Development Trends of Small Satellites and Military Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Orbital Debris Quarterly News 22-1
National Aeronautics and Space Administration Orbital Debris Quarterly News Volume 22, Issue 1 February 2018 Inside... Two Anomalous Events in GEO Summer 2017 was marred by two apparently platform. Spacecraft dry mass is estimated to be on Space Debris Sensor anomalous events in the geosynchronous orbit the order of 2000 kg. On-board stored energy sources Launches Aboard (GEO) belt. Both incidents have been observed by include fuel and pressurized components, as well as the commercial space situation awareness providers, but as battery subsystem. SpaceX-13 2 of 26 December 2017 no debris from either event have The Indonesian GEO communications spacecraft entered the public catalog. TELKOM-1 (1999-042A, SSN catalog number 25880) SEM Analysis The GEO communications spacecraft AMC-9 experienced an energetic event on or about 25 August Results of (International Designator 2003-024A, U.S. Strategic 2017, after over 18.1 years on-orbit—3 years past Returned ISS Command [USSTRATCOM] Space Surveillance its nominal operational lifetime. An examination of Network [SSN] catalog number 27820), formerly known the Two Line Element data indicates an observable PMA-2 Cover 4 as GE-12, experienced an energetic event estimated to change in spacecraft orbit between 26 and 29 August. have occurred at approximately 07:10 GMT on 17 June At the beginning of this time interval, approximately CubeSat Study 2017, after approximately 14 years on-orbit. Fig. 1 Project Review 6 depicts the orbital evolution of the spacecraft in 2017. continued on page 2 SES, the spacecraft owner- operator, described this AMC‐9 (SSN 27820, 2003‐024A) 360 36300 Space Debris Sensor event as a “serious anomaly.” Installation 8 Following this event, the 36200 spacecraft began a westward 300 Monthly Object Type drift in the GEO belt. -
A Sample AMS Latex File
Riot, V. J. et al. (2021): JoSS, Vol. 10, No. 1, pp. 995–1006 (Peer-reviewed article available at www.jossonline.com) www.adeepakpublishing.com www. JoSSonline.com Lessons Learned Using Iridium to Com- municate with a CubeSat in Low Earth Orbit Vincent J. Riot, Lance M. Simms, and Darrell Carter Lawrence Livermore National Laboratory Livermore, CA, USA Abstract This paper presents the design and approval process for operating an Iridium transceiver on orbit and provide on-orbit performance data obtained from a CubeSat platform in Low Earth Orbit (LEO) (500 km orbit). On-orbit data demonstrates that use of a commercial, low-cost Iridium transceiver can serve as a valuable communication approach for low volume telemetry with less than a 30-minute lag for approximately 90% of the time. We also demonstrate that a radial differential velocity of 7 km/sec corresponding to about a 37.5kHz doppler shift and a distance of less than 2,000 km can be used for mission planning. Introduction Setting up a dedicated radio communication link tion is about 5-15 minutes per day per ground station, with a CubeSat in Low Earth Orbit (LEO) presents depending on the altitude and inclination of the satel- several challenges, especially for institutions with lim- lite, as well as the latitude of the ground station. This ited funding or resources. The traditional approach of means the operator is oblivious to the current state of using one or more dedicated radio ground stations to the satellite most of the time, even if multiple ground communicate directly with the satellite is often prohib- stations distributed across the Earth are used. -
Techedsat Satellite Project Techedsat Formal Orbital Debris
TechEdSat Satellite Project TES-03-XS008 Orbital Debris Assessment Report (ODAR) Rev A TechEdSat Formal Orbital Debris Assessment Report (ODAR) In accordance with NPR 8715.6A, this report is presented as compliance with the required reporting format per NASA-STD-8719.14, APPENDIX A. Report Version: A (4/2/2012) DAS Software Used in This Analysis: DAS v2.0 Page 1 of 34 TechEdSat Satellite Project TES-03-XS008 Orbital Debris Assessment Report (ODAR) Rev A Page 2 of 34 TechEdSat Satellite Project TES-03-XS008 Orbital Debris Assessment Report (ODAR) Rev A Record of Revisions Affected Description of Rev Date Author (s) Pages Change Ali Guarneros Luna, A 4/2/2012 All Initial Release Christopher Hartney, Page 3 of 34 TechEdSat Satellite Project TES-03-XS008 Orbital Debris Assessment Report (ODAR) Rev A Table of Contents Self-assessment and OSMA assessment of the ODAR using the format in Appendix A.2 of NASA-STD-8719.14: Assessment Report Format Mission Description ODAR Section 1: Program Management and Mission Overview ODAR Section 2: Spacecraft Description ODAR Section 3: Assessment of Spacecraft Debris Released during Normal Operations ODAR Section 4: Assessment of Spacecraft Intentional Breakups and Potential for Explosions. ODAR Section 5: Assessment of Spacecraft Potential for On-Orbit Collisions ODAR Section 6: Assessment of Spacecraft Postmission Disposal Plans and Procedures ODAR Section 7: Assessment of Spacecraft Reentry Hazards ODAR Section 8: Assessment for Tether Missions Appendix A: Acronyms Appendix B: Battery Data Sheet Appendix C: Wiring Schematics Page 4 of 34 TechEdSat Satellite Project TES-03-XS008 Orbital Debris Assessment Report (ODAR) Rev A Selfassessment and OSMA assessment of the ODAR using the format in Appendix A.2 of NASASTD8719.14: A self assessment is provided below in accordance with the assessment format provided in Appendix A.2 of NASA-STD-8719.14. -
The Annual Compendium of Commercial Space Transportation: 2012
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly. -
Phonesat: Modeling a Spacecraft for Remote Imaging
MIT Space Exploration Initiative Outreach PhoneSat: Modeling a spacecraft for remote imaging Avery Normandin Published on: Apr 02, 2020 License: Creative Commons Attribution 4.0 International License (CC-BY 4.0) MIT Space Exploration Initiative Outreach PhoneSat: Modeling a spacecraft for remote imaging Activity: creating a small satellite to protect your cell phone in outer-space environments! Background: Small satellites are constantly orbiting Earth, providing useful data about the planet over time. These satellites are designed and built by engineers to withstand the harsh space environment. A “cubesat” is a specific type of small satellite that has very particular specifications, making it easier for people around the world to design and launch. Today, you’ll be turning your phone into a mock-satellite! Mission: It’s your first visit to space as NASA’s newest astronaut - congratulations! Your first mission is to deploy a 1U (10 x 10 x 10 cm) small satellite that takes pictures of the plants and trees in your neighborhood. Your plan is to thrust the satellite into orbit by throwing it outside the International Space Station (ISS). However, during launch, you hear a loud crash - the satellite you have spent the last year designing and building has fallen and broken! Mission control informs you that you are still responsible for getting a satellite into orbit upon your arrival to the ISS. Your new mission is to rebuild the satellite and test a prototype first at home -- one that takes. The only ‘computer’ available to run your satellite? Your smartphone! Using the constraints defined by a cubesat, you will be creating a prototype structure that nests your phone as a “satellite payload”. -
Cubesat-Services.Pdf
Space• Space Station Station Cubesat CubesatDeployment Services Deployment Services NanoRacks Cubesat Deployer (NRCSD) • 51.6 degree inclination, 385-400 KM • Orbit lifetime 8-12 months • Deployment typically 1-3 months after berthing • Soft stowage internal ride several times per year Photo credit: NASA NRCSD • Each NRCSD can deploy up to 6U of CubeSats • 8 NRCSD’s per airlock cycle, for a total of 48U deployment capability • ~2 Air Lock cycles per mission Photo Credit: NanoRacks LLC Photo credit: NASA 2. Launched by ISS visiting vehicle 3. NRCSDs installed by ISS Crew 5. Grapple by JRMS 4. JEM Air Lock depress & slide 6. NRCSDs positioned by JRMS table extension 1. NRCSDs transported in CTBs 7. Deploy 8. JRMS return NRCSD-MPEP stack to slide table; 9. ISS Crew un-install first 8 NRCSDs; repeat Slide table retracts and pressurizes JEM air lock install/deploy for second set of NRCSDs NanoRacks Cubesat Mission (NR-CM 3 ) • Orbital Sciences CRS-1 (Launched Jan. 9, 2014) • Planet Labs Flock1A, 28 Doves • Lithuanian Space Assoc., LitSat-1 • Vilnius University & NPO IEP, LituanicaSat-1 • Nanosatisfi, ArduSat-2 • Southern Stars, SkyCube • University of Peru, UAPSat-1 Photo credit: NASA Mission Highlights Most CubeSats launched Two countries attain in a single mission space-faring status World’s largest remote Kickstarter funding sensing constellation • NR-CM3 • Orbital Science CRS-1, Launch Jan 9, 2014 • Air Lock Cycle 1, Feb 11-15, 2014 Dove CubeSats • Deployers 1-8 (all Planet Labs Doves) Photo credit: NASA • NR-CM3 • Orbital Science CRS-1, -
Communications for the Techedsat/Phonesat Missions NASA Ames Research Center
Communications for the TechEdSat/PhoneSat Missions NASA Ames Research Center Presentation to Small Satellite Pre-Conference Workshop August 5, 2017 Marcus Murbach, PI Rick Alena, Co-I Ali Guarneros-Luna, Co-I Jon Wheless, Engineer SOAREX/TechEdSat/PhoneSat Teams Flight Experiments of Recent Years (2008-2017): 9 Flights SOAREX-6 (2008) SOAREX-7 TES-1 TES-2 (2009) Oct 4, 2012 TES-3 PhoneSat Aug 3, 2013 Iridium-test (6 wk de- Aug 21, 2013 TES-4 orbit) Mar 3, 2015 TES-5 (4 wk de-orbit) Mar 6, 2017 (deorbited Jul 29) TES/PS Team, 2014 SOAREX-8 (2015) SOAREX-9 (2016) TES/PS Team, Summer 2017 What is an Exo-Brake…? Simple, drag-modulated de-orbit system based on tension elements TechEdSat5 was deployed from ISS on March 6, 2017 by NanoRacks The TechEdSat 5 Exo-Brake Experiment • The Exo-Brake is an exo-atmospheric braking and de-orbit device which has successfully flown twice before in a fixed configuration on TechEdSat-3 and 4 • The TechEdSat rapid prototype flight series is conducted as a hands-on training environment for young professionals and university partners • The project helps verify Entry Systems Modeling by gathering real-world data aboard sounding rockets and CubeSats • In the future, passive Exo-Brake systems may be used for small-sat disposal and the development of technologies to permit on-demand sample return from Low Earth Orbit (LEO) scientific/manufacturing platforms TechEdSat 5 (TES5) Avionics, Software and Communications • The 3.5 U CubeSat contains a low-level AVR microprocessor for power control and a high-level Atom processor for fast data processing • The primary Command and Telemetry (C&T) link is provided by the Iridium constellation through on-board Short Burst Data (SBD) modems. -
2020 Spring GOES DCS Technical Working Group (TWG) 125 Meeting Th Tuesday, May 5 , 2020 (Virtual Via Webex and Teleconference)
th 2020 Spring GOES DCS Technical Working Group (TWG) 125 Meeting th Tuesday, May 5 , 2020 (Virtual Via Webex and Teleconference) Opening Remarks/ Introductions – LySanias Broyles (STIWG Chair and U.S. Army Corps of Engineer, Rock Island District) and Richard Antoine (NESDIS/OSPO/SPSD/Direct Services Branch) Richard Antoine opened the meeting at 09:30. DCS Update: 100 BPS Discontinuation, CS2 Status (Richard Antoine (NESDIS/OSPO/SPSD/ Direct Services Branch) Richard began by noting that we now have 659 SUAs and 2,134 registered users. Also noted was that the 100 BPS DCPs are no longer supported as of last January 21, 2020. There has also been an enhancement to DAMS-NT that should result in a better service to users by adding enhanced message statistics and that the site surveys needed to install a backup pilot at the CBU in Fairmont, WB have been accomplished. Letecia Reeves then went over the chart below showing the status of all the DCPs in the system. DCP Status 100 Baud 300 Baud 1200 Baud Totals Active DCPs 0 29,304 520 29,824 Inactive DCPs 0 7,347 604 7,951 Unused DCPs 0 2,400 214 2,614 Totals 0 39,051 1,338 40,389 Note: Statistics do not include the parked channel (-1). Letecia then discussed the factors that determine the status of the DCP. The status levels are in column one, on the left in the table above. They factors are listed in bullet form below: ● A: System received data transmissions w/in 2 days. ● D: No data transmission received in 2 days. -
Phonesat the Smartphone Nanosatellite
PhoneSat The Smartphone Nanosatellite NASA’s PhoneSat project tests whether To do this, the PhoneSat design makes spacecraft can be built using smartphones extensive use of commercial-off-the-shelf to launch the lowest-cost satellites ever components, including a smartphone. flown in space. Each PhoneSat nanosatellite Smartphones offer a wealth of capabilities is one cubesat unit - a satellite in a 10 cm needed for satellite systems such as fast cube (approx. 4 inches) or about the size of processors, versatile operating systems, a tissue box - and weighs approximately 1 multiple miniature sensors, high-resolution kg (2.2 pounds). Engineers believe PhoneSat technology will enable NASA to launch cameras, GPS receivers, and several radios. multiple new satellites capable of conducting PhoneSat engineers also are changing the science and exploration missions at a small way missions are designed by prototyping fraction of the cost of conventional satellites. and incorporating existing commercial The small teams of NASA engineers technologies and hardware to see what supporting PhoneSat at NASA’s Ames capabilities they can provide, rather than Research Center, Moffett Field, Calif., aim trying to custom-design technology to rapidly evolve satellite architecture and solutions to meet set requirements. incorporate the Silicon Valley approach PhoneSat 1.0 demonstrated that low-cost, of “release early, release often,” adding modern electronics can fly in space. It was new functionality to the satellite with each built around the Nexus One smartphone succeeding iteration. made by HTC Corp., running Google’s Left image: The PhoneSat 1.0 cubesat bus with a smartphone inside. Image credit: Ben Howard. -
Japan's Technical Prowess International Cooperation
Japan Aerospace Exploration Agency April 2016 No. 10 Special Features Japan’s Technical Prowess Technical excellence and team spirit are manifested in such activities as the space station capture of the HTV5 spacecraft, development of the H3 Launch Vehicle, and reduction of sonic boom in supersonic transport International Cooperation JAXA plays a central role in international society and contributes through diverse joint programs, including planetary exploration, and the utilization of Earth observation satellites in the environmental and disaster management fields Japan’s Technical Prowess Contents No. 10 Japan Aerospace Exploration Agency Special Feature 1: Japan’s Technical Prowess 1−3 Welcome to JAXA TODAY Activities of “Team Japan” Connecting the Earth and Space The Japan Aerospace Exploration Agency (JAXA) is positioned as We review some of the activities of “Team the pivotal organization supporting the Japanese government’s Japan,” including the successful capture of H-II Transfer Vehicle 5 (HTV5), which brought overall space development and utilization program with world- together JAXA, NASA and the International Space Station (ISS). leading technology. JAXA undertakes a full spectrum of activities, from basic research through development and utilization. 4–7 In 2013, to coincide with the 10th anniversary of its estab- 2020: The H3 Launch Vehicle Vision JAXA is currently pursuing the development lishment, JAXA defined its management philosophy as “utilizing of the H3 Launch Vehicle, which is expected space and the sky to achieve a safe and affluent society” and to become the backbone of Japan’s space development program and build strong adopted the new corporate slogan “Explore to Realize.” Under- international competitiveness. -
OSBP Small Business Program Guide
8x8.5 National Aeronautics and Space Administration 1. 2. 3. 4. Small Business Program Guide www.nasa.gov 8x8.5 Vision The vision of the Office of Small Business Programs (OSBP) at NASA Headquarters is to promote and integrate all small businesses into the competitive base of contractors that pioneer the future of space exploration, scientific discovery, and aeronautics research. Mission f To advise the Administrator on all matters related to small business, f To promote the development and management of NASA programs that assist all categories of small business, f To develop small businesses in high- tech areas that include technology A galactic spectacle. (X-ray: NASA/CXC/SAO/J. transfer and the commercialization of DePasquale; Infrared: NASA/JPL-Caltech; technology, and Optical: NASA/STScI) f To provide small businesses with the maximum practicable opportunities to participate in NASA prime contracts and subcontracts. 8.5x8.5 Letter from the Associate Administrator NASA is committed to providing small businesses with opportunities to participate in both NASA prime contracts and subcontracts. The NASA Office of Small Business Programs is here to facilitate open and effective communication between our Centers and small businesses worldwide to make that commitment a reality. This brochure includes invaluable information on how to do business Glenn A. Delgado. (NASA) with NASA, its Centers, the Mentor-Protégé Program (MPP), and more while focusing on the socioeconomic small business categories. If you’d like to learn more, additional information is available 24/7 on the NASA OSBP Web site, www.osbp.nasa.gov. NASA Office of Small Business Programs Glenn A. -
US Reporter, Cameraman Killed in On-Air Shooting
SUBSCRIPTION THURSDAY, AUGUST 27, 2015 THULQADA 12, 1436 AH www.kuwaittimes.net US reporter, cameraman Min 30º Max 46º killed in on-air shooting High Tide 09:05 & 22:50 Gunman kills self after posting attack video online Low Tide 02:25 & 16:05 40 PAGES NO: 16622 150 FILS MONETA, Virginia: A TV reporter and cameraman were shot to death during a live television interview yester- Saudi suspect in day by a gunman who recorded himself carrying out the killings and posted the video on social media after Khobar Towers fleeing the scene. Authorities identified the suspect as a journalist who had been fired from the station earlier attack arrested this year. Hours later and hundreds of miles away, he ran off the road and a trooper found him with a self-inflict- WASHINGTON: A man suspected in the 1996 ed gunshot wound. He died at a hospital later yester- bombing of the Khobar Towers residence at a US day. military base in Saudi Arabia has been captured, a The shots rang out on-air as reporter Alison Parker US official said yesterday. Ahmed Al-Mughassil, and cameraman Adam Ward were presenting a local described by the FBI in 2001 as the head of the mili- tourism story at an outdoor shopping mall. Viewers saw tary wing of Saudi Hezbollah, is suspected of lead- her scream and run, and she could be heard saying “Oh ing the attack that killed 19 US service personnel my God,” as she fell. Ward fell, too, and the camera he and wounded almost 500 people.