 35 years since the shark in Steven of fishes. As a group, sharks, rays, and skates belong to Spielberg’s Jaws bit into its first unsuspecting ocean swim- the biological taxonomic class called Chondrichthyes, or mer and despite the fact that the risk of shark-bite is very cartilaginous fishes (elasmobranchs). The entire supporting small, fear of sharks still makes some people afraid to swim structure of these fish is composed primarily of cartilage in the ocean. (The chance of being struck by lightning is rather than bone. There are some 400 described species of greater than the chance of shark attack.) The most en- sharks, which come in all different sizes from the 40-foot- grained shark image that comes to a person’s mind is a giant long whale shark (Rhincodon typus) to the 2-foot-long conical snout lined with multiple rows of teeth efficient at marble catshark (Atelomycterus macleayi). tearing, chomping, or crushing prey, and those lifeless and staring eyes. The very adaptations that make sharks such Although sharks have been kept in public aquariums successful predators also make some people unnecessarily since the 1860s, advances in marine aquarium systems frightened of them. This is unfortunate, since sharks are technology and increased understanding of shark biology interesting creatures and much more than ill-perceived and husbandry now allow hobbyists to maintain and enjoy mindless eating machines.
    [Show full text]
  • Sharks in Crisis: a Call to Action for the Mediterranean
    REPORT 2019 SHARKS IN CRISIS: A CALL TO ACTION FOR THE MEDITERRANEAN WWF Sharks in the Mediterranean 2019 | 1 fp SECTION 1 ACKNOWLEDGEMENTS Written and edited by WWF Mediterranean Marine Initiative / Evan Jeffries (www.swim2birds.co.uk), based on data contained in: Bartolí, A., Polti, S., Niedermüller, S.K. & García, R. 2018. Sharks in the Mediterranean: A review of the literature on the current state of scientific knowledge, conservation measures and management policies and instruments. Design by Catherine Perry (www.swim2birds.co.uk) Front cover photo: Blue shark (Prionace glauca) © Joost van Uffelen / WWF References and sources are available online at www.wwfmmi.org Published in July 2019 by WWF – World Wide Fund For Nature Any reproduction in full or in part must mention the title and credit the WWF Mediterranean Marine Initiative as the copyright owner. © Text 2019 WWF. All rights reserved. Our thanks go to the following people for their invaluable comments and contributions to this report: Fabrizio Serena, Monica Barone, Adi Barash (M.E.C.O.), Ioannis Giovos (iSea), Pamela Mason (SharkLab Malta), Ali Hood (Sharktrust), Matthieu Lapinksi (AILERONS association), Sandrine Polti, Alex Bartoli, Raul Garcia, Alessandro Buzzi, Giulia Prato, Jose Luis Garcia Varas, Ayse Oruc, Danijel Kanski, Antigoni Foutsi, Théa Jacob, Sofiane Mahjoub, Sarah Fagnani, Heike Zidowitz, Philipp Kanstinger, Andy Cornish and Marco Costantini. Special acknowledgements go to WWF-Spain for funding this report. KEY CONTACTS Giuseppe Di Carlo Director WWF Mediterranean Marine Initiative Email: [email protected] Simone Niedermueller Mediterranean Shark expert Email: [email protected] Stefania Campogianni Communications manager WWF Mediterranean Marine Initiative Email: [email protected] WWF is one of the world’s largest and most respected independent conservation organizations, with more than 5 million supporters and a global network active in over 100 countries.
    [Show full text]
  • Causes of Mortality in a Harbor Seal Population at Equilibrium
    fmars-07-00319 May 11, 2020 Time: 19:31 # 1 ORIGINAL RESEARCH published: 13 May 2020 doi: 10.3389/fmars.2020.00319 Causes of Mortality in a Harbor Seal (Phoca vitulina) Population at Equilibrium Elizabeth A. Ashley1, Jennifer K. Olson2, Tessa E. Adler3, Stephen Raverty4, Eric M. Anderson5,3, Steven Jeffries6 and Joseph K. Gaydos1* 1 The SeaDoc Society, UC Davis School of Veterinary Medicine, Karen C. Drayer Wildlife Health Center, Eastsound, WA, United States, 2 The Whale Museum, Friday Harbor, WA, United States, 3 Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States, 4 Animal Health Centre, British Columbia Ministry of Agriculture, Abbotsford, BC, Canada, 5 Ecological Restoration Program, British Columbia Institute of Technology, Burnaby, BC, Canada, 6 Marine Mammal Investigations, Washington Department of Fish and Wildlife, Tacoma, WA, United States The harbor seal (Phoca vitulina richardii) population in the Salish Sea has been at equilibrium since the mid-1990s. This stable population of marine mammals resides relatively close to shore near a large human population and offers a novel opportunity to evaluate whether disease acts in a density-dependent manner to limit population growth. We conducted a retrospective analysis of harbor seal stranding and necropsy findings in the San Juan Islands sub-population to assess age-related stranding trends Edited by: Alastair Martin Mitri Baylis, and causes of mortality. Between January 01, 2002 and December 31, 2018, we South Atlantic Environmental detected 882 harbor seals that stranded and died in San Juan County and conducted Research Institute, Falkland Islands necropsies on 244 of these animals to determine primary and contributing causes Reviewed by: of death.
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • First Record of Swimming Speed of the Pacific Sleeper Shark Somniosus
    Journal of the Marine First record of swimming speed of the Pacific Biological Association of the United Kingdom sleeper shark Somniosus pacificus using a baited camera array cambridge.org/mbi Yoshihiro Fujiwara , Yasuyuki Matsumoto, Takumi Sato, Masaru Kawato and Shinji Tsuchida Original Article Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Yokosuka, Kanagawa 237-0061, Japan Cite this article: Fujiwara Y, Matsumoto Y, Sato T, Kawato M, Tsuchida S (2021). First record of swimming speed of the Pacific Abstract sleeper shark Somniosus pacificus using a baited camera array. Journal of the Marine The Pacific sleeper shark Somniosus pacificus is one of the largest predators in deep Suruga Biological Association of the United Kingdom Bay, Japan. A single individual of the sleeper shark (female, ∼300 cm in total length) was 101, 457–464. https://doi.org/10.1017/ observed with two baited camera systems deployed simultaneously on the deep seafloor in S0025315421000321 the bay. The first arrival was recorded 43 min after the deployment of camera #1 on 21 July 2016 at a depth of 609 m. The shark had several remarkable features, including the Received: 26 July 2020 Revised: 14 April 2021 snout tangled in a broken fishing line, two torn anteriormost left-gill septums, and a parasitic Accepted: 14 April 2021 copepod attached to each eye. The same individual appeared at camera #2, which was First published online: 18 May 2021 deployed at a depth of 603 m, ∼37 min after it disappeared from camera #1 view. Finally, the same shark returned to camera #1 ∼31 min after leaving camera #2.
    [Show full text]
  • AC26 Inf. 1 (English Only / Únicamente En Inglés / Seulement En Anglais)
    AC26 Inf. 1 (English only / únicamente en inglés / seulement en anglais) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________ Twenty-sixth meeting of the Animals Committee Geneva (Switzerland), 15-20 March 2012 and Dublin (Ireland), 22-24 March 2012 RESPONSE TO NOTIFICATION TO THE PARTIES NO. 2011/049, CONCERNING SHARKS The attached information document has been submitted by the Secretariat at the request of PEW, in relation to agenda item 16*. * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat or the United Nations Environment Programme concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. AC26 Inf. 1 – p. 1 January 5, 2012 Pew Environment Group Response to CITES Notification 2011/049 To Whom it May Concern, As an active international observer to CITES, a member of the Animals Committee Shark Working Group, as well as other working groups of the Animals and Standing Committees, and an organization that is very active in global shark conservation, the Pew Environment Group submits the following information in response to CITES Notification 2011/049. We submit this information in an effort to ensure a more complete response to the request for information, especially considering that some countries that have adopted proactive new shark conservation policies are not Parties to CITES. 1. Shark species which require additional action In response to Section a) ii) of the Notification, the Pew Environment Group submits the following list of shark species requiring additional action to enhance their conservation and management.
    [Show full text]
  • Etyfish Hexanchiform
    HEXANCHIFORMES · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 6.0 - 17 July 2019 Order HEXANCHIFORMES 2 families · 4 genera · 7 species Family CHLAMYDOSELACHIDAE Frilled Sharks Chlamydoselachus Garman 1884 chlamydos, cloak or mantle, referring to first pair of gill slits that fit like a cloak or frill around throat; selachos, shark Chlamydoselachus africana Ebert & Compagno 2009 referring to South Africa’s Marine and Coastal Management research vessel Africana, for the excellent research surveys it has conducted; it is also the vessel that collected paratype Chlamydoselachus anguineus Garman 1884 snake-like, referring to snake or eel-like shape Family HEXANCHIDAE Cow Sharks Heptranchias Rafinesque 1810 hepta, seven; [b]ranchos, gill or ankos, bend or hollow, referring to seven gill openings Heptranchias perlo (Bonnaterre 1788) from French vernacular le perlon, meaning pearl, perhaps referring to smooth and grayish (“lisse & grisâtre”) skin Hexanchus Rafinesque 1810 hexa-, six; [b]ranchos, gill or ankos, bend or hollow, referring to six gill openings Hexanchus griseus (Bonnaterre 1788) latinization of common name “Le Griset,” gray, referring to dark gray coloration Hexanchus nakamurai Teng 1962 in honor of Teng’s colleague Hiroshi Nakamura, who illustrated this species as H. griseus in 1936 Hexanchus vitulus Springer & Waller 1969 a bull calf, i.e., a small cowshark, smaller than its fellow Atlantic congener, H. griseus Notorynchus Ayres 1856 etymology not explained, presumably noto-, back, perhaps referring to single dorsal fin; rhynchus, snout, probably referring to broad, depressed snout Notorynchus cepedianus (Péron 1807) -anus, belonging to: Bernard-Germain-Étienne de La Ville-sur-Illon, comte de [count of] La Cepède (also spelled as La Cépède, Lacépède, or Lacepède, 1756-1825), author of Histoire Naturelle des Poissons (1798-1803) Chlamydoselachus anguineus.
    [Show full text]
  • Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences
    Hindawi Publishing Corporation BioMed Research International Volume 2013, Article ID 147064, 11 pages http://dx.doi.org/10.1155/2013/147064 Research Article Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences Keiko Tanaka,1 Takashi Shiina,1 Taketeru Tomita,2 Shingo Suzuki,1 Kazuyoshi Hosomichi,3 Kazumi Sano,4 Hiroyuki Doi,5 Azumi Kono,1 Tomoyoshi Komiyama,6 Hidetoshi Inoko,1 Jerzy K. Kulski,1,7 and Sho Tanaka8 1 Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan 2 Fisheries Science Center, The Hokkaido University Museum, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan 3 Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan 4 Division of Science Interpreter Training, Komaba Organization for Education Excellence College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan 5 Shimonoseki Marine Science Museum, 6-1 Arcaport, Shimonoseki, Yamaguchi 750-0036, Japan 6 Department of Clinical Pharmacology, Division of Basic Clinical Science and Public Health, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan 7 Centre for Forensic Science, The University of Western Australia, Nedlands, WA 6008, Australia 8 Department of Marine Biology, School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan Correspondence should be addressed to Takashi Shiina; [email protected] Received 1 March 2013; Accepted 26 July 2013 Academic Editor: Dietmar Quandt Copyright © 2013 Keiko Tanaka et al.
    [Show full text]
  • Tiger Shark (Galeocerdo Cuvier) on the East Coast of Australia
    The biology and ecology of the tiger shark (Galeocerdo cuvier) on the east coast of Australia. Bonnie Jane Holmes BSc (Hons) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2015 School of Biological Sciences ABSTRACT The tiger shark (Galeocerdo cuvier) (Péron and Lesueur 1822) is the largest of the carcharhinids, with a circumglobal distribution in both tropical and warm temperate coastal and pelagic waters. In the western Pacific, G. cuvier movements are wide-ranging, encompassing the east coast of Australia and south Pacific Islands. Throughout the region, G. cuvier is exposed to a range of commercial, recreational, artisanal and illegal foreign fishery impacts, as both a target and by-product species. Listed as ‘near threatened’ on the International Union for Conservation of Nature (IUCN) Red List, suitable long term species-specific catch, catch rate and biological data are seldom available for large shark species like G. cuvier, particularly where historical commercial fishery logbook reporting has been poor. Shark control programs targeting large sharks along Australia’s east coast have been in operation for over 60 years, using relatively standardised fishing gear in nearshore waters all year round, with historical catch and effort data recorded by shark contractors. Historical catch, catch rate and biological data collected through the Queensland Shark Control Program (QSCP) since 1993 were investigated, which revealed significant declines (p < 0.05) in catch rates of G. cuvier at some tropical and all sub-tropical locations along the Queensland coast. Significant temporal declines in the average size of G. cuvier also occurred at four of the nine locations analysed (p < 0.05), which could be indicative of fishing reducing abundance in these areas.
    [Show full text]
  • 03 07049 Sharks.Qxd:CFN 122(2) 11/4/09 10:08 AM Page 124
    03_07049_sharks.qxd:CFN 122(2) 11/4/09 10:08 AM Page 124 Abundance Trends for Hexanchus griseus, Bluntnose Sixgill Shark, and Hydrolagus colliei, Spotted Ratfish, Counted at an Automated Underwater Observation Station in the Strait of Georgia, British Columbia ROBERT DUNBRACK Biology Department, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador A1B 3X9 Canada; e- mail: dunbrack@ mun.ca Dunbrack, Robert. 2008. Abundance trends for Hexanchus griseus, Bluntnose Sixgill Shark, and Hydrolagus colliei, Spotted Ratfish, counted at an automated underwater observation station in the Strait of Georgia, British Columbia. Canadian Field-Naturalist 122(2): 124-128. Recordings from a time lapse video monitoring station on a shallow rocky reef in the Strait of Georgia, British Columbia, revealed a steep and continuous decline in the occurrence of Hexanchus griseus (Bluntnose Sixgill Shark) between 2001 and 2007, with relative abundance in 2006 and 2007 less than 1% of that in 2001. The relative abundance of another chondrichthyan, Hydrolagus colliei (Spotted Ratfish), decreased to 15% of 2004 levels in 2005 and 2006 and remained below 25% in 2007. There is no compelling explanation for these decreases. Over the past 25 years water temperatures have increased in the Strait of Georgia and there have been a number of El Niño warm water events, but diver observations of H. griseus at this site over the same time period give no indication of prior changes in abundance. Neither species is targeted by a fishery, but injuries, possibly related to hooking and entanglement, observed in 28% of individually identified H. griseus suggests this species may be taken locally as bycatch.
    [Show full text]
  • Humboldt Bay Fishes
    Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar
    [Show full text]