Virtual Modality: a Framework for Testing and Building Multimodal

Total Page:16

File Type:pdf, Size:1020Kb

Virtual Modality: a Framework for Testing and Building Multimodal Virtual Modality: a Framework for Testing and Building Multimodal Applications Péter Pál Boda1 Edward Filisko Audio-Visual Systems Laboratory Spoken Language Systems Group Nokia Research Center CSAIL, MIT Helsinki, Finland Cambridge, Massachusetts, USA [email protected] [email protected] responding deictic reference are issued. The Abstract paper explains the procedure followed to cre- ate Virtual Modality data, the details of the speech-only database, and results based on a This paper introduces a method that generates multimodal city information and navigation simulated multimodal input to be used in test- application. ing multimodal system implementations, as well as to build statistically motivated multi- modal integration modules. The generation of 1 Introduction such data is inspired by the fact that true mul- Multimodal systems have recently drawn significant timodal data, recorded from real usage scenar- attention from researchers, and the reasons for such an ios, is difficult and costly to obtain in large interest are many. First, speech recognition based appli- amounts. On the other hand, thanks to opera- cations and systems have become mature enough for tional speech-only dialogue system applica- larger-scale deployment. The underlying technologies tions, a wide selection of speech/text data (in are gradually exhibiting increased robustness and per- the form of transcriptions, recognizer outputs, formance, and from the usability point of view, users parse results, etc.) is available. Taking the tex- can see some clear benefits from speech-driven applica- tual transcriptions and converting them into tions. The next evolutionary step is the extension of the multimodal inputs in order to assist multimo- "one dimensional" (i.e., speech-only) interface capabili- dal system development is the underlying idea ties to include other modalities, such as gesture, sketch, of the paper. A conceptual framework is es- gaze, and text. This will lead to a better and more com- tablished which utilizes two input channels: prehensive user experience. the original speech channel and an additional A second reason is the widely accepted, and ex- channel called Virtual Modality. This addi- pected, mobility and pervasiveness of computers. De- tional channel provides a certain level of ab- vices are getting more and more powerful and versatile; straction to represent non-speech user inputs they can be connected anywhere and anytime to net- (e.g., gestures or sketches). From the tran- works, as well as to each other. This poses new de- scriptions of the speech modality, pre-defined mands for the user interface. It is no longer sufficient to semantic items (e.g., nominal location refer- support only a single input modality. Depending on the ences) are identified, removed, and replaced specific application, the given usage scenario, and the with deictic references (e.g., here, there). The context, for example, users should be offered a variety deleted semantic items are then placed into the of options by which to interact with the system in an Virtual Modality channel and, according to appropriate and efficient way. external parameters (such as a pre-defined Third, as the output capabilities of devices provide user population with various deviations), tem- ever-increasing multimedia experiences, it is natural poral shifts relative to the instant of each cor- that the input mechanism must also deal with various 1 Currently a Visiting Scientist with the Spoken Language Systems Group, CSAIL, MIT. modalities in an intuitive and comprehensive manner. If amount of data is required in order to build and tune a a map is displayed to the user, it is natural to expect that system; on the other hand, without an operational sys- the user may want to relate to this physical entity, for tem, no real data can be collected. Incremental and rule- instance, via gestures, pointing, gazing or by other, not based implementations, as well as quick mock-ups and necessarily speech-based, communicative means. Wizard-of-Oz setups (Lemmelä and Boda, 2002), aim to Multimodal interfaces give the user alternatives and address the application development process from both flexibility in terms of the interaction; they are enabling ends; we follow an intermediate approach. rather than restricting. The primary goal is to fully un- The work presented here is performed under the as- derstand the user's intention, and this can only be real- sumption that testing and building multimodal systems ized if all intentional user inputs, as well as any can benefit from a vast amount of multimodal data, even available contextual information (e.g., location, prag- if the data is only a result of simulation. Furthermore, matics, sensory data, user preferences, current and pre- generating simulated multimodal data from textual data vious interaction histories) are taken into account. is justified by the fact that a multimodal system should This paper is organized as follows. Section 2 intro- also operate in speech-only mode. duces the concept of Virtual Modality and how the mul- timodal data are generated. Section 3 explains the 2.2 The concept underlying Galaxy environment and briefly summarizes Most current multimodal systems are developed with the operation of the Context Resolution module respon- particular input modalities in mind. In the majority of sible for, among other tasks, resolving deictic refer- cases, the primary modality is speech and the additional ences. The data generation as well as statistics is modality is typically gesture, gaze, sketch, or any com- covered in Section 4. The experimental methodology is bination thereof. Once the actual usage scenario is fixed described in Section 5. Finally, the results are summa- in terms of the available input modalities, subsequent rized and directions for future work are outlined. work focuses only on these input channels. This is ad- vantageous on the one hand; however, on the other 2 Virtual Modality hand, there is a good chance that system development This section explains the underlying concept of Virtual will focus on tiny details related to the modality- Modality, as well as the motivation for the work pre- dependent nature of the recognizers and their particular sented here. interaction in the given domain and application sce- nario. 2.1 Motivation Virtual Modality represents an abstraction in this sense. The focus is on what semantic units (i.e., mean- Multiple modalities and multimedia are an essential part ingful information from the application point of view) of our daily lives. Human-human communication relies are delivered in this channel and how this channel aligns on a full range of input and output modalities, for in- with the speech channel. Note that the speech channel stance, speech, gesture, vision, gaze, and paralinguistic, has no exceptional role; it is equal in every sense with emotional and sensory information. In order to conduct the Virtual Modality. There is only one specific consid- seamless communication between humans and ma- eration regarding the speech channel, namely, it con- chines, as many such modalities as possible need to be veys deictic references that establish connections with considered. the semantic units delivered by the Virtual Modality Intelligent devices, wearable terminals, and mobile channel. handsets will accept multiple inputs from different mo- The abstraction provided by the Virtual Modality dalities (e.g., voice, text, handwriting), they will render enables the developer to focus on the interrelation of the various media from various sources, and in an intelli- speech and the additional modalities, in terms of their gent manner they will also be capable of providing addi- temporal correlation, in order to study and experiment tional, contextual information about the environment, with various usage scenarios and usability issues. It also the interaction history, or even the actual state of the means that we do not care how the information deliv- user. Information such as the emotional, affective state ered by the Virtual Modality arose, what (ac- of the user, the proximity of physical entities, the dia- tual/physical) recognition process produced them, nor logue history, and biometric data from the user could be how the recognition processes can influence each used to facilitate a more accommodating, and concise interaction with a system. Once contextual information other’s performance via cross-interaction using early is fully utilized and multimodal input is supported, then evidence available in one channel or in the other - al- the load on the user can be considerably reduced. This is though we acknowledge that this aspect is important and especially important for users with severe disabilities. desired, as pointed out by Coen (2001) and Haikonen Implementing complex multimodal applications (2003), this has not yet been addressed in the first im- represents the chicken-and-egg problem. A significant plementation of the model. The term “virtual modality” is not used in the multimo- (Sp) and it delivers certain semantic units to the classi- dal research community, as far as we know. The only fier. These semantic units correspond to a portion of the occurrence we found is by Marsic and Dorohonceanu word sequence in the speech channel. For instance, the (2003), however, with “virtual modality system” they original incoming sentence might be, “From Harvard refer to a multimodal management module that manages University to MIT.” In the case of a multimodal setup and controls various applications sharing common mo- the semantic unit, originally represented by a set of dalities in the context of telecollaboration user inter- words in the speech channel (e.g., “to MIT”), will be faces. delivered by the Virtual Modality as mi. The tier between the two modality channels is a 2.3 Operation deictic reference in the speech channel (di in the bottom The idea behind Virtual Modality is explained with the of Figure 1). There are various realizations of a deictic help of Figure 1. The upper portion describes how the reference, in this example it can be, for example, “here”, output of a speech recognizer (or direct natural language “over there”, or “this university”.
Recommended publications
  • Orac (Alias David Gorski) December 31, 2014 She’S Baa-Aack
    http://scienceblogs.com/insolence/2014/12/31/oh-no-gmos-are-going-to-make-everyone-autistic/ nearly 500 comments Orac (alias David Gorski) December 31, 2014 She’s baa-aack. Remember Stephanie Seneff? When last Orac discussed her, she had been caught dumpster diving into the VAERS database in order to torture the data to make it confess a “link” between aluminum adjuvants in vaccines and acetaminophen and—you guessed it!—autism. It was a bad paper in a bad journal known as Entropy that I deconstructed in detail around two years ago. As I said at the time, I hadn’t seen a “review” article that long and that badly done since the even more horrible article by Helen Ratajczak entitled Theoretical aspects of autism: Causes–A review (which, not surprisingly, was cited approvingly by Seneff et al). Seneff, it turns out, is an MIT scientist, but she is not a scientist with any expertise in autism, epidemiology, or, for that matter, any relevant scientific discipline that would give her the background knowledge and skill set to take on analyzing the epidemiological literature regarding autism. Indeed, she is in the Computer Science and Artificial Intelligence Laboratory at MIT, and her web page theredescribes her thusly: Stephanie Seneff is a Senior Research Scientist at the MIT Computer Science and Artificial Intelligence Laboratory. She received the B.S. degree in Biophysics in 1968, the M.S. and E.E. degrees in Electrical Engineering in 1980, and the Ph.D degree in Electrical Engineering and Computer Science in 1985, all from MIT.
    [Show full text]
  • Stephanie Seneff Telephone
    Name: Stephanie Seneff Telephone: (617) 901-0442 (cell) (617) 253-0451 (office) Email: seneff@csail.mit.edu Current Position (2014): Senior Research Scientist, Spoken Language Systems Group, MIT Computer Science and Artificial Intelligence Laboratory Brief Biography Stephanie Seneff is a Senior Research Scientist at MIT's Computer Science and Artificial Intelligence Laboratory. She has a Bachelor's degree from MIT in biology with a minor in food and nutrition, and a PhD in Electrical Engineering and Computer Science, also from MIT. Throughout her career, Dr. Seneff has conducted research in diverse areas, including human auditory modeling, spoken dialogue systems, natural language processing, information retrieval and summarization, and computational biology. She has published over 200 refereed articles in technical journals and conferences on these subjects, and has been invited to give several keynote speeches. Dr. Seneff has recently become interested in the effect of drugs and diet on health and nutrition, and she has presented talks on these subjects at various workshops and written several essays on the web articulating her view. She is currently developing spoken dialogue systems to support intelligent search and summarization of user-provided reviews in the medical domain. She has authored over a dozen recently published papers on theories proposing that a low-micronutrient, high- carbohydrate diet contributes to the metabolic syndrome and to Alzheimer's disease, and that sulfur deficiency, environmental toxicants, and insufficient sunlight exposure to the skin and eyes play an important role in many modern conditions and diseases, including heart disease, diabetes, gastrointestinal problems, Alzheimer's disease and autism. Education: School Department Degrees Received MIT Biology B.S.
    [Show full text]
  • Glyphosate's Suppression of Cytochrome P450 Enzymes
    Entropy 2013, 15, 1416-1463; doi:10.3390/e15041416 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Review Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases Anthony Samsel 1 and Stephanie Seneff 2,* 1 Independent Scientist and Consultant, Deerfield, NH 03037, USA; E-Mail: [email protected] 2 Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-617-253-0451; Fax: +1-617-258-8642. Received: 15 January 2013; in revised form: 10 April 2013 / Accepted: 10 April 2013 / Published: 18 April 2013 Abstract: Glyphosate, the active ingredient in Roundup®, is the most popular herbicide used worldwide. The industry asserts it is minimally toxic to humans, but here we argue otherwise. Residues are found in the main foods of the Western diet, comprised primarily of sugar, corn, soy and wheat. Glyphosate's inhibition of cytochrome P450 (CYP) enzymes is an overlooked component of its toxicity to mammals. CYP enzymes play crucial roles in biology, one of which is to detoxify xenobiotics. Thus, glyphosate enhances the damaging effects of other food borne chemical residues and environmental toxins. Negative impact on the body is insidious and manifests slowly over time as inflammation damages cellular systems throughout the body. Here, we show how interference with CYP enzymes acts synergistically with disruption of the biosynthesis of aromatic amino acids by gut bacteria, as well as impairment in serum sulfate transport. Consequences are most of the diseases and conditions associated with a Western diet, which include gastrointestinal disorders, obesity, diabetes, heart disease, depression, autism, infertility, cancer and Alzheimer’s disease.
    [Show full text]
  • Monsanto Company; Rule 14A-8 No-Action Letter
    UNITED STATES SECURITIES AND EXCHANGE COMMISSION WASHINGTON, D.C. 20549 DIVISION OF CORPORATION FINANCE October 14,2014 Gordon S. Moodie Wachtell, Lipton, Rosen & Katz [email protected] Re: Monsanto Company Dear Mr. Moodie: This is in regard to your letter dated October 8, 2014 concerning the shareholder proposal submitted by Adam Eidinger for inclusion in Monsanto's proxy materials for its upcoming annual meeting of security holders. Your letter indicates that the proponent has withdrawn the proposal and that Monsanto therefore withdraws its September 19, 2014 request for a no-action letter from the Division. Because the matter is now moot, we will have no further comment. Copies of all of the correspondence related to this matter will be made available on our website at http://www.sec.gov/divisions/cor_pfin/cf-noaction/14a-8.shtml. For your reference, a brief discussion of the Division's informal procedures regarding shareholder proposals is also available at the same website address. Sincerely, Raymond A. Be Special Counsel cc: Adam Eidinger *** FISMA & OMB Memorandum M-07-16 *** WACHTELL, LIPTON, ROSEN & KATZ MARTIN LIPTON .JODI .J, SCHWARTZ 51 WEST 52NO STREET MARK GORDON DAVID E. SHAPIRO HERBERT M. WACHTELL ADAM 0. EMMERICH .JOSEPH D. LARSON DAMIAN 0, DIDDEN LAWRENCE B. PEDOWITZ GEORGE T. CONWAY Ill NEW YORK, N.Y. 10019-6150 LAWRENCE 8. MAKOW ANTEVUCIC PAUL VIZCARROND01 .JR. RAJ.PH M. LEVENE .JEAHNEMARIE O'BRIEN IAN BOCZJC.O PETER C. HEIN RICHARD G. MASON TELEPHONE: (212) 403-1000 WAYNE M, CARLIN MATTH~ M. GUEST HAROLD S. NOV1KOFF . MICHAEL .J. SEGAL FACSIMILE: (212) 403-2000 STEPHEN R.
    [Show full text]
  • Glyphosate Pathways to Modern Diseases VI: Prions, Amyloidoses and Autoimmune Neurological Diseases
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/316601847 Glyphosate pathways to modern diseases VI: Prions, amyloidoses and autoimmune neurological diseases Article in Journal of Biological Physics and Chemistry · March 2017 DOI: 10.4024/25SA16A.jbpc.17.01 CITATIONS READS 3 1,276 2 authors: Anthony Samsel Stephanie Seneff 13 PUBLICATIONS 194 CITATIONS Massachusetts Institute of Technology 273 PUBLICATIONS 6,965 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biosemiotic Coherence View project Glyphosate Pathways to Modern Diseases VI: Prions, Amyloidoses and Autoimmune Neurological Diseases View project All content following this page was uploaded by Anthony Samsel on 01 May 2017. The user has requested enhancement of the downloaded file. ________________________________________________________________________________________________________25SA16A Glyphosate pathways to modern diseases VI: Prions, amyloidoses and autoimmune neurological diseases Anthony Samsel1 and Stephanie Seneff 2, * 1 Samsel Environmental and Public Health Services, Deerfield, NH 03037, USA 2 Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA Usage of the herbicide glyphosate on core crops in the USA has increased exponentially over the past two decades, in step with the exponential increase in autoimmune diseases including autism, multiple sclerosis, inflammatory bowel disease, type 1 diabetes, coeliac disease, neuromyelitis optica and many others. In this paper we explain how glyphosate, acting as a non-coding amino acid analogue of glycine, could erroneously be integrated with or incorporated into protein synthesis in place of glycine, producing a defective product that resists proteolysis. Whether produced by a microbe or present in a food source, such a peptide could lead to autoimmune disease through molecular mimicry.
    [Show full text]
  • Advanced Multimodal Interfaces: Lessons Learned from Project Oxygen
    Advanced Multimodal Interfaces: Lessons Learned from Project Oxygen Victor Zue ([email protected]) MIT Computer Science and Artificial Intelligence Laboratory CSAIL Formed in July 2003 • Merger of former Artificial Intelligence Laboratory and the Laboratory for Computer Science (= Project Mac July 1963) • About 820 members – 93 principal investigators * 72 active teaching faculty * EECS, Math, Brain and Cognitive, Aero/Astro, Mechanical Eng, Planetary Sciences, Harvard-MIT HST – 450 graduate students – 90 research staff and research visitors – 80 postdoctoral fellows – 60 staff – 50 undergraduates Victor Zue — MIT Computer Science and Artificial Intelligence Laboratory 5/18/2005 1 Our New Home: The Stata Center Victor Zue — MIT Computer Science and Artificial Intelligence Laboratory 5/18/2005 How Do We Organize? • Four Directorates (Research Directors) – Architecture, systems, and networks (Srini Devadas) – Theory (David Karger) – Language, learning, vision, and graphics (Leslie Kaelbling) – Physical, biological, and social systems (Randy Davis) • Cross-cutting organizations within –T-Party – Project Oxygen – Center for Information Security and Privacy • Funding – DARPA, NSF, NASA, CIA, NIH, ONR, AFOSR, ARDA – Singapore-MIT Alliance, Cambridge-MIT Institute, ITRI – Quanta Computer, Hewlett Packard, Microsoft, NTT, Nokia, Philips, Delta Electronics, Acer, Shell, Ford, Sun, IBM, Intel, Toyota, Honda, Cisco, ABB Victor Zue — MIT Computer Science and Artificial Intelligence Laboratory 5/18/2005 2 CSAIL PIs Arvind Agarwal AmarasingheAsanovicBalakrishnan
    [Show full text]
  • Opportunities and Obstacles for Deep Learning in Biology and Medicine
    bioRxiv preprint doi: https://doi.org/10.1101/142760; this version posted January 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Opportunities and obstacles for deep learning in biology and medicine A DOI-citable preprint of this manuscript is available at https://doi.org/10.1101/142760. This manuscript was automatically generated from greenelab/deep-review@a01dd71 on January 19, 2018. Authors 1,☯ 2 3 4 Travers Ching , Daniel S. Himmelstein , Brett K. Beaulieu-Jones , Alexandr A. Kalinin , 5 2 6 7 2 Brian T. Do , Gregory P. Way , Enrico Ferrero , Paul-Michael Agapow , Michael Zietz , 8,9,10 11 12 13 Michael M. Hoffman , Wei Xie , Gail L. Rosen , Benjamin J. Lengerich , Johnny 14 15 12 16 Israeli , Jack Lanchantin , Stephen Woloszynek , Anne E. Carpenter , Avanti 17 18 19,20 21 Shrikumar , Jinbo Xu , Evan M. Cofer , Christopher A. Lavender , Srinivas C. 22 17 23 24 25 Turaga , Amr M. Alexandari , Zhiyong Lu , David J. Harris , Dave DeCaprio , 15 17,26 23 27 28 Yanjun Qi , Anshul Kundaje , Yifan Peng , Laura K. Wiley , Marwin H.S. Segler , 29 30 31 32,33,† Simina M. Boca , S. Joshua Swamidass , Austin Huang , Anthony Gitter , 2,† Casey S. Greene ☯ — Author order was determined with a randomized algorithm † — To whom correspondence should be addressed: [email protected] (A.G.) and [email protected] (C.S.G.) 1. Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, HI 2.
    [Show full text]
  • Harvesting and Summarizing User-Generated Content for Advanced Speech-Based HCI Jingjing Liu, Stephanie Seneff, and Victor Zue, Member, IEEE
    982 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 6, NO. 8, DECEMBER 2012 Harvesting and Summarizing User-Generated Content for Advanced Speech-Based HCI Jingjing Liu, Stephanie Seneff, and Victor Zue, Member, IEEE Abstract—There are many Web-based platforms where people At the same time, there is a rapidly increasing usage of mobile could share user-generated content such as reviews, posts, blogs, devices such as smart phones and tablets along with the rapid and tweets. However, online communities and social networks are development of application software (Apps). For example, as of expanding so rapidly that it is impossible for people to digest all the information. To help users obtain information more efficiently, June 2012, there are over 1,250,000 Apps available on various both the interface for data access and the information represen- “App Stores1”. More and more people rely on mobile devices tation need to be improved. An intuitive and personalized inter- to access the Web, especially for updating social networks and face, such as a dialogue system, could be an ideal assistant, which visiting online communities. engages a user in a continuous dialogue to garner the user’s in- terest, assists the user via speech-navigated interactions, harvests Helpful as these mobile applications are, the data available andsummarizestheWebdataaswellaspresentingitinanatural on the Web are growing exponentially and it is impossible for way. This work, therefore, aims to conduct research on a universal people to digest all the information even with instant Web ac- framework for developing a speech-based interface that can ag- cess. To help users obtain information more efficiently, both the gregate user-generated content and present the summarized infor- mation via speech-based human-computer interactions.
    [Show full text]
  • Is Cholesterol Sulfate Deficiency a Common Factor in Preeclampsia, Autism, and Pernicious Anemia?
    Is Cholesterol Sulfate Deficiency a Common Factor in Preeclampsia, Autism, and Pernicious Anemia? The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Seneff, Stephanie, Robert Davidson, and Jingjing Liu. “Is Cholesterol Sulfate Deficiency a Common Factor in Preeclampsia, Autism, and Pernicious Anemia?” Entropy 14.12 (2012): 2265–2290. ©2012 MDPI AG As Published http://dx.doi.org/10.3390/e14112265 Publisher MDPI AG Version Final published version Citable link http://hdl.handle.net/1721.1/77573 Terms of Use Creative Commons Attribution 3.0 Detailed Terms http://creativecommons.org/licenses/by/3.0/ Entropy 2012, 14, 2265-2290; doi:10.3390/e14112265 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Review Is Cholesterol Sulfate Deficiency a Common Factor in Preeclampsia, Autism, and Pernicious Anemia? Stephanie Seneff 1,*, Robert M. Davidson 2 and Jingjing Liu 1 1 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; E-Mail: [email protected] (J.L.) 2 Internal Medicine Group Practice, PhyNet, Inc., Longview, TX 75604, USA; E-Mail: [email protected] (R.M.D.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-617-253-0451. Received: 12 September 2012; in revised form: 21 October 2012 / Accepted: 6 November 2012 / Published: 8 November 2012 Abstract: In a recent paper, we proposed that a contributing factor in autism is a deficiency in cholesterol sulfate supply. In this paper, we investigate a link between preeclampsia and subsequent autism in the child, and we hypothesize that both conditions can be attributed to a severe depletion of cholesterol sulfate.
    [Show full text]
  • Glyphosate, Pathways to Modern Diseases IV
    ________________________________________________________________________________________________________11SA15R Glyphosate, pathways to modern diseases IV: cancer and related pathologies Anthony Samsel1, * and Stephanie Seneff 2, ** 1 Research Scientist, Deerfield, NH 03037, USA 2 Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA Glyphosate is the active ingredient in the pervasive herbicide, Roundup, and its usage, particularly in the United States, has increased dramatically in the last two decades, in step with the widespread adoption of Roundup®-Ready core crops. The World Health Organization recently labelled glyphosate as “probably carcinogenic.” In this paper, we review the research literature, with the goal of evaluating the carcinogenic potential of glyphosate. Glyphosate has a large number of tumorigenic effects on biological systems, including direct damage to DNA in sensitive cells, disruption of glycine homeostasis, succinate dehydrogenase inhibition, chelation of manganese, modification to more carcinogenic molecules such as N-nitrosoglyphosate and glyoxylate, disruption of fructose metabolism, etc. Epidemiological evidence supports strong temporal correlations between glyphosate usage on crops and a multitude of cancers that are reaching epidemic proportions, including breast cancer, pancreatic cancer, kidney cancer, thyroid cancer, liver cancer, bladder cancer and myeloid leukaemia. Here, we support these correlations through an examination of Monsanto’s early studies on glyphosate, and explain how the biological effects of glyphosate could induce each of these cancers. We believe that the available evidence warrants a reconsideration of the risk/benefit trade-off with respect to glyphosate usage to control weeds, and we advocate much stricter regulation of glyphosate. Keywords: cataracts, CYP 450 enzymes, glyphosate, gut microbiome, interstitial disease, kidney cancer, non-Hodgkin’s lymphoma, pancreatic cancer 1.
    [Show full text]
  • WEEDS and HERBICIDES - GLYPHOSATE Part 1
    www.natureswayresources.com WEEDS and HERBICIDES - GLYPHOSATE Part 1 Last December (2018) I attended an advanced soil conference up in Kansas City. The presenters were scientists from several major universities, the Center for Disease Control to the head of the USDA research station. The over whelming message is we have to change the toxic chemical methods we use in agriculture and horticulture if we are going to survive as a species. A couple days of the conference were spent on the problems both in horticultural and with health (animal and human) related to common herbicides. Since Round-Up is the most used herbicide we will start here. Over the last few weeks, we have seen additional countries like France, Netherlands, Sri Lanka and others continue to ban the sale and use of an herbicide called Round-Up. The active ingredient in Round-Up is a very toxic chemical called "Glyphosate". A few weeks ago, the World Health Organization declared Glyphosate a probable carcinogen. Research has been appearing for decades showing that Round-Up is related to many types of cancer and dozens of animal and human health issues. People and independent researchers have known the truth for years. As an article on the Alternet stated, "Industry and government regulators have conspired to bury copious evidence for toxicity for decades." At the conference in a side conversation with a USDA researcher (whom was retiring in a couple weeks) whom stated, "I can finally tell the truth without getting fired and what scares me the most is the inert ingredients found in Round-Up".
    [Show full text]
  • Glyphosate, Pathways to Modern Diseases IV: Cancer and Related Pathologies
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283490944 Glyphosate, pathways to modern diseases IV: cancer and related pathologies Article in Journal of Biological Physics and Chemistry · January 2015 DOI: 10.4024/11SA15R.jbpc.15.03 CITATIONS READS 9 11,904 2 authors: Anthony Samsel Stephanie Seneff 13 PUBLICATIONS 194 CITATIONS Massachusetts Institute of Technology 273 PUBLICATIONS 6,965 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biosemiotic Coherence View project Glyphosate Pathways to Modern Diseases VI: Prions, Amyloidoses and Autoimmune Neurological Diseases View project All content following this page was uploaded by Anthony Samsel on 04 November 2015. The user has requested enhancement of the downloaded file. ________________________________________________________________________________________________________11SA15R Glyphosate, pathways to modern diseases IV: cancer and related pathologies Anthony Samsel1, * and Stephanie Seneff 2, ** 1 Research Scientist, Deerfield, NH 03037, USA 2 Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA Glyphosate is the active ingredient in the pervasive herbicide, Roundup, and its usage, particularly in the United States, has increased dramatically in the last two decades, in step with the widespread adoption of Roundup®-Ready core crops. The World Health Organization recently labelled glyphosate as “probably carcinogenic.” In this paper, we review the research literature, with the goal of evaluating the carcinogenic potential of glyphosate. Glyphosate has a large number of tumorigenic effects on biological systems, including direct damage to DNA in sensitive cells, disruption of glycine homeostasis, succinate dehydrogenase inhibition, chelation of manganese, modification to more carcinogenic molecules such as N-nitrosoglyphosate and glyoxylate, disruption of fructose metabolism, etc.
    [Show full text]