Calpain-10 and Adiponectin Gene Polymorphisms in Korean Type 2 Diabetes Patients

Total Page:16

File Type:pdf, Size:1020Kb

Calpain-10 and Adiponectin Gene Polymorphisms in Korean Type 2 Diabetes Patients Original Endocrinol Metab 2018;33:364-371 https://doi.org/10.3803/EnM.2018.33.3.364 Article pISSN 2093-596X · eISSN 2093-5978 Calpain-10 and Adiponectin Gene Polymorphisms in Korean Type 2 Diabetes Patients Ji Sun Nam1,2, Jung Woo Han1, Sang Bae Lee1, Ji Hong You1, Min Jin Kim1, Shinae Kang1,2, Jong Suk Park1,2, Chul Woo Ahn1,2 1Department of Internal Medicine, 2Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea Background: Genetic variations in calpain-10 and adiponectin gene are known to influence insulin secretion and resistance in type 2 diabetes mellitus. Recently, several single nucleotide polymorphisms (SNPs) in calpain-10 and adiponectin gene have been report- ed to be associated with type 2 diabetes and various metabolic derangements. We investigated the associations between specific cal- pain-10 and adiponectin gene polymorphisms and Korean type 2 diabetes patients. Methods: Overall, 249 type 2 diabetes patients and 131 non-diabetic control subjects were enrolled in this study. All the subjects were genotyped for SNP-43 and -63 of calpain-10 gene and G276T and T45G frequencies of the adiponectin gene. The clinical char- acteristics and measure of glucose metabolism were compared within these genotypes. Results: Among calpain-10 polymorphisms, SNP-63 T/T were more frequent in diabetes patients, and single SNP-63 increases the susceptibility to type 2 diabetes. However, SNP-43 in calpain-10 and T45G and intron G276T in adiponectin gene were not signifi- cantly associated with diabetes, insulin resistance, nor insulin secretion. Conclusion: Variations in calpain-10, SNP-63 seems to increase the susceptibility to type 2 diabetes in Koreans while SNP-43 and adiponectin SNP-45, -276 are not associated with impaired glucose metabolism. Keywords: Calpain 10; Adiponectin; Diabetes mellitus, type 2 INTRODUCTION as the development and progression of type 2 diabetes [3]. CAPN10 is a calcium activated protein expressed ubiquitously There has been a rapid rise in the incidence of type 2 diabetes in human bodies including heart, skeletal muscles, liver, and mellitus (DM) in Korea due to a recent economic development pancreatic islet cells [4]. It contributes to glucose metabolism and industrialization [1]. Insulin resistance (IR) and impaired by regulating insulin secretion from pancreatic β-cells and insu- insulin secretion (IIS) are two main pathogenesis of type 2 dia- lin action at the adipocyte level [4]. Accordingly, it has been re- betes, and they are related to both the environmental and genetic ported that CAPN10 gene is a crucial factor for obesity and dia- factors. However, very few genes have been identified [1,2]. betes, and combinations of single nucleotide polymorphisms Recently, calpain-10 (CAPN10) gene polymorphism has been (SNPs) (such as SNP-44, -43, -19, and -63) predominantly lo- reported to be associated with the IIS and insulin action as well cated in the intron of CAPN10 gene are involved in the develop- Received: 30 November 2017, Revised: 18 May 2018, Accepted: 11 June 2018 Copyright © 2018 Korean Endocrine Society Corresponding author: Chul Woo Ahn This is an Open Access article distributed under the terms of the Creative Com- Division of Endocrinology, Department of Internal Medicine, Gangnam mons Attribution Non-Commercial License (http://creativecommons.org/ Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribu- Gangnam-gu, Seoul 06273, Korea tion, and reproduction in any medium, provided the original work is properly Tel: +82-2-2019-4377, Fax: +82-2-3463-3882, E-mail: [email protected] cited. 364 www.e-enm.org Calpain-10 Polymorphism and Type 2 Diabetes Endocrinol Metab 2018;33:364-371 https://doi.org/10.3803/EnM.2018.33.3.364 pISSN 2093-596X · eISSN 2093-5978 ment of diabetes [5,6]. stolic blood pressures were measured by an experienced techni- Adiponectin is a well-known adipocytokine that is closely re- cian by placing the left arm at heart level after a 5-minute rest. lated to IR, obesity, atherosclerosis, and type 2 diabetes [7]. It is abundantly expressed in white adipocytes and structurally simi- Biochemical parameters lar to collagen VIII and X, complement C1q17-20, and tumor Blood samples were taken from all subjects after an overnight necrosis factor-α (TNF-α) [7]. Adiponectin gene is located in fast. Standard methods were used for biochemistry. Fasting chromosome 3q27 and composed of 3 exons and 2 introns. It plasma glucose, total cholesterol, high density lipoprotein cho- has been reported that SNPs, including a silent T to G substitu- lesterol (HDL-C), and triglycerides (TGs) levels were deter- tion (+45T>G) in exon 2 and a G to T substitution (+276G>T) mined using enzymatic methods with a Hitachi 7600-120 auto- in intron 2, are related to low blood adiponectin concentration, mated chemistry analyzer (Hitachi, Tokyo, Japan). Low density IR, and type 2 diabetes [8,9]. lipoprotein cholesterol (LDL-C) was calculated according to the There are several studies that demonstrated the association Friedewald formula. Hemoglobin A1c (HbA1c) was determined between genetic variations in the genes coding adiponectin and by high performance liquid chromatography (Variant II, Bio- IR, metabolic syndrome as well as the risk of type 2 diabetes in Rad, Hercules, CA, USA). Fasting serum insulin was deter- Korean population [10,11]. However, not much is known about mined by chemiluminescence (RIA kit, Daiichi, Tokyo, Japan), the CAPN10 genetic polymorphism and metabolic derange- and IR was calculated using the homeostasis model assessment ments in Koreans. Therefore, the present study explored the as- of insulin resistance (HOMA-IR) index, using following formu- sociations between CAPN10 and adiponectin gene polymor- la: HOMA-IR=glucose (mmol/L)×insulin (μU/mL)/22.5. In- phism and various components of metabolic syndrome, IR and sulin secretion capacity was calculated using homeostasis model secretion, and the incidence of type 2 diabetes in Korean popu- assessment of β-cell function (HOMA-β) index using the fol- lation. lowing formula: HOMA-β=20×insulin (μU/mL)/[glucose (mmol/L)–3.5]. METHODS Genotyping of polymorphisms in CAPN10 and adiponectin Subjects gene This study was conducted on 249 Korean type 2 diabetes pa- CAP10 gene polymorphism tients at Diabetes Center of Gangnam Severance Hospital, Ko- Genomic DNA was isolated from 5 mL of whole blood collect- rea from January 2006 to June 2007. Previously diagnosed dia- ed in ethylenediaminetetraacetic acid (EDTA) tubes. The geno- betes patients based on self-reported responses and newly diag- type of all patients was classified depending on two CAPN10 nosed diabetes patients according to American Diabetes Associ- gene polymorphisms (SNP-43, -63), which were analyzed using ation criteria were all included. Type 1 diabetes patients and TaqMan (TaqMan fluorogenic 5´ nuclease assay; Applied Bio- those who received insulin therapy within 3 years after the diag- systems, Waltham, MA, USA) and SNaPshot method respec- nosis of type 2 diabetes were excluded. The control group was tively. Polymerase chain reaction (PCR) reaction solution was composed of 131 non-diabetic patients from Gangnam Sever- adjusted to a final volume of 5 µL containing 10 ng of template ance Check-up Center. The Institutional Review Board (3-2006- DNA, 0.13 µL of 40X assay mix (Assay ID C_27483762_10), 0005) of Yonsei University College of Medicine approved this and 2.5 µL of TaqMan Universal PCR master mix. Real-time study protocol, and written informed consent was obtained from PCR was performed in two stages using ABI Prism 7900HT all subjects. Fast Real-Time PCR System (Applied Biosystems, Waltham, MA, USA), thus 45 cycles of PCR were done at 95°C for 15 Anthropometric measurements seconds and at 60°C for 1 minute after an initial denaturation at Body weight and height were measured in the morning, with 95°C for 10 minutes. PCR analysis was performed using 7900HT light clothing without shoes, and body mass index (BMI) was SDS 2.3 software (Applied Biosystems). Meanwhile, SNaPshot calculated by dividing the weight (kg) by the square of the assay was employed to analyze SNP-63, and the SNP site was am- height (m2). Waist circumference was measure at the midway plified using 5´-AGCACCCAGTCCTACCAGTG-3´ (Forward) between the lower margin of the last palpable rib and the top of and 5´-CTGGCTGGAGTTTGGAGAAG-3´ (Reverse). PCR the iliac crest at the end of a normal expiration. Systolic and dia- contained solution was prepared containing 10 ng of 0.5 pM Copyright © 2018 Korean Endocrine Society www.e-enm.org 365 Nam JS, et al. template DNA, 0.5 pM forward/reverse primer, 1l of 10X PCR spectively measured in a diversity of models such as codomi- Gold buffer, 250 µM dNTP, 3 mM MgCl2, and 0.25 unit of nant, additive, dominant, and recessive model. These measure- DNA polymerase, and we added distilled water to make a final ments were adjusted for age, sex, and BMI value. All statistical volume of 10 µL. The solution was incubated at 7°C for 7 min- analyses were conducted using SAS version 9.1 (SAS Institute utes. PCR was carried out with one cycle of 95°C for 10 min- Inc., Cary, NC, USA). utes, and 30 cycles of 95°C for 30 seconds, 60°C for 1 minute, and 72°C for 1 minute. We added 1 µL of purified PCR products RESULTS to SNaPshot Ready Reaction mixture containing 0.15 pmol ge- notyping primer (5´-ASAGACGCGGCCCACCCCTC-3´) for Clinical characteristics of study subjects primer extension reaction, which was conducted in three stages The genetic polymorphisms were evaluated in 249 patients with with 25 cycles of 96°C for 10 seconds, 50°C for 5 seconds, and type 2 diabetes and 131 control subjects.
Recommended publications
  • Reconstructability Analysis As a Tool for Identifying Gene-Gene Interactions in Studies of Human Diseases
    Portland State University PDXScholar Systems Science Faculty Publications and Presentations Systems Science 3-2010 Reconstructability Analysis As A Tool For Identifying Gene-Gene Interactions In Studies Of Human Diseases Stephen Shervais Eastern Washington University Patricia L. Kramer Oregon Health & Science University Shawn K. Westaway Oregon Health & Science University Nancy J. Cox University of Chicago Martin Zwick Portland State University, [email protected] Follow this and additional works at: https://pdxscholar.library.pdx.edu/sysc_fac Part of the Bioinformatics Commons, Diseases Commons, and the Genomics Commons Let us know how access to this document benefits ou.y Citation Details Shervais, S., Kramer, P. L., Westaway, S. K., Cox, N. J., & Zwick, M. (2010). Reconstructability Analysis as a Tool for Identifying Gene-Gene Interactions in Studies of Human Diseases. Statistical Applications In Genetics & Molecular Biology, 9(1), 1-25. This Article is brought to you for free and open access. It has been accepted for inclusion in Systems Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Statistical Applications in Genetics and Molecular Biology Volume 9, Issue 1 2010 Article 18 Reconstructability Analysis as a Tool for Identifying Gene-Gene Interactions in Studies of Human Diseases Stephen Shervais∗ Patricia L. Kramery Shawn K. Westawayz Nancy J. Cox∗∗ Martin Zwickyy ∗Eastern Washington University, [email protected] yOregon Health & Science University, [email protected] zOregon Health & Science University, [email protected] ∗∗University of Chicago, [email protected] yyPortland State University, [email protected] Copyright c 2010 The Berkeley Electronic Press.
    [Show full text]
  • Evaluation of the Genetic Susceptibility to the Metabolic Syndrome by the CAPN10 SNP19 Gene in the Population of South Benin
    International Journal of Molecular Biology: Open Access Research Article Open Access Evaluation of the genetic susceptibility to the metabolic syndrome by the CAPN10 SNP19 gene in the population of South Benin Abstract Volume 4 Issue 6 - 2019 Metabolic syndrome is a multifactorial disorder whose etiology is resulting from the Nicodème Worou Chabi,1,2 Basile G interaction between genetic and environmental factors. Calpain 10 (CAPN10) is the first Sognigbé,1 Esther Duéguénon,1 Véronique BT gene associated with type 2 diabetes that has been identified by positional cloning with 1 1 sequencing method. This gene codes for cysteine ​​protease; ubiquitously expressed in all Tinéponanti, Arnaud N Kohonou, Victorien 2 1 tissues, it is involved in the fundamental physiopathological aspects of insulin resistance T Dougnon, Lamine Baba Moussa and insulin secretion of type 2 diabetes. The goal of this study was to evaluate the genetic 1Department of Biochemistry and Cell Biology, University of susceptibility to the metabolic syndrome by the CAPN10 gene in the population of southern Abomey-Calavi, Benin 2 Benin. This study involved apparently healthy individuals’ aged 18 to 80 in four ethnic Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Benin groups in southern Benin. It included 74 subjects with metabolic syndrome and 323 non- metabolic syndrome patients who served as controls, with 222 women versus 175 men Correspondence: Nicodème Worou Chabi, Laboratory with an average age of 40.58 ± 14.03 years old. All subjects were genotyped for the SNP of Biochemistry and Molecular Biology, Department of 19 polymorphism of the CAPN10 gene with the PCR method in order to find associations Biochemistry and Cell Biology, Faculty of Science and between this polymorphism and the metabolic syndrome.
    [Show full text]
  • Calpain-10 Regulates Actin Dynamics by Proteolysis of Microtubule-Associated Protein 1B
    www.nature.com/scientificreports OPEN Calpain-10 regulates actin dynamics by proteolysis of microtubule-associated protein 1B Received: 15 September 2015 Tomohisa Hatta1, Shun-ichiro Iemura1,6, Tomokazu Ohishi2, Hiroshi Nakayama3, Accepted: 1 November 2018 Hiroyuki Seimiya 2, Takao Yasuda4, Katsumi Iizuka5, Mitsunori Fukuda4, Jun Takeda5, Published: xx xx xxxx Tohru Natsume1 & Yukio Horikawa5 Calpain-10 (CAPN10) is the calpain family protease identifed as the frst candidate susceptibility gene for type 2 diabetes mellitus (T2DM). However, the detailed molecular mechanism has not yet been elucidated. Here we report that CAPN10 processes microtubule associated protein 1 (MAP1) family proteins into heavy and light chains and regulates their binding activities to microtubules and actin flaments. Immunofuorescent analysis of Capn10−/− mouse embryonic fbroblasts shows that MAP1B, a member of the MAP1 family of proteins, is localized at actin flaments rather than at microtubules. Furthermore, fuorescence recovery after photo-bleaching analysis shows that calpain-10 regulates actin dynamics via MAP1B cleavage. Moreover, in pancreatic islets from CAPN10 knockout mice, insulin secretion was signifcantly increased both at the high and low glucose levels. These fndings indicate that defciency of calpain-10 expression may afect insulin secretion by abnormal actin reorganization, coordination and dynamics through MAP1 family processing. Calpains are a family of intracellular non-lysosomal calcium-activated neutral cysteine proteases known to cleave various substrate proteins and modulate their activities. Tere are 16 calpains, some of which are ubiquitously expressed and others displaying tissue-specifc distribution. Some calpains contain a penta-EF-hand domain (typical or classical calpains), and others do not (atypical calpains). Several calpain family members are impli- cated in the development of various diseases including Alzheimer’s disease, cataracts, ischemic stroke, traumatic brain injury, limb-girdle muscular dystrophy 2A and type 2 diabetes mellitus (T2DM)1.
    [Show full text]
  • In a Three-Dimensional Reconstructed Human Epidermis Filaggrin-2 Is Essential for Proper Cornification
    Citation: Cell Death and Disease (2015) 6, e1656; doi:10.1038/cddis.2015.29 OPEN & 2015 Macmillan Publishers Limited All rights reserved 2041-4889/15 www.nature.com/cddis In a three-dimensional reconstructed human epidermis filaggrin-2 is essential for proper cornification V Pendaries1,2,3, M Le Lamer1,2,3, L Cau1,2,3, B Hansmann4, J Malaisse5, S Kezic6, G Serre1,2,3 and M Simon*,1,2,3 Atopic dermatitis is a chronic inflammatory skin disease with defects in the epidermal barrier. In a cohort of African-American children, a FLG2 nonsense mutation has been associated with the disease. In the epidermis of European patients, the expression of filaggrin-2, the filaggrin-related protein encoded by FLG2, is decreased. To describe the function of filaggrin-2 and evaluate the impact of its deficiency, its expression was downregulated using lentivirus-mediated shRNA interference in a three-dimensional reconstructed human epidermis (RHE) model. This resulted in parakeratosis and a compact stratum corneum, presence of abnormal vesicles inside the corneocytes, increased pH and reduced amounts of free amino acids at the RHE surface, leading to increased sensitivity to UVB radiations. The expression of differentiation markers was slightly modified. However, we observed reduced proteolytic processing of corneodesmosin, hornerin and filaggrin in parallel with reduced amounts of caspase-14 and bleomycin hydrolase. Our data demonstrated that filaggrin-2 is important for a proper cornification and a functional stratum corneum. Its downregulation in atopic patients may be involved in the disease-associated epidermis impairment. Cell Death and Disease (2015) 6, e1656; doi:10.1038/cddis.2015.29; published online 19 February 2015 Atopic dermatitis (AD; OMIM #603165), also known as atopic homologous repeats and a S100-homologous N-terminal eczema, is a very common inflammatory skin disease.1,2 It is domain.
    [Show full text]
  • Μ-CALPAIN GENE KNOCKDOWN of MUSCLE SATELLITE CELLS USING PSILENCER VECTOR Muthuraman Pandurangan, Hoa V
    µ-CALPAIN GENE KNOCKDOWN OF MUSCLE SATELLITE CELLS USING PSILENCER VECTOR Muthuraman Pandurangan, Hoa V. Ba, Dawoon Jeong, Beom-Young Park1, Soo-Hyun Cho1, Inho Hwang* Department of Animal Science and Institute of Rare Earth for Biological Aplication, Chonbuk National University, Jeonju, 561- 756, Korea 1Quality control and utilization of animal products division, National Institute of Animal Science, Suwon 441-706, South Korea Abstract – This study was designed to find the key called μ- and m-) which are the best-characterized role of μ-calpain and caspases using RNA calpains and calpain 3 (also called p94) which is interference mediated silencing of μ-calpain and highly expressed in this tissue. However, since caspase 9 during satellite cell proliferation. For this conventional inhibitors used for the studies of the experiment, four separate siRNA sequences were functions of these enzymes lack specificity, the screened for their ability to inhibit μ-calpain gene expression. Following optimizing the transfection individual physiological function and biochemical conditions for cell number, volume of transfection mechanism of these three isoforms, especially μ- agent used and the appropriate concentration of calpain, are not clear (3). In contrast, RNA each siRNA, quantitative real-time PCR were used interference (RNAi) has a great potential to to assess the level of inhibition of gene expression distinguish the functions of each member in a achieved by all siRNA sequences used. CAPN1, closely related gene family or to selectively target caspase 3, caspase 7, caspase 9, Hsp27, Hsp70 and a mutant gene, especially to study the functions of Hsp90 mRNA expression were quantified in a particular isoform.
    [Show full text]
  • Biomarkers, Master Regulators and Genomic Fabric Remodeling in a Case of Papillary Thyroid Carcinoma
    G C A T T A C G G C A T genes Article Biomarkers, Master Regulators and Genomic Fabric Remodeling in a Case of Papillary Thyroid Carcinoma Dumitru A. Iacobas Personalized Genomics Laboratory, CRI Center for Computational Systems Biology, Roy G Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA; [email protected]; Tel.: +1-936-261-9926 Received: 1 August 2020; Accepted: 1 September 2020; Published: 2 September 2020 Abstract: Publicly available (own) transcriptomic data have been analyzed to quantify the alteration in functional pathways in thyroid cancer, establish the gene hierarchy, identify potential gene targets and predict the effects of their manipulation. The expression data have been generated by profiling one case of papillary thyroid carcinoma (PTC) and genetically manipulated BCPAP (papillary) and 8505C (anaplastic) human thyroid cancer cell lines. The study used the genomic fabric paradigm that considers the transcriptome as a multi-dimensional mathematical object based on the three independent characteristics that can be derived for each gene from the expression data. We found remarkable remodeling of the thyroid hormone synthesis, cell cycle, oxidative phosphorylation and apoptosis pathways. Serine peptidase inhibitor, Kunitz type, 2 (SPINT2) was identified as the Gene Master Regulator of the investigated PTC. The substantial increase in the expression synergism of SPINT2 with apoptosis genes in the cancer nodule with respect to the surrounding normal tissue (NOR) suggests that SPINT2 experimental overexpression may force the PTC cells into apoptosis with a negligible effect on the NOR cells. The predictive value of the expression coordination for the expression regulation was validated with data from 8505C and BCPAP cell lines before and after lentiviral transfection with DDX19B.
    [Show full text]
  • Calcium Mechanisms in Limb-Girdle Muscular Dystrophy with CAPN3 Mutations
    International Journal of Molecular Sciences Review Calcium Mechanisms in Limb-Girdle Muscular Dystrophy with CAPN3 Mutations Jaione Lasa-Elgarresta 1,2, Laura Mosqueira-Martín 1,2, Neia Naldaiz-Gastesi 1,2, Amets Sáenz 1,2, Adolfo López de Munain 1,2,3,4,* and Ainara Vallejo-Illarramendi 1,2,5,* 1 Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain; [email protected] (J.L.-E.); [email protected] (L.M.-M.); [email protected] (N.N.-G.); [email protected] (A.S.) 2 CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain 3 Departmento de Neurosciencias, Universidad del País Vasco UPV/EHU, 20014 San Sebastian, Spain 4 Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, Neurology Department, 20014 San Sebastian, Spain 5 Grupo Neurociencias, Departmento de Pediatría, Hospital Universitario Donostia, UPV/EHU, 20014 San Sebastian, Spain * Correspondence: [email protected] (A.L.d.M.); [email protected] (A.V.-I.); Tel.: +34-943-006294 (A.L.d.M.); +34-943-006128 (A.V.-I.) Received: 4 August 2019; Accepted: 11 September 2019; Published: 13 September 2019 Abstract: Limb-girdle muscular dystrophy recessive 1 (LGMDR1), previously known as LGMD2A, is a rare disease caused by mutations in the CAPN3 gene. It is characterized by progressive weakness of shoulder, pelvic, and proximal limb muscles that usually appears in children and young adults and results in loss of ambulation within 20 years after disease onset in most patients. The pathophysiological mechanisms involved in LGMDR1 remain mostly unknown, and to date, there is no effective treatment for this disease.
    [Show full text]
  • ADCY5, CAPN10 and JAZF1 Gene Polymorphisms and Placental Expression in Women with Gestational Diabetes
    life Article ADCY5, CAPN10 and JAZF1 Gene Polymorphisms and Placental Expression in Women with Gestational Diabetes Przemysław Ustianowski 1 , Damian Malinowski 2 , Patrycja Kopytko 3, Michał Czerewaty 3, Maciej Tarnowski 3 , Violetta Dziedziejko 4 , Krzysztof Safranow 4 and Andrzej Pawlik 3,* 1 Department of Obstetrics and Gynecology, Pomeranian Medical University, 70-111 Szczecin, Poland; [email protected] 2 Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland; [email protected] 3 Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; [email protected] (P.K.); [email protected] (M.C.); [email protected] (M.T.) 4 Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; [email protected] (V.D.); [email protected] (K.S.) * Correspondence: [email protected] Abstract: Gestational diabetes mellitus (GDM) is carbohydrate intolerance that occurs during preg- nancy. This disease may lead to various maternal and neonatal complications; therefore, early diagnosis is very important. Because of the similarity in pathogenesis of type 2 diabetes and GDM, Citation: Ustianowski, P.; the genetic variants associated with type 2 diabetes are commonly investigated in GDM. The aim Malinowski, D.; Kopytko, P.; of the present study was to examine the associations between the polymorphisms in the ADCY5 Czerewaty, M.; Tarnowski, M.; (rs11708067, rs2877716), CAPN10 (rs2975760, rs3792267), and JAZF1 (rs864745) genes and GDM as Dziedziejko, V.; Safranow, K.; Pawlik, well as to determine the expression of these genes in the placenta. This study included 272 pregnant A. ADCY5, CAPN10 and JAZF1 Gene women with GDM and 348 pregnant women with normal glucose tolerance.
    [Show full text]
  • Calpain-2 Participates in the Process of Calpain-1 Inactivation
    Bioscience Reports (2020) 40 BSR20200552 https://doi.org/10.1042/BSR20200552 Research Article Calpain-2 participates in the process of calpain-1 inactivation Fumiko Shinkai-Ouchi1, Mayumi Shindo2, Naoko Doi1, Shoji Hata1 and Yasuko Ono1 1Calpain Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science (TMiMS), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156- 8506, Japan; 2Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science (TMiMS), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156- 8506, Japan Downloaded from http://portlandpress.com/bioscirep/article-pdf/40/11/BSR20200552/896871/bsr-2020-0552.pdf by guest on 28 September 2021 Correspondence: Yasuko Ono ([email protected]) Calpain-1 and calpain-2 are highly structurally similar isoforms of calpain. The calpains, a family of intracellular cysteine proteases, cleave their substrates at specific sites, thus modifying their properties such as function or activity. These isoforms have long been considered to function in a redundant or complementary manner, as they are both ubiq- uitously expressed and activated in a Ca2+- dependent manner. However, studies using isoform-specific knockout and knockdown strategies revealed that each calpain species carries out specific functions in vivo. To understand the mechanisms that differentiate calpain-1 and calpain-2, we focused on the efficiency and longevity of each calpain species after activation. Using an in vitro proteolysis assay of troponin T in combination with mass spectrometry, we revealed distinctive aspects of each isoform. Proteolysis mediated by calpain-1 was more sustained, lasting as long as several hours, whereas proteolysis me- diated by calpain-2 was quickly blunted.
    [Show full text]
  • Elevated Levels of Calpain 14 in Nasal Tissue in Chronic Rhinosinusitis
    ORIGINAL RESEARCH LETTER Elevated levels of calpain 14 in nasal tissue in chronic rhinosinusitis To the Editor: Recently, calpain (CAPN) 14 was identified by a genome-wide genetic association study to play a role in eosinophilic oesophagitis [1]. CAPN14 expression is also linked with asthma and allergy sensitivity [2]. The overexpression of CAPN14 impairs epithelial barrier function and CAPN14 expression is triggered by Th2-associated signalling, such as interleukin (IL)-13 and IL-4 [3]. CAPNs are intracellular regulatory proteases, and there are 16 members of the human CAPN family. CAPNs perform a number of functions, including cytoskeletal and membrane proteins restructuring, signal transduction and inactivating enzymes involved in cell cycle progression, gene expression and apoptosis [4]. Therefore, our group performed a small pilot study to investigate CAPN gene expression profiles in tissue from another disease associated with eosinophilia and epithelial barrier function, chronic rhinosinusitis (CRS) [5]. Sinusitis is a condition associated with inflammation in the paranasal sinuses and contiguous nasal mucosa and ∼30 million adults report sinusitis symptoms annually in the United States [6]. Sinusitis is deemed chronic if symptoms persist more than 3 months, with most episodes of sinusitis associated with viral upper respiratory tract infections, asthma, allergic rhinitis and exposure to environmental factors, such as cigarette smoke [7]. Steroids are effective in treating sinusitis, thereby underlining the importance of inflammation in disease pathophysiology, with inflammatory cells such as eosinophils linked to nasal polyps formation that contribute to nasal obstruction [8]. Here, we investigated nasal tissue samples collected from patients with documented CRS, who met diagnostic criteria set forth by the Adult Sinusitis Clinical Practice Guideline [9].
    [Show full text]
  • The Pennsylvania State University the Graduate School Department of Biology CONTRIBUTION of TRANSPOSABLE ELEMENTS to GENOMIC
    The Pennsylvania State University The Graduate School Department of Biology CONTRIBUTION OF TRANSPOSABLE ELEMENTS TO GENOMIC NOVELTY: A COMPUTATIONAL APPROACH A Thesis in Biology by Valer Gotea © 2007 Valer Gotea Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2007 The thesis of Valer Gotea was reviewed and approved* by the following: Wojciech Makałowski Associate Professor of Biology Thesis Advisor Chair of Committee Stephen W. Schaeffer Associate Professor of Biology Kateryna D. Makova Assistant Professor of Biology Piotr Berman Associate Professor of Computer Science and Engineering Douglas R. Cavener Professor of Biology Head of the Department of Biology *Signatures are on file in the Graduate School iii ABSTRACT Transposable elements (TEs) are DNA entities that have the ability to move and multiply within genomes, and thus have the ability to influence their function and evolution. Their impact on the genomes of different species varies greatly, yet they made an important contribution to eukaryotic genomes, including to those of vertebrate and mammalian species. Almost half of the human genome itself originated from various TEs, few of them still being active. Often times, TEs can disrupt the function of certain genes and generate disease phenotypes, but over long evolutionary times they can also offer evolutionary advantages to their host genome. For example, they can serve as recombination hotspots, they can influence gene regulation, or they can even contribute to the sequence of protein coding genes. Here I made use of multiple computational tools to investigate in more detail a few of these aspects. Starting with a set of well characterized proteins to complement inferences made at the level of transcripts, I investigated the contribution of TEs to protein coding sequences.
    [Show full text]
  • Calpain-5 Expression in the Retina Localizes to Photoreceptor Synapses Kellie A
    University of Kentucky UKnowledge Spinal Cord and Brain Injury Research Center Spinal Cord and Brain Injury Research Faculty Publications 5-2016 Calpain-5 Expression in the Retina Localizes to Photoreceptor Synapses Kellie A. Schaefer University of Iowa Marcus A. Toral University of Iowa Gabriel Velez University of Iowa Allison J. Cox University of Iowa Sheila A. Baker University of Iowa See next page for additional authors Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/scobirc_facpub Part of the Neurology Commons Repository Citation Schaefer, Kellie A.; Toral, Marcus A.; Velez, Gabriel; Cox, Allison J.; Baker, Sheila A.; Borcherding, Nicholas C.; Colgan, Diana F.; Bondada, Vimala; Mashburn, Charles B.; Yu, Chen Guang; Geddes, James W.; Tsang, Stephen H.; Bassuk, Alexander G.; and Mahajan, Vinit B., "Calpain-5 Expression in the Retina Localizes to Photoreceptor Synapses" (2016). Spinal Cord and Brain Injury Research Center Faculty Publications. 12. https://uknowledge.uky.edu/scobirc_facpub/12 This Article is brought to you for free and open access by the Spinal Cord and Brain Injury Research at UKnowledge. It has been accepted for inclusion in Spinal Cord and Brain Injury Research Center Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors Kellie A. Schaefer, Marcus A. Toral, Gabriel Velez, Allison J. Cox, Sheila A. Baker, Nicholas C. Borcherding, Diana F. Colgan, Vimala Bondada, Charles B. Mashburn, Chen Guang Yu, James W. Geddes, Stephen H. Tsang, Alexander G.
    [Show full text]