Status and Trends of Wetland and Aquatic Habitats on Texas Barrier Islands

Total Page:16

File Type:pdf, Size:1020Kb

Status and Trends of Wetland and Aquatic Habitats on Texas Barrier Islands STATUS AND TRENDS OF WETLAND AND AQUATIC HABITATS ON TEXAS BARRIER ISLANDS COASTAL BEND by William A. White, Thomas A. Tremblay, Rachel L. Waldinger, and Thomas R. Calnan* *Coastal Coordination Division, Texas General Land Office Final Report Prepared for the Texas General Land Office and National Oceanic and Atmospheric Administration under GLO Contract No. 05-041 A report of the Coastal Coordination Council pursuant to National Oceanic and Atmospheric Administration Award No. NA04NOS4190058 This investigation was funded by a grant from the National Oceanic and Atmospheric Administration administered by the Texas General Land Office. The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its subagencies. Bureau of Economic Geology Scott W. Tinker, Director John A. and Katherine G. Jackson School of Geosciences The University of Texas at Austin University Station Box X Austin, TX 78713 March 2006 STATUS AND TRENDS OF WETLAND AND AQUATIC HABITATS ON TEXAS BARRIER ISLANDS COASTAL BEND by William A. White, Thomas A. Tremblay, Rachel L. Waldinger, and Thomas R. Calnan* *Coastal Coordination Division, Texas General Land Office Final Report prepared for the Texas General Land Office and National Oceanic and Atmospheric Administration under GLO Contract No. 05-041 A report of the Coastal Coordination Council pursuant to National Oceanic and Atmospheric Administration Award No. NA04NOS4190058 This investigation was funded by a grant from the National Oceanic and Atmospheric Administration administered by the Texas General Land Office. The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its subagencies. Bureau of Economic Geology Scott W. Tinker, Director John A. and Katherine G. Jackson School of Geosciences The University of Texas at Austin University Station Box X Austin, TX 78713 March 2006 EXECUTIVE SUMMARY ....................................................................................................v INTRODUCTION ..................................................................................................................1 Study Area ..................................................................................................................2 General Setting of Barriers .........................................................................................2 Bay-Estuary-Lagoon Setting...........................................................................6 Relative Sea-Level Rise..................................................................................6 METHODS ............................................................................................................................7 Mapping and Analyzing Status and Trends................................................................7 Wetland Classification and Definition........................................................................8 Interpretation of Wetlands ..........................................................................................8 Historical Wetland Distribution.................................................................8 Revision of Historical Wetland Maps........................................................9 Current Wetland Distribution ..................................................................10 Field Investigations..................................................................................10 Variations in Classification......................................................................14 Map Registration Differences..................................................................14 CLASSIFICATION OF WETLAND AND DEEP WATER HABITATS IN THE STUDY AREA .......................................................................................................18 Marine System ..........................................................................................................20 Estuarine System.......................................................................................................20 Palustrine System .....................................................................................................23 Lacustrine System.....................................................................................................27 STATUS OF WETLANDS AND AQUATIC HABITATS IN 2002-04 .............................30 Estuarine System.......................................................................................................34 Marshes (Estuarine Intertidal Emergent Wetlands)......................................34 Tidal Flats (Estuarine Intertidal Unconsolidated Shores & Aquatic Beds) ..34 Mangroves (Estuarine Intertidal Scrub/Shrub) .............................................34 Seagrass Beds (Estuarine Subtidal Aquatic Beds)........................................35 Open Water (Estuarine Subtidal Unconsolidated Bottom)...........................35 Oyster Reefs (Estuarine Reefs).....................................................................35 Palustrine System......................................................................................................35 Marshes (Palustrine Emergent Wetlands).....................................................35 Shrubs and Trees (Palustrine Scrub-Shrub Wetlands)..................................36 Open Water and Flats (Palustrine Unconsolidated Bottom and Unconsolidated Shore)........................................................................36 Marine System ..........................................................................................................36 Gulf Beach (Marine Intertidal Unconsolidated Shore).................................36 HISTORICAL TRENDS IN WETLAND AND AQUATIC HABITATS...........................37 Methods Used to Analyze Trends.............................................................................37 Geographic Information System...................................................................37 Possible Photointerpretation Errors ..............................................................37 ii Wetland Codes..............................................................................................38 Wetland Trends and Probable Causes, 1950’s through 2002–04 .............................38 Analysis of Wetland Trends by Geographic Area ....................................................41 San José Island..........................................................................................................41 Mustang Island..........................................................................................................45 North Padre Island ....................................................................................................54 Harbor Island ............................................................................................................56 SUMMARY AND CONCLUSIONS ..................................................................................59 ACKNOWLEDGMENTS ....................................................................................................61 REFERENCES .....................................................................................................................62 APPENDIX...........................................................................................................................64 Executive Summary Figures I. Index map of study area. ..................................................................................................................... vi II. Aerial extent of selected habitats in the study area in 2002–04. ........................................................ vii III. Distribution of selected habitats by geographic area in 2002–04......................................................viii IV. Areal distribution of major habitats in the study area in the 1950’s, 1979, and 2002–04. .................. ix Executive Summary Tables I. Total area of major habitats in the 1950’s, 1979, 2002–04 in study area................................................. x FIGURES 1. Mangroves from light house........................................................................................................................... 1 2. Index map of wetland status and trends in study area .................................................................................... 3 3. Map showing boundaries of the different geographic areas (islands) investigated ........................................ 3 4. Schematic profile of a barrier island, such as San José Island, illustrating major environments from Gulf to bay.............................................................................................................................................................. 4 5. Example of ridge and swale topography on San José Island.......................................................................... 4 6. Corpus Christi Pass, a hurricane washover channel located at the southern end of Mustang Island.............. 5 7. Sea-level rise at the Rockport tide gauge located near the landward margin of Aransas Bay........................ 7 8. Map of field-survey sites used for ground-truthing aerial photo delineations, and recording vegetation composition and water regimes ...................................................................................................................... 11 9. Comparison of color infrared aerial photograph (upper left) taken in 2002, map of wetland habitats (upper right) based
Recommended publications
  • Classification of Wetlands and Deepwater Habitats of the United States
    Pfego-/6^7fV SDMS DocID 463450 ^7'7/ Biological Services Program \ ^ FWS/OBS-79/31 DECEMBER 1979 Superfund Records Center ClassificaHioFF^^^ V\Aetlands and Deepwater Habitats of the United States KPHODtKtD BY NATIONAL TECHNICAL INFOR/V^ATION SERVICE U.S. IKPARTMEN TOF COMMERCt SPRINGMflO, VA. 22161 Fish and Wildlife Service U.S. Department of the Interior (USDI) C # The Biological Services Program was established within the U.S. Fish . and Wildlife Service to supply scientific information and methodologies on key environmental issues which have an impact on fish and wildlife resources and their supporting ecosystems. The mission of the Program is as follows: 1. To strengthen the Fish and Wildlife Service in its role as a primary source of Information on natural fish and wildlife resources, par­ ticularly with respect to environmental impact assessment. 2. To gather, analyze, and present information that will aid decision­ makers in the identification and resolution of problems asso­ ciated with major land and water use changes. 3. To provide better ecological information and evaluation for Department of the Interior development programs, such as those relating to energy development. Information developed by the Biological Services Program is intended for use in the planning and decisionmaking process, to prevent or minimize the impact of development on fish and wildlife. Biological Services research activities and technical assistance services are based on an analysis of the issues, the decisionmakers involved and their information neeids, and an evaluation of the state^f-the-art to Identify information gaps and determine priorities. This Is a strategy to assure that the products produced and disseminated will be timely and useful.
    [Show full text]
  • Wetland Classification As Per Cowardin Et Al. 1979
    Wetland Classification as per Cowardin et al. 1979 PSS01-e0tg Ω PEM01-f0tg PAB03-h0tg Matthew J. Gray University of Tennessee Why Classify Wetlands? 1) Delineate their edges •Boundary of development 2) Estimate their area •Management, Excavation, Mitigation 3) To Create maps Caribbean Classification of Wetland and Deepwater Habitats of the United States http://www.npwrc.usgs.gov/resource/1998/classwet/classwet.htm FWS/OBS-79/31 December 1979 Lewis Cowardin (USFWS) Virginia Carter (USGS) Francis Golet (URI) Edward LaRoe (NOAA) Biological Classification System •Wetlands •Deepwater Habitats Jurisdictional USACE 1987 Manual 1 Boundary Between Wetland and Deepwater Systems Non-tidal: Emergent Plants! >2 m (6.6 ft) in Depth (low water level—fall) Permanently flooded rivers and lakes Tidal: Extreme low water level (spring tides) Permanently flooded brackish marshes or marine areas The Classification System Hierarchical Structure Systems (5), Subsystems (8), Classes (11), Subclasses (28), Dominance Type, Modifiers (3) Marine Estuarine Riverine Lacustrine Palustrine •Hydrologic •Geomorphic •Chemical •Biological Hierarchical Structure 2 Marine System Open ocean overlying the continental shelf and its coastline, where salinities are >30 ppt except at the mouths of estuaries. OR, 1) Extreme high water 3) Estuarine system OR, limit of spring tides If #2 not present 2) Wetland emergent 4) Continental shelf vegetation (ocean extent) “High-energy Systems” Subsystems: Subtidal: Substrate is continuously submerged (deepwater) Intertidal: Substrate is exposed and flooded by tides (wetland) Marine Subsystems Intertidal Subtidal Splash Zone Estuarine System Tidal deepwater systems and wetlands that are usually semi-enclosed by land but have open, partly- obstructed, or sporadic access to the open ocean.
    [Show full text]
  • Alberta Wetland Classification System – June 1, 2015
    Alberta Wetland Classification System June 1, 2015 ISBN 978-1-4601-2257-0 (Print) ISBN: 978-1-4601-2258-7 (PDF) Title: Alberta Wetland Classification System Guide Number: ESRD, Water Conservation, 2015, No. 3 Program Name: Water Policy Branch Effective Date: June 1, 2015 This document was updated on: April 13, 2015 Citation: Alberta Environment and Sustainable Resource Development (ESRD). 2015. Alberta Wetland Classification System. Water Policy Branch, Policy and Planning Division, Edmonton, AB. Any comments, questions, or suggestions regarding the content of this document may be directed to: Water Policy Branch Alberta Environment and Sustainable Resource Development 7th Floor, Oxbridge Place 9820 – 106th Street Edmonton, Alberta T5K 2J6 Phone: 780-644-4959 Email: [email protected] Additional copies of this document may be obtained by contacting: Alberta Environment and Sustainable Resource Development Information Centre Main Floor, Great West Life Building 9920 108 Street Edmonton Alberta Canada T5K 2M4 Call Toll Free Alberta: 310-ESRD (3773) Toll Free: 1-877-944-0313 Fax: 780-427-4407 Email: [email protected] Website: http://esrd.alberta.ca Alberta Wetland Classification System Contributors: Matthew Wilson Environment and Sustainable Resource Development Thorsten Hebben Environment and Sustainable Resource Development Danielle Cobbaert Alberta Energy Regulator Linda Halsey Stantec Linda Kershaw Arctic and Alpine Environmental Consulting Nick Decarlo Stantec Environment and Sustainable Resource Development would also
    [Show full text]
  • Stratigraphic Studies of a Late Quaternary Barrier-Type Coastal Complex, Mustang Island-Corpus Christi Bay Area, South Texas Gulf Coast
    Stratigraphic Studies of a Late Quaternary Barrier-Type Coastal Complex, Mustang Island-Corpus Christi Bay Area, South Texas Gulf Coast U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1328 COVER: Landsat image showing a regional view of the South Texas coastal zone. IUR~AtJ Of ... lt~f<ARY I. liBRARY tPotC Af•a .VAStf. , . ' U. S. BUREAU eF MINES Western Field Operation Center FEB 1919S7 East 360 3rd Ave. IJ.tA~t tETUI~· Spokane, Washington .99~02. m UIIM» S.tratigraphic Studies of a Late Quaternary Barrier-Type Coastal Complex, Mustang Island­ Corpus Christi Bay Area, South Texas Gulf Coast Edited by GERALD L. SHIDELER A. Stratigraphic Studies of a Late Quaternary Coastal Complex, South Texas-Introduction and Geologic Framework, by Gerald L. Shideler B. Seismic and Physical Stratigraphy of Late Quaternary Deposits, South Texas Coastal Complex, by Gerald L. Shideler · C. Ostracodes from Late Quaternary Deposits, South Texas Coastal Complex, by Thomas M. Cronin D. Petrology and Diagenesis of Late Quaternary Sands, South Texas Coastal Complex, by Romeo M. Flores and C. William Keighin E. Geochemistry and Mineralogy of Late Quaternary Fine-grained Sediments, South Texas Coastal Complex, by Romeo M. Flores and Gerald L. Shideler U.S. G E 0 L 0 G I CAL SURVEY P R 0 FE S S I 0 N A L p·A PER I 3 2 8 UNrfED S~fA~fES GOVERNMENT PRINTING ·OFFICE, WASHINGTON: 1986 DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging-in-Publication Data Main entry under title: Stratigraphic studies of a late Quaternary barrier-type coastal complex, Mustang Island-Corpus Christi Bay area, South Texas Gulf Coast.
    [Show full text]
  • Coastal Bend Bays Plan August 1998
    Coastal Bend Bays Plan August 1998 CBBEP-1 Bee McMullen Live Oak Refugio Aransas San Patricio Jim Wells Nueces Duval Kleberg Brooks Kenedy N This project has been funded in part by the United States Environmental Protection Agency under assistance agreement #CE-996363-01-2 to the Texas Natural Resource Conservation Commission. The contents of this document do not necessarily represent the views of the United States Environmental Protection Agency or the Texas Natural Resource Conservation Commission. The mention of trade names or commercial products does not in any way constitute an endorsement or recommendation for use. Coastal Bend Bays and Estuaries Program Staff Mr. Richard Volk, Director Ms. Sandra Alvarado, Research Specialist Mr. Doug Baker, Information Specialist Mr. Jeff Foster, Program Administrator Ms. Alice Laningham, Administrative Coordinator Ms. Laura Radde, USEPA Region 6, USEPA Project Manager ç Printed on recycled paper with soybased inks. Coastal Bend Bays Plan To Conserve and Manage the Coastal Bend Bays of South Texas A product of the Coastal Bend Bays and Estuaries Program, publication #CBBEP-1 August 1998 Suggested citation: Coastal Bend Bays Plan. 1998. Published by Texas Natural Resource Conservation Commission, Austin, TX. CBBEP-1. Policy Committee Commissioner John Baker Mr. Gregg Cooke Policy Committee Chair Policy Committee Vice-Chair Texas Natural Resource Regional Administrator, USEPA Region 6 Conservation Commission Commissioner Ray Clymer The Honorable Vilma Luna Texas Parks and Wildlife Department State Representative Commissioner Garry Mauro The Honorable Carlos Truan Texas General Land Office Texas Senator Commissioner Noe Fernandez The Honorable Josephine Miller Texas Water Development Board County Judge, San Patricio County Mr.
    [Show full text]
  • The Representation of Wetland Types and Species in RAMSAR Sites in The
    The representation of wetland types and species in RAMSAR sites in the Baltic Sea Catchment Area The representation of wetland types and species in RAMSAR sites in the Baltic Sea Catchment Area | 1 2 | The representation of wetland types and species in RAMSAR sites in the Baltic Sea Catchment Area White waterlily, Nymphaea alba The representation of wetland types and species in RAMSAR sites in the Baltic Sea Catchment Area In order to get a better reference the future and long-term planning of activities aimed for the protection of wetlands and their ecological functions, WWF Sweden initiated an evaluation of the representation of wetland types and species in the RAMSAR network of protected sites in the Baltic Sea Catchment Area. The study was contracted to Dr Mats Eriksson (MK Natur- och Miljökonsult HB, Sweden), who has been assisted by Mrs Alda Nikodemusa, based in Riga, for the compilation of information from the countries in Eastern Europe. Mats O.G. Eriksson MK Natur- och Miljökonsult HB, Tommered 6483, S-437 92 Lindome, Sweden With assistance by Alda Nikodemusa, Kirsu iela 6, LV-1006 Riga, Latvia The representation of wetland types and species in RAMSAR sites in the Baltic Sea Catchment Area | 3 Contents Foreword 5 Summary 6 Sammanfattning på svenska 8 Purpose of the study 10 Background and introduction 10 Study area 12 Methods 14 Land-use in the catchment area 14 Definitions and classification of wetland types 14 Country-wise analyses of the representation of wetland types 15 Accuracy of the analysis 16 Overall analysis of the
    [Show full text]
  • Padre/Mustang Island AREA DEVELOPMENT PLAN
    Padre/Mustang Island AREA DEVELOPMENT PLAN Advisory Committee Meeting #3 Thursday, December 3, 2020 Meeting Purpose » Review Draft Renderings » Review Draft Action Items » Review Draft Public Improvement Initiatives Agenda ADP Plan Process Update FNI Draft Vision Theme Renderings Committee Discussion Draft Action Items Committee Discussion Draft Public Improvement Initiatives Committee Discussion Wrap-up and Next Steps FNI Padre/Mustang Island Draft Vision Theme Renderings 1. Safe Family Friendly Neighborhood Create a safe and family friendly community that provides needed amenities and services for local residents. Rendering Features » Local Park - Douden Park » Family Friendly Neighborhood » People Walking/Biking » Community Garden ISAC Review Draft 2 Padre/Mustang Island 2. Blended Residential Community and Destination Location Encourage tourism and the development of local commercial businesses to build a strong economic environment and sufficiently support the year-round residential community. Rendering Features » PR22 Look North » Golf Cart Path » Commercial/Mixed Use Development » Marina Development » Improved PR 22 and New Bridge ISAC Review Draft 3 Padre/Mustang Island 3. Environmental Preservation Capitalize on existing environmental features as amenities for the community and ensure the preservation of these areas as the Island continues to develop. Rendering Features » Healthy Dunes » Beach activity » Environmental Corridors Rendering View Option 1 - Ground Level View of Beach View Option 2 - Aerial View of Mustang Island ISAC Review Draft 4 Padre/Mustang Island Draft Action Items 1. Transportation - Improve traffic flow, Island ingress and egress, safety, and roadway quality. Relevant Actions in Current ADP CURRENT KEEP/ MODIFY/ ADP CURRENT ADP ACTION TEXT DELETE? ACTION # C.1 The City Council adopts the Transportation Plan, which is part of MobilityCC, the Mobility Element of the City’s Comprehensive Plan to guide future transportation decisions.
    [Show full text]
  • Part 1: Wetland Wildlife Values
    Amy Marrella, Acting Commissioner www.ct.gov/dep P a r t 1 : Wetland Wildlife V a l u e s Presentation Objectives Introduce wetland wildlife concepts Identify different types of freshwater wetlands using the U.S. Fish and Wildlife (USF&W) Wetland Classification System Identify wetland wildlife values 2 Introduction to Wetland Wildlife Concepts 3 Introduction Wetlands are highly productive ecosystems with diverse habitats and vegetative structure. The various types of wetlands provide food and cover for a variety of wildlife. 4 Introduction For example, a vernal pool, which is temporarily flooded, provides critical spring breeding habitat for salamanders but is not suitable for beavers which require permanently flooded areas. 5 Biogeography of Wetland Wildlife Wildlife Distribution Factors Open water to vegetation ratio Adjacent land-use Topography 6 Biogeography Generally speaking the larger the wetland, and the more diverse the habitat, the greater the wildlife diversity. This concept is called biogeography. The park area in the photograph, while aesthetically pleasing, provides little cover and food for wildlife because of minimal habitat diversity. 7 1. The size and shape of the wetland 2. The adjacent topography, landscape, water depth and water quality 3. Type and structure of vegetation present in the wetland 4. The amount of open water and Wetland Wildlife Distribution time of year it is Factors present 8 The distribution of vegetation in comparison to the amount of open water, is also important. Muskrats, for example, prefer 20% open water versus 80% vegetation. Waterfowl, on the other hand, prefer a one to one ratio between open Open Water to Vegetation Ratio water and vegetation.
    [Show full text]
  • Nueces County, Texas Commissioners Court Agenda
    NUECES COUNTY, TEXAS COMMISSIONERS COURT AGENDA NOTICE OF SPECIAL MEETING JUNE 7, 2019 The Nueces County Commissioners Court will meet on the above date at 10:00 a.m. in the Commissioners Courtroom, 3rd floor, Nueces County Courthouse, 901 Leopard, Corpus Christi, Texas. BARBARA CANALES COUNTY JUDGE CAROLYN VAUGHN COMMISSIONER, PRECINCT NO. 1 JOE A. GONZALEZ COMMISSIONER, PRECINCT NO. 2 JOHN MAREZ COMMISSIONER, PRECINCT NO. 3 BRENT CHESNEY COMMISSIONER, PRECINCT NO. 4 KARA SANDS, CLERK OF THE COURT INFORMATION ON THE COMMISSIONERS COURT AGENDA CONSENT AGENDA: At most meetings, the Commissioners Court establishes a Consent Agenda. It consists of those Agenda Items which are routine or non-controversial, and which neither a member of the Commissioners Court nor the public has asked to be pulled for discussion. Once the Commissioners Court has established the Consent Agenda, Agenda Items included on it will be voted upon in one vote, and will not be discussed separately unless requested by the County Judge, Commissioner, or a citizen. EXECUTIVE SESSION: The Commissioners Court may go into Executive Session to discuss those matters listed anywhere on the Agenda or as otherwise permitted by law. PUBLIC COMMENT: Members of the public will have the opportunity to address the Commissioners Court during this section on any Agenda Item or any subject within its jurisdiction except a matter related to pending litigation. Each speaker should sign in on the Public Comment Sheet available at the rear of the Courtroom at least five (5) minutes before commencement of the Commissioners Court meeting. Speakers should limit their comments to two (2) minutes.
    [Show full text]
  • THE TEXAS SHORELINE CHANGE PROJECT Coastal Mapping of West and East Bays in the Galveston Bay System Using Airborne Lidar
    THE TEXAS SHORELINE CHANGE PROJECT Coastal Mapping of West and East Bays in the Galveston Bay System Using Airborne Lidar Rebecca C. Smyth, James C. Gibeaut, John Andrews, Tiffany L. Hepner, and Roberto Gutierrez With assistance from Adrien Lindley, Shane Valentine, and Rachel Waldinger Prepared for the Texas General Land Office GLO Contract Number 02-520 C Bureau of Economic Geology Scott W. Tinker, Director The University of Texas at Austin John A. and Katherine G. Jackson School of Geosciences August 2003 CONTENTS ABSTRACT...............................................................................................................................1 INTRODUCTION .....................................................................................................................2 Goals of the Texas Shoreline Change Project......................................................................2 Airborne Lidar: A Tool for Monitoring Coastal Environments...........................................3 Tasks and Deliverables ........................................................................................................5 GALVESTON WEST AND EAST BAY LIDAR SURVEY ...................................................6 Airborne Lidar Technical Background ................................................................................7 Lidar Survey Operations......................................................................................................8 Global Positioning System Base Stations.......................................................................9
    [Show full text]
  • US Fish and Wildlife Service 1979 Wetland Classification: a Review Lewis M
    University of Rhode Island DigitalCommons@URI Natural Resources Science Faculty Publications Natural Resources Science 1995 US Fish and Wildlife Service 1979 wetland classification: A review Lewis M. Cowardin Francis C. Golet University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/nrs_facpubs Terms of Use All rights reserved under copyright. Citation/Publisher Attribution Cowardin, L.M. & Golet, F.C. Vegetatio (1995) 118: 139. https://doi.org/10.1007/BF00045196 Available at: http://dx.doi.org/10.1007/BF00045196 This Article is brought to you for free and open access by the Natural Resources Science at DigitalCommons@URI. It has been accepted for inclusion in Natural Resources Science Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Vegetatio 118: 139-152, 1995. 139 (~) 1995 Kluwer Academic ['ublishers. Printed in Belgium. US Fish and Wildlife Service 1979 wetland classification: A review* Lewis M. Cowardin I & Francis C. Golet 2 1us Fish and Wildlife Service, Northern Prairie Wildlife Research Center, Jamestown, ND 58401, USA; 2Department of Natural Resources Science, University of Rhode Island, Kingston, R102881, USA Key words: Classification, Definition, United States, Wetland Abstract In 1979 the US Fish and Wildlife Service published and adopted a classification of wetlands and deepwater habitats of the United States. The system was designed for use in a national inventory of wetlands. It was intended to be ecologically based, to furnish the mapping units needed for the inventory, and to provide national consistency in terminology and definition. We review the performance of the classification after 13 years of use.
    [Show full text]
  • Focus Question 5
    FOCUS QUESTION 5: Are habitats for fish and wildlife increasing or decreasing? What was measured: Acres of seagrass communities, acres of saltwater marsh, acres of freshwater marsh, number of rook- ery islands Answer: Overall, seagrass communities are increasing along the Texas Coastal Bend. The Bureau of Eco- nomic Geology recorded 29,096 acres of seagrass in 1950 and 45,329 acres in 2004. The Texas Coastal Bend estuarine marshes are also increasing due to relative sea-level rise, where estuarine marsh spread into areas previously occupied by tidal flats. Coastal Bend palustrine (freshwater) marshes are decreas- ing due to island development, agricultural practices on the island, drier conditions and the landward movement of the salt/freshwater boundary. There are currently around 185 rookery islands in CBBEP area and most have been eroding away at varying rates. Good INDICATOR #14: Seagrass coverage. Condition/Trend: Good/Improving I. BACKGROUND Submerged seagrass meadows are a dominant, unique subtropical habitat in many Texas bays and es- tuaries. These marine plants play critical roles in the coastal environment, including nursery habitat for estuarine fisheries, a major source of organic biomass for coastal food webs, effective agents for stabiliz- ing coastal erosion and sedimentation, and major biological agents in nutrient cycling and water quality processes. Five seagrass species occur in Texas. These species represent highly specialized marine flowering plants (but not actually true grasses) that grow rooted and submersed in the higher salinity waters of most Texas bays and estuaries. Seagrasses were determined to be worth $9,000 to $28,000 per acre for commercial, recreational, and storm protection functions in Texas.
    [Show full text]