<<

WALLONIE ESPACE INFOS n°86 mai - juin 2016

WALLONIE ESPACE INFOS

n°86 mai-juin 2016

Coordonnées de l’association Wallonie Espace

Wallonie Espace WSL, Liege Science Park, Rue des Chasseurs Ardennais, B-4301 Angleur-Liège, Belgique Tel. 32 (0)4 3729329 Skywin Aerospace Cluster of Wallonia Chemin du Stockoy, 3, B-1300 Wavre, Belgique Contact: Michel Stassart, e-mail: [email protected]

Le présent bulletin d’infos en format pdf est disponible sur le site de Wallonie Espace (www.wallonie-espace.be), sur le portal de l’Euro Space Center/Belgium, sur le site du pôle Skywin (http://www.skywin.be). Contact pour ce bulletin d’informations : [email protected]

SOMMAIRE : Thèmes : articles Mentions Wallonie Espace Page Actualité : Immatriculations OUFTI-1 – Emmanuel Terrasse à la tête de TAS ULg, Thales Alenia Space 2 Belgium – Brexit : quel avenir pour le Royaume-Uni spatial ? Quid de Belgium, l’Interfederal Space Agency Belgium 1. Politique spatiale/EU + ESA: Unispace 50+ - L’équipe de Jan Woerner au ULg; VitroCiset Belgium 6 grand complet – Préparatifs du menu pour le Conseil ESA au niveau ministériel (décembre) – European Space Solutions jusqu’en 2030 – Un Liégeois Monsieur Espace à la Commission – Le Grand Duché à l’assaut des astéroïdes – La Chine en train de devenir le n°1 dans l’espace 2. Accès à l'espace/Arianespace : Le transport spatial européen aux prises 14 avec la bureaucratie européenne – Salon de Berlin ILA 2016 – Intérêt de la Commission pour les micro-lanceurs à bas coût – Nouveaux centres de lancements en Russie et en Chine – Rendez-vous 2017 pour Electron, LauncherOne et Vector Space – Partenariat germano-brésilien pour le micro- lanceur VLM – Le lanceur II de l’Argentine – Transport spatial privé en Chine et en Inde 3. Télédétection/GMES : Interview exclusive de Volker Liebig, Monsieur 21 Satellite ESA de l’ESA – Prague : constellations privées de petits satellites d’observation - WEI n°86 2016-03 - 1

WALLONIE ESPACE INFOS n°86 mai - juin 2016

4. Télécommunications/télévision : GLIS 2016 à Genève – Spacebus Neo et Thales Alenia Space Belgium 29 « tout électrique » chez TAS Belgium – Constellations Boeing et Sky & Space Global pour la 5G dans le monde – OneWeb en quête de fonds 5. Navigation/Galileo : Constellation indienne opérationnelle – Constellation Redu Space Services, 32 chinoise en cours de déploiement – Galileo Integrated Logistics Support à VitroCiset Belgium, WSLLux Transinne-Libin 6. Sécurité/Défense : Satellites polonais en projet – Approche européenne 34 pour les satellites militaires d’observation 7. Science/Cosmic Vision : Spacebel à bord de LISA Pathfinder – Découverte Spacebel, ULg 35 liégeoise d’exoplanètes habitables 8. Exploration/Aurora : ExoMars-2 en 2010 – Les Hommes près de Mars 37 avant 2030 ? (prédiction de J-Y Le Gall, président du CNES) 9. Vols habités/International Space Station : Trois vaisseaux américains en 38 2018 – Présentation de la CSS ( Space Station) - 10. Débris spatiaux/SSA : Test chinois de chasseur d’épaves 42 11. Tourisme spatial : Match Blue Origin-Virgin Galactic 42 12. Petits satellites/Technologie/Incubation : Le PSLV indien, champion pour 43 les petits satellites 13. Education/formation aux sciences et techniques spatiales : Commune de Euro Space Center Belgium 45 Libin, capitale européenne pour l’éducation spatiale 14. Wallonie-Bruxelles dans l'espace : Nouvelles d’OUFTI-1 - Missions Skywin, Thales Alenia Space 43 spatiales (lancements récents) Belgium , SABCA, Safran Aero Boosters, Cegelec, Redu Space Services, Spacebel, VitroCiset Belgium 15. Calendrier 2016-2017 d’événements spatiaux pour la Belgique Euro Space Center, ULg 45 Annexes-tableaux (en anglais) : Les prochaines missions de l’Europe dans ULg 48 l’espace (2016-2025) - Palmarès des succès à l’exportation de l’industrie spatiale européenne - Commandes à venir pour les satellites civils de télécommunications et de télévision

RECTIFICATIF : les immatriculations d’OUFTI-1 Le nano-satellite liégeois, enregistré comme objet spatial de la Belgique, a reçu les immatriculations suivantes : - 2016-25C pour sa numérotation internationale COSPAR : il s’agit de l’objet C du 25ème lancement de l’année 2016. - 41458 dans le catalogue militaire NORAD (Département américain de la Défense) : il est le 41.458ème des objets satellisés (et identifiés sur orbite) depuis Spoutnik-1 en 1957.

WEI n°86 2016-03 - 2

WALLONIE ESPACE INFOS n°86 mai - juin 2016

OUFTI-1 n’a apparemment pu résister aux rigueurs de l’environnement spatial. Victime d’une panne de son électronique, il est devenu sourd-muet en s’endormant avant d’avoir pu commencer sa mission de connexions numériques entre les radio-amateurs.

Dernière minute : Emmanuel Terrasse, nouveau directeur de Thales Alenia Space Belgium – le triomphe de la jeunesse

C’est un polytechnicien et ingénieur des mines âgé de 34 ans qui s’est vu confier le pilotage de Thales Alenia Space Belgium. Emmanuel Terrasse, né à Paris en 1981, est sans contexte le plus jeune patron des entreprises qui font du spatial en Belgique. Félicitations à cette promotion qui consacre une carrière déjà bien étoffée : brillantes études de 2001 à 2007 à l’Ecole Polytechnique de Paris, à Paris 1 La Sorbonne, puis Ecole des Mines à Paris ; ingénieur chez Robert Bosch (automobile) et Total Italia (pétrole) entre 2004 et 2006 ; conseiller de 2007 à 2010 à la Commission européenne, puis de 2010 à 2012 dans les cabinets de Ministres français ; directeur Recherche & Développement et en charge des actions du business chez Thales Alenia Space Belgium depuis septembre 2012. Il devient le président directeur général de TAS- Belgium à partir de ce 1er juillet. C’est un connaisseur des axes stratégiques de la filiale belge de l’entreprise commune Thales et Leonardo-Finmeccanicca qui prend les rênes du n°1 du spatial en Belgique.

« To be or not to be within Europe » : le Brexit l’a emporté, posant la question de l’avenir spatial du Royaume-Uni

A force d’avoir rendu l’Union européenne responsable de leurs problèmes sociaux, les politiciens britanniques ont fini par user le câble de plus en plus ténu qui ancrait le Royaume-Uni au continent européen ? La population britannique – mais pas écossaise ni nord-irlandaise ! – ne veut plus d’une Europe qu’elle considère comme coûteuse et bureaucratique, à l’origine de ses maux intérieurs. Au point d’en oublier – je crois que les Anglais ont la mémoire courte – que l’astronaute britannique Tim Peake vient de réaliser avec brio un vol spatial record grâce à l’ESA (Europe) et qu’ils ont pu grâce à l’ESA sauvegarder une industrie de systèmes spatiaux (merci à Airbus Defence & Space et à SSTL !).

Du coup, ces sont les deux Unions – Union Européenne, Union Jack - qui entrent dans une zone de fortes turbulences. Le Royaume-Uni va rester un membre actif de l’ESA, car il aurait tout à perdre d’un schisme avec l’Europe pour ses chercheurs et industriels qui s’impliquent dans les missions spatiales. Mais qu’en sera-t-il pour le rôle de la fière ou perfide Albion dans les programmes de l’Union dans l’espace que sont Galileo et Copernicus ? - Les satellites de navigation Galileo FOC, commandés par la Commission au maître d’œuvre allemand OHB, ont leur charge utile réalisée chez SSTL (Surrey Satellite Technology Ltd). Il sera intéressant de voir dans quelle mesure la prochaine commande d’au moins 8 Galileo FOC pourra rester favorable à SSTL, le partenaire britannique d’OHB. On sait que Airbus Defence & Space et Thales Alenia Space WEI n°86 2016-03 - 3

WALLONIE ESPACE INFOS n°86 mai - juin 2016 voudraient trouver l’occasion de prendre leur revanche en décrochant le prochain contrat du segment spatial Galileo. - Les satellites d’observation Sentinel, qui doivent garantir des services opérationnels de télédétection, sont d’ores et déjà commandés. Mais quid de la suite pour le Royaume-Uni ? Les filiales britanniques ont des soucis à se faire pour leur plan de charge dans les 2020… Et QinetiQ qui contrôle QinetiQ Space en Flandre ? Le programme des Proba « made in Belgium » ne risque-t-il pas d’être affecté ?

Un rappel « éloquent » des atermoiements du spatial britannique…

Aujourd’hui, UK Space, l’agence spatiale du Royaume-Uni, mise avant tout sur le chiffre d’affaires de la manne céleste de la technologie des systèmes spatiaux avec leurs applications pour la société. Sa vision prend en référence un marché mondial qui, est estimé atteindre les 40 milliards de livres (près de 48 milliards €) par année dès 2030. Le Royaume-Uni a tout à gagner d’une participation de l’ESA pour renforcer ses assises dans le business spatial qui est en plein essor. Il peut tirer parti du développement sur le campus de Harwell (Oxfordshire) de l’ECSAT (European Centre for Space Applications & Telecommunications), le centre ESA pour les applications et télécommunications spatiales.

Néanmoins, le Royaume-Uni spatial n’a pas toujours été à la hauteur d’une Europe volontariste dans l’espace. A commencer par l’affaire du lanceur mort-né des années 60. Londres et Washington avaient décidé de coopérer dans un programme de force de frappe conjointe avec des bombes nucléaires. Le développement d’un missile balistique à moyenne portée (2 500 km), au centre de Woomera (Australie), devait faire naître une expertise de moteurs-fusées kérolox chez Rolls-Royce. Mais en avril 1960, le gouvernement de Sa Majesté arrêtait les frais. Désireux d’amortir le coût de son engagement dans Blue Streak, le Royaume-Uni jouait la carte européenne d’un lanceur de satellites.

Appelé Europa, il était constitué de l’étage britannique Blue Streak, du 2ème étage français Coralie, du 3ème étage allemand Astris, d’une coiffe et d’un satellite technologique « made in Italy ». Il devait donner à l’Europe un accès autonome à l’espace, en un temps où l’URSS et les USA dominaient la scène spatiale avec leur duel pour la Lune. La Belgique et les Pays-Bas étaient chargés de fournir la station de guidage et de télémesure qui était installée en Australie. L’aventure Europa devait tourner court après le retrait de Londres pour soutenir le programme d’un lanceur européen et en dépit des efforts de Paris de le sauver pour des tirs à partir du Centre Spatial Guyanais.

Alors que le Royaume-Uni abandonnait Europa, son industrie continuait de produire les Blue Streak jusqu’en 1972. Dans le même temps, Londres investissait dans le petit lanceur national à trois étages… Son développement jusqu’à une première satellisation – ce qui faisait de la Grande-Bretagne la 6ème nation à réussir une mise sur orbite – était victime du coup d’arrêt décidé par le gouvernement anglais pour un programme spatial britannique. Cette mise en veilleuse allait saper le moral des

WEI n°86 2016-03 - 4

WALLONIE ESPACE INFOS n°86 mai - juin 2016 ingénieurs et chercheurs et surtout l’expertise dans le domaine spatial des universités et instituts polytechniques au Royaume-Uni. L’Europe spatiale, avec l’ESA, constitua la planche de salut du rôle des Anglais dans l’espace. IL y eut par ailleurs la ténacité du professeur Martin Sweeting et de son équipe de l’Université de Surrey à Guildford, qui allaient faire naître l’entreprise SSTL (Surrey Satellite Technology Ltd) qui contribua, notamment, à sauver le système Galileo de l’Union.

Aurons-nous le 1er janvier prochain l’ISAB (Interfederal Space Agency Belgium) ?

Le compte à rebours est enclenché pour que la Belgique ait son agence spatiale interfédérale (*) ou ISAB (Interfederal Space Agency Belgium). Dans six mois, ce devrait être chose faite, sauf si le parcours dans le labyrinthe des arcanes fédérales n’est pas trop semé d’embûches. L’objectif reste bien d’avoir l’agence en place pour le 1er janvier 2017. Le 7 juin, Elke Sleurs, Secrétaire d’Etat pour la Politique Scientifique - à ce titre en charge de Belspo et du spatial belge - visitait Thales Alenia Space Belgium, Charleroi, à l’occasion de la signature des premiers contrats pour la nouvelle génération d’équipements destinés aux satellites tout électriques (voir la rubrique Télécommunications). Elle s’est exprimée sur son intérêt pour l’activité spatiale belge, notamment sur le processus de création de l’ISAB : « Vu les importantes mutations que connaît la politique spatiale en Europe, une adaptation de la politique spatiale belge s’impose. Le spatial devra donc être ré-orienté. Seul l’avenir nous dira si mes propos sont à la hauteur de la réalité. Les moyens administratifs et financiers fédéraux pour la participation belge à la politique spatiale seront regroupés dans un office spatial ‘autonomisé’, dénommé Agence spatiale interfédérale de Belgique », qui prendra aussi en compte des besoins et des initiatives de entités fédérées. » Et de préciser : « L’Agence sera dotée de sa propre personnalité juridique. Il s’agit là en effet d’un modèle d’administration moderne. La flexibilité nécessaire sera ainsi assurée, ce qui nous permettra de faire face à ce secteur en pleine évolution. Contrairement aux agences spatiales, telles que le CNES, l’ASI ou encore la DLR, l’Agence spatiale belge ne sera pas une agence technique. Pour une agence technique digne de ce nom, la Belgique est trop petite. […] La politique spatiale belge reposera donc toujours en grande partie sur l’expertise technique de l’ESA. Mais il est clair que nous contracterons plus aisément des relations de collaborations que ce n’était le cas dans le passé. »

(*) Daily Science, en s’entretenant avec la Secrétaire d’Etat Elke Sleurs qui, comme responsable de la Politique scientifique au niveau fédéral, est en charge du dossier de création de l’agence, a cru comprendre International Space Agency Belgium pour ISBA: le quotidien sur le net, que l’on doit à notre mai Christian Du Brulle, en a fait un titre suite à la visite d’E. Sleurs chez Thales Alenia Space Belgium.

Si le projet ISAB est passé au Conseil des Ministres, il lui faudra passer au Conseil législatif, au Conseil d’Etat, puis au Parlement avant que ne soit signée par le Roi la loi instituant l’agence. Il reste des points d’achoppement ou obstacles à franchir : WEI n°86 2016-03 - 5

WALLONIE ESPACE INFOS n°86 mai - juin 2016

- la composition de son conseil d’administration, avec 3 représentants par région/communauté ; - la clef du retour régional pour les différents programmes, afin que soit garanti l’équilibre Nord-Sud ; - la disparition de Belspo, Service Public fédéral de Programmation de la Politique Scientifique, au sein duquel se trouve le Service Recherche & Applications Spatiales qui gère le programme spatial belge jusqu’au Conseil ESA ministériel de décembre.

Déjà, la mise en place de l’ISAB ne laisse personne indifférent dans l’administration fédérale. D’ores et déjà, des candidats se profilent, voire se positionnent pour gérer les postes les plus intéressants. Il en est qui proviennent du cabinet d’Elke Sleurs ou du VITO : ils ont vu dans l’agence une opportunité pour avoir la place de personnes expertes qui sont depuis des années bien au fait de leurs missions au Service Recherche & Applications Spatiales de Belspo, ainsi que des rouages de l’ESA et de la Commission dans l’espace.

1. Politique spatiale EU + ESA

1.1. Vienne en juin 2018 à inscrire dans vos agendas : UNispace 50+, le rendez-vous mondial des acteurs du spatial

Il y aura en 2018, sous les auspices du Bureau des Affaires Spatiales de l’ONU (UNOOSA/United Nations Office of Outer Space Affairs) un rendez-vous mondial des acteurs du spatial, notamment au niveau des Etats (avec leurs chercheurs et industriels). L’astrophysicienne Simonetta Di Puppo, qui assura de 2008 à 2011 la Direction ESA pour les vols spatiaux habités, est la Directrice d’UNOOSA. Sous son impulsion, la conférence et l’exposition Unispace ont voulu remettre à l’honneur un Evénement des années 60, qui permettait de faire le point sur les progrès des quelques puissances spatiales de l’époque. La dynamique S. Di Puppo nous a confirmé les préparatifs en cours pour UNispace+50 à Vienne du 18 au 29 juin 2018.

Il s’agira de la quatrième conférence et exposition mondiale qui fera le point sur les activités spatiales sur l’ensemble du globe. Les précédentes éditions ont eu lieu en août 1968 (découverte d’un autre monde), puis en août 1982, et en juillet 1999. UNispace permettra de se rendre compte du chemin parcouru dans l’espace durant un demi-siècle ! Les Etats se font un point d’honneur, avec leurs agences nationales, leurs acteurs scientifiques et industriels, à présenter leurs réalisations et compétences. La Belgique devrait être de la partie avec sa nouvelle agence spatiale interfédérale.

1.2. Les dix Directions ESA autour du DG Jan Woerner: une équipe qui fait la part belle aux petits Etats membres

Prof. Dr.-Ing. Johann-Dietrich Woerner est depuis le 1er juillet 2015 le nouveau Directeur Général de l’ESA. Il a fallu attendre un an pour connaître la composition, au

WEI n°86 2016-03 - 6

WALLONIE ESPACE INFOS n°86 mai - juin 2016 grand complet, de son équipe de Directeurs. Parmi les dix, on en trouve de nouveaux originaires des petits Etats membres : Autriche, Pays-Bas, Suisse. - Domaine des applications spatiales Directeur Télécommunications et Applications intégrées (D/TIA) : Mme Magali Vaissière (France) Directeur Programme Galileo et Activités de navigation (D/NAV) : M. Paul Verhoef (Pays-Bas) ayant longtemps œuvré à la Commission pour la mise en œuvre du système Galileo, depuis le 15 février. Directeur des programmes Observation de la Terre (D/) : M. Josef Aschbacher (Autriche), un proche collaborateur de V. Liebig pour la planification des missions de satellites de télédétection, dès ce 1er juillet. - Domaine du transport spatial Directeur des Lanceurs (D/LAU) : M. Daniel Neuenschwander (Suisse), à partir de ce 1er octobre. - Domaine de la science et de l’exploration Directeur de la Science (D/SCI) : M. Alvaro Giménez Cañete (Espagne) Directeur Programmes de vols habités et d’exploration robotique (D/HRE) : M. David Parker (Royaume-Uni) - Domaine de la technologie spatiale et des opérations Directeur Gestion technique et de la qualité (D/TEC) : M. Franco Ongaro (Italie) Directeur des Opérations (D/OPS) : M. Rolf Densing (Allemagne), depuis le 1er janvier. - Domaine administratif Directeur des Services internes : Ressources humaines, Gestion des sites, Finances et Contrôle de gestion, Technologie de l’information (D/HIF) : M. Jean Max Puech (France), depuis le 1er janvier. Directeur Industrie, Approvisionnements et Services juridiques (D/IPL) : M. Éric Morel de Westgaver (Belgique)

Les Etats-Membres se trouvent représentés dans l’équipe des directeurs ESA y compris le DG: Allemagne (2), France (2), Autriche (1), Belgique (1), Espagne (1), Italie (1), Pays-Bas (1), Royaume-Uni (1), Suisse (1). Priorité pour ces Directeurs à la préparation du Conseil ESA au niveau ministériel, les 1er et 2 décembre, à Lucerne.

1.3. Eté 2016 de l’Europe spatiale : préparation du Conseil ministériel de l’ESA et définition de la stratégie de l’Union pour l’espace

Le Conseil ESA au niveau ministériel des 1er et 2 décembre est attendu avec un réel intérêt. Il sera un Conseil au menu complet, qui abordera tous les programmes de l’Agence spatiale européenne, avec de nouveaux dossiers pour l’avenir de l’Europe dans l’espace. Le CWG (Council Working Group) qui se réunit depuis avril établira début octobre une proposition des activités à soumettre au Conseil pour un financement. Pour l’heure, voici un échantillonnage des missions qui retiennent l’attention des Etats membres de l’ESA : - Observation de la Terre avec Earth Explorer 9 et avec Earth Watch (avec le petit satellite ALTIUS « made in Belgium » d’étude de l’atmosphère) ; WEI n°86 2016-03 - 7

WALLONIE ESPACE INFOS n°86 mai - juin 2016

- Transport spatial avec un accent sur des travaux technologiques, notamment pour le lanceur E, pour des démonstrateurs de rentrée et de réutilisation ; - Exploration avec la participation de l’ESA à l’ISS (International Space Station) jusqu’en 2024, avec le développement de nouvelle instrumentation scientifique pour l’ISS, avec le surcoût de la mission martienne ExoMars 2020, avec une mission d’atterrissage sur la Lune (en coopération avec Roscosmos) ; - Technologie (GSTP/General Support Technology Programme), avec l’Asteroid Impact Mission (AIM) en coopération avec la NASA, une mission e.deorbit pour tester la désatellisation d’un satellite sur orbite ; - Télécommunications avec les plates-formes de nouvelle génération Neosat et Electra, le financement de nouveaux PPP pour le développement de nouvelles applications intégrées (télédétection + navigation), pour le système Globenet avec des relais optiques en orbite géostationnaire, pour un programme Govsatcom pour l’Union, pour l’initiative Pionneer d’innovations… - Navigation avec la mise en œuvre des technologies pour des satellites Galileo de seconde génération.

1.4. European Space Solutions : l’Europe des applications spatiales qui est assurée d’être en ordre de marche jusqu’à l’horizon 2030 !

Depuis le 1er janvier, les Pays-Bas avaient pris la succession du Grand Duché pour la présidence du Conseil de l’Union européenne. Au menu des manifestations dans le pays, une conférence au World Forum de La Haye a mis en évidence les retombées socio-économiques des efforts de l’Europe dans l’espace. European Space Solutions, organisée du 30 mai au 3 juin par la Commission européenne et le gouvernement néerlandais - avec l’ESA et la GSA/European GNSS (Global Navigation Satellite Systems) Agency -, a attiré quelque 1300 participants. Ceux-ci se sont rendus compte du rôle influent et de l’impact grandissant des systèmes d’applications globales qui sont mis en œuvre avec les satellites Galileo (navigation) et Sentinel (télédétection). Des systèmes spatiaux financés par la Commission : ils se traduisent déjà par des services innovants et emplois à valeur ajoutée, dans des domaines très diversifiés. On notait la présence, parmi les exposants, de Vitrosités Belgium : il doit contribuer au bon fonctionnement du Galileo ILS (Integrated Logistiques Support) qui verra le jour à Transinne-Libin en 2017.

En ouvrant la conférence, la Polonaise Elzbieta Bienkovska, commissaire européenne en charge du marché intérieur, de l’industrie, de l’entrepreneuriat et des PME, a souligné les défis auquel est confronté le secteur spatial pour son avenir durable en Europe. Rappelant qu’une consultation est en cours dans l’Union jusqu’au 12 juillet pour définir la stratégie spatiale européenne pour les 25 à 30 ans, elle a insisté sur la volonté d’avoir un secteur compétitif au niveau global. Elle a identifié cinq grands axes à privilégier - tirer parti au maximum des retombées des programmes Galileo et Copernicus ; - répondre aux besoins actuels que sont la sécurité, la surveillance des frontières, le changement climatique ;

WEI n°86 2016-03 - 8

WALLONIE ESPACE INFOS n°86 mai - juin 2016

- renforcer la compétitivité, au travers de l’innovation et des « start-ups », de l’industrie européenne des systèmes et services spatiaux ; - stimuler les synergies des technologies et missions à usage dual, notamment pour la surveillance de l’espace ; - faire en sorte que l’Union soit, grâce à l’espace, un acteur influent dans le monde. Et de conclure au sujet du spatial européen: « La compétition ne doit pas être entre nous, mais avec le reste du monde ».

Pour sa part, Jan Woerner, directeur général de l’ESA, insistait sur la nouvelle donne du « Big Data » qu’il décrit comme la combinaison de plusieurs sources d’infos, ainsi que sur la gratuité des signaux Galileo et des données Copernicus pour soutenir l’éclosion et l’essor de services innovants. La conférence European Space Solutions présentait des dizaines d’initiatives originales et performante, dans des partenariats de type public-privé, pour la gestion des deltas, pour une mobilité plus efficace, pour le contrôle de qualité de l’environnement, pour le suivi de la sécurité et de la santé… Ce fut l’occasion de la signature du contrat entre la GSA et le ministère néerlandais de l’infrastructure et de l’environnement pour l’installation à Noordwijk (près de l’ESTEC) du Galileo Reference Centre (GRC) : dès 2017, il sera opérationnel pour veiller en permanence sur l’état des signaux et les performances du système Galileo.

Le « Monsieur Espace » à la Commission : Pierre Delsaux, un juriste liégeois de renom international

A La Haye, nous avons fait connaissance avec le nouveau « Monsieur Espace » de la Commission. Depuis novembre 2015, le Liégeois Pierre Delsaux succède à l’Allemand Paul Weissenberg comme DG adjoint en charge de la politique spatiale, des programmes Copernicus, de Défense, de navigation par satellites (EGNOS, Galileo) à la Commission européenne, Direction Générale GROW (Marché Intérieur, Industrie, entrepreneuriat et PMEs). Né en 1957, Pierre Delsaux a, après de brillantes études de droit à l’Université de Liège, y a été assistant en droit institutionnel, puis chercheur FNRS et chargé de cours entre 1980 et 2004. Il a eu un parcours dans les institutions européennes, à commencer par la Cour de justice des Communautés, puis dès 1991 à la Commission Européenne. C’est un juriste international de grand renom pour les questions du droit des sociétés, de la politique de concurrence, de la lutte contre le blanchiment d’argent, du respect des règles de marché public pour l’octroi des fonds communautaires…

Cet expert des activités législatives touchant les relations avec le Conseil et le Parlement européen a la tâche délicate de mener à bien la mise en œuvre, avec de nouveaux satellites, des systèmes Galileo pour la navigation et Copernicus pour la télédétection. Il s’agit des deux programmes phares de l’Union pour des services à la communauté mondiale.

1.5. Le Grand Duché de l’Espace à l’assaut des ressources des astéroïdes ! WEI n°86 2016-03 - 9

WALLONIE ESPACE INFOS n°86 mai - juin 2016

Plus que jamais, le Luxembourg s’affirme comme Grand Duché de l’Espace. Ce pays d’à peine 580 000 habitants, au cœur de l’Europe, s’affirme au plan mondial avec une politique volontariste pour l’exploitation de l’environnement spatial. Après avoir réussi avec les satellites de télécommunications, il se lance dans le système solaire afin d’en explorer les ressources minières en vue de leur mise en œuvre internationale.

Au milieu des années 1980, le gouvernement grand-ducal défiait ses grands voisins en apportant son soutien à la création de l’entreprise SES (d’après son appellation initiale de Société Européenne des Satellites). Le Luxembourg jouait le franc-tireur pour une télévision « sans frontières » en osant miser sur des satellites privés de télécommunications comme des relais TV sur l’Europe. Le système Astra de SES défiait les administrations nationales des PTT en ignorant la subtile distinction entre services de télécommunications et de télévision pour les satellites géostationnaires (placés à quelque 35 800 km au-dessus de l’équateur). Cette « étourderie » administrative a fait éclore au Grand Duché le plus important opérateur global de satellites pour la télévision haute définition et l’internet large bande ! Aujourd’hui, Ses affirme un succès global avec une flotte de 52 satellites géostationnaires et une constellation de 12 satellites en orbite moyenne. Un chiffre d’affaires pour 2015 de plus de 2 014 millions €, dont 674 millions € de bénéfice après impôts. Une manne céleste pour le Luxembourg qui est devenu un membre fort actif de l’ESA (Agence spatiale européenne).

Le 3 février, les autorités grand-ducales en ont surpris plus d’un en annonçant leur positionnement comme pôle d’affaires européen pour l’exploration et l’exploitation des ressources minières de l’espace extra-terrestre. Avec l’initiative SpaceResources.lu, elles veulent stimuler la naissance d’une industrie « NewSpace » intéressée par la mise en œuvre commerciale d’autres horizons dans le système solaire. « Notre but est d’ouvrir l’accès à de nombreuses richesses encore inexploitées sur des rochers qui sillonnent l’espace, et ce, sans porter atteinte à des habitats naturels », explique Etienne Schneider, vice-Premier Ministre, en charge de l’Economie. Il a pris pour conseillers l’Européen Jean-Jacques Dordain, qui dirigea l’ESA de juillet 2003 à juin 2015, et l’Américain Pete Worden, qui fut responsable du Centre Ames de la Nasa.

Richesses d’un patrimoine universel

Cet intérêt pour le développement de mines extra-terrestres n’a rien d’étonnant pour ce petit pays qui, jusque dans les années 70, connut la prospérité avec une industrie sidérurgique grâce au minerai de fer extrait de son sous-sol. Et l’affaire va bon train, le Luxembourg misant sur l’effet de surprise. En fait, il s’agit ni plus ni moins d’une réplique juridique européenne à l’amendement qu’a voté le 10 novembre dernier le Congrès américain pour encourager l’exploitation commerciale des astéroïdes par des compagnies privées des Etats-Unis. C’est bel et bien une remise en cause du principe d’universalité des corps célestes qui se trouve acté dans le Traité des Nations Unies en matière d’exploration et d’exploitation de l’Espace. L’article II de ce Traité adopté en

WEI n°86 2016-03 - 10

WALLONIE ESPACE INFOS n°86 mai - juin 2016 janvier 1967 est on ne peut plus clair: « L’espace extra-atmosphérique, y compris la Lune et les autres corps célestes, ne peut faire l’objet d’appropriation nationale par proclamation de souveraineté, ni par voie d’utilisation ou d’occupation, ni par aucun autre moyen. »

L’exploration des astéroïdes : plus que jamais à la mode !

L’étude « in situ » du gros astéroïde Bennu, qui doit abriter des éléments des débuts du système solaire, va être l’objet d’une mission de la NASA et de l’Université d’Arizona : Osiris-Rex (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) est une sonde de 1,5 t qui sera lancée ce 8 septembre du Cape Canaveral. Elle ira en septembre 2021 prélever 2 kg d’échantillons de Bennu : placés dans une capsule, ils doivent arriver sur Terre en mars 2021.

Après une déclaration d’intention, le Grand Duché est en juin passé aux actes, démontrant à nouveau son côté frondeur. Des moyens financiers étaient débloqués pour donner vie à SpaceResources.lu dans le cadre du budget spatial luxembourgeois. Avec le soutien de la SNCI (Société Nationale de Crédit et d’Investissement), actionnaire de la première heure de SES, une ligne de crédit était ouvert pour un montant de 200 millions € comme soutien au programme LuxImpulse. Deux petites entreprises américaines se montraient intéressées à signer un protocole d’accord avec le Luxembourg pour tirer parti de cet investissement dans une formule PPP (Partenariat Public-Privé) : - Deep Space Industries (DSI), avec un siège à Luxembourg, projette de réaliser la mission Prospector-X d’un Triple Cubesat équipé pour manœuvrer sur orbite. Ce démonstrateur technologique, réalisé en terre grand-ducale par l’industrie européenne testera une paire de caméras pour des observations rapprochées de « géocroiseurs » (astéroïdes qui croisent régulièrement l'orbite de notre Terre). - Planetary Resources qui vient de créer une filiale luxembourgeoise a obtenu 25 millions € dans le cadre du fonds LuxImpulse. Ce jeune constructeur de satellites compacts envisage la satellisation prochaine de ses et Arkyd-100, d’une dizaine de kg, pour observer tant la surface terrestre que la voûte céleste.

Dans les mois à venir, le Grand Duché devrait communiquer davantage sur ses ambitions dans l’exploration des astéroïdes et sur les perspectives de coopération internationale. Luxspace, filiale d’OHB System, pourrait bien être associée au développement d’une petite plate-forme, dérivée de son bus Triton, Deltatec à Ans (Liège) est déjà partenaire de Luxspace

Comme le montre ce schéma réalisé par un Institut américain et paru dans l’hebdomadaire New Scientist, l’exploitation des ressources minières sur les astéroïdes ne manque assurément pas d’intérêt.

WEI n°86 2016-03 - 11

WALLONIE ESPACE INFOS n°86 mai - juin 2016

1.6. Nouveau bond en avant pour l’Empire du Milieu dans l’espace: c’est bien parti pour être le n°1 dans l’espace à l’horizon 2030…

Le 25 juin (à l’heure planifiée depuis des semaines), le premier vol de son puissant lanceur CZ-7 (Chang Zheng, alias Longue Marche) inaugurait le complexe flambant neuf de lancements à Wenchang sur la côté de l’île de Hainan. Avec ce succès d’un nouveau système de transport spatial, misant sur des ergols écologiquement propres (kérozène, oxygène et hydrogène liquides), la Chine spatiale franchit une nouvelle étape dans le développement d’un ambitieux programme de missions dans l’espace. avec la CASC (China AeroSpace Corp) a de la suite dans les idées : la perspective est bel et bien de faire arriver des taïkonautes sur la Lune au début des années 2030! Son plan spatial à long terme est de faire de l’Empire du Milieu le n°1, incontournable, dans l’espace au cours de la prochaine décennie. Son grand projet concerne la mise en oeuvre de la CSS (China Space Station), qui est d’ores et déjà proposée via l’ONU aux chercheurs et industriels du monde entier. Il faudra compter sur des robots chinois sur la Lune, Mars et des astéroïdes, ainsi que des observatoires sur les points de Lagrange à 1,5 millions de km de la Terre. De quoi justifier l’avènement des lanceurs de nouvelle génération que sont les CZ-6 (1er vol en septembre 2015), CZ-7 (1er lancement en juin 2016), puis - 1er vol prévu cet automne – CZ-5.

Déjà en 2015, le 19 septembre 2015, le lanceur CZ-6, à 2 étages fonctionnant avec des propulseurs kérolox YF-100 et YF-115 avec un 3ème étage compact à propulsion

WEI n°86 2016-03 - 12

WALLONIE ESPACE INFOS n°86 mai - juin 2016 cryogénique, mettait sur orbite polaire une vingtaine de micro- et nano-satellites technologiques de fabrication chinoise. Il a surtout permis de valider le propulseur YF- 100 semi-cryogénique, à kérozène et oxygène liquide (1108 kN de poussée) qui est développé par l’AALPT (Academy of Aerospace Launcher Propulsion Technology), la 6ème académie du CASC. C’est l’élément clef de la nouvelle génération des lanceurs, puisqu’il équipe : - le CZ-7 (2 pour le 1er étage central, 1 pour chacun des 4 propulseurs d’appoint, 1 version dérivée YF-115 pour le 2ème étage) pour satelliser jusqu’à 13,5 en orbite basse (LEO) ; - le CZ-5 (2 sur chacun des 4 propulseurs d’appoint) pour placer jusqu’à 25 t en LEO ou injecter 14 t en orbite de transfert géostationnaire (GTO).

La propulsion cryogénique, à hydrogène et oxygène liquides, est à l’honneur sur CZ- 5 : 2 YF-77 équipent l’étage central, tandis que 2 YF-75 ré-allumables propulsent le 2ème étage. Le premier vol de démonstration du CZ-5 qui a une coiffe de 5 m de diamètre doit avoir lieu depuis Wenchang en novembre prochain. La charge utile n’est pas encore finalisée.

Les CZ-5 et CZ-7 constituent les deux piliers pour la construction - dès 2018 -, l’exploitation - à partir de 2020 – et l’extension – en 2022 - sur orbite de la CSS. Que Beijing propose à l’ONU pour une utilisation internationale. Le CZ-7 permettra le ravitaillement de la station chinoise avec des vaisseaux cargo : il sera testé avec un lancement en avril 2017 au moyen du CZ-7. Le CZ-5, après avoir servi aux missions d’exploration lunaire Chang’E-4 (rover et observatoire sur la face cachée) et Chang’E-5 (retour d’échantillons), doit fin 2018 servir à la satellisation de Tianhe-1, le corps central, doté de cinq colliers d’arrimage ; c’est à cet habitacle complexe que viendront se placer des modules laboratoires. Voir la rubrique Vols habités de ce numéro pour prendre connaissance des étapes de la réalisation de la CSS modulaire.

Le vol de démonstration du CZ-7 a servi à quatre « premières » technologiques : - l’étage supérieur Yuangzheng-1a capable de 9 ré-allumages pour déployer des satellites sur des orbites différentes ; cette version améliorée du système de propulsion Yuangzheng-1 qui a déjà fonctionné dans l’espace a permis d’expérimenter le ravitaillement sur orbite en vue d’autres missions… - l’essai réussi du bouclier avec matériau ablatif et de la procédure de rentrée de la future capsule (modèle réduit) pour les vols spatiaux chinois ; - l’expérimentation de liaisons intersatellites entre deux microsats, les Tiange-1 et Tiange-2 ; - le test d’Aolong-1, un satellite expérimental ADRV (Active Debris Remov Vehicle) qui manoeuvre dans l’espace pour enlever des débris spatiaux… mais aussi pour inspecter des satellites.

2. Accès à l'espace/Arianespace

WEI n°86 2016-03 - 13

WALLONIE ESPACE INFOS n°86 mai - juin 2016

2.1. Le transport spatial européen : faire rapidement face à la tourmente bureaucratique, décoller au mieux et au plus vite !

Alors que « le loup » de SpaceX rôde de plus belle autour de la bergerie du business des lancements de satellites - une bergerie où jusqu’ici vivaient dans une paix bien réglée les Arianespace et ILS (International Launch Services) qui se partageaient un marché à hauts risques -, voici que l’Union européenne porte un regard intéressé et critique sur le transport spatial en Europe. Et ce, à l’heure où l’ESA et Airbus Safran Launchers se lancent dans le programme 6 qui consacre le rôle croissant d’Airbus dans le domaine des lanceurs. La Commission européenne s’intéresse de plus près à Arianespace, au Centre Spatial Guyanais, ainsi qu’à l’avènement de lanceurs petits et réutilisables. Surtout que la concurrence prend de l’ampleur au niveau mondial avec de nouveaux lanceurs en Russie (), au Japon (H-3), en Inde (GSLV MKIII), en Chine (CZ-7 et CZ-5), aux Etats-Unis (Vulcan). N’est-on pas en train de jouer avec le feu pour préserver l’autonomie de l’Europe pour son accès à l’espace notamment à des fins commerciales ?

La main-mise d’Airbus Safran Launchers sur Arianespace, avec près de 75 % de participation - suite aux rachats des parts du CNES (gouvernement français) -, ne semble guère du goût d’industriels européens qui ne font pas partie du groupe Airbus. Les Avio, ELV, Finmeccanica, Thales Alenia Space, OHB… d’exprimer une certaine inquiétude: ils entendent être rassurés quant à la neutralité commerciale d’Airbus Safran Launchers. Ils ne voient guère d’un bon œil sa prise de pouvoir et son influence marquée sur l’exploitation des lanceurs Ariane et… Vega. Il serait même question de créer, autour de ELV, la société Vega Space, chargée d’exploiter des lanceurs Vega. Avec leur montée en performances - Vega C dès 2019, notamment avec Vega E à l’étude pour la prochaine décennie -, les Vega « made in Italy » pourraient faire de l’ombre à des missions doubles d’.2.

Par ailleurs, les Vega concurrencent le lanceur russe , qui est expoité par Eurockot, filiale allemande d’Airbus Defence & Space. Mais les jours de Rokot sont comptés, vu les contraintes du Ministère russe de la Défense et étant donnée la disponibilité en baisse des exemplaires du missile intercontinental SS-19 Stiletto (UR- 100N) dont il est dérivé par la société Khrounichev de Moscou. Il a été commandé par l’ESA pour les lancements, à partir du cosmodrome militaire de Plessetsk, de satellites d’observation Sentinel pour l’ESA et l’Union européenne. Ainsi Sentinel- 3A était satellisé le 16 février dernier. Rokot est prévu pour satelliser le Sentinel-5P(recursor) d’Airbus Defence & Space en octobre prochain, puis Sentinel-2B (également réalisé par Airbus Defence & Space) en avril 2017. Mais Eurockot a du mal à fixer un calendrier de lancements…

Dans ce contexte de frictions industrielles autour du transport spatial européen, il faut rappeler que l’Italie ne semble pas avoir « digéré » le coup bas de la DGA française. Celle-ci privait ELV, le maître d’œuvre de Vega, de l’usage du logiciel - dérivé de celui des missiles stratégiques français - pour l’avionique du lanceur « made in Italy ». Finalement, seul le 1er vol Vega fut autorisé à utiliser le logiciel français. Il a fallu que WEI n°86 2016-03 - 14

WALLONIE ESPACE INFOS n°86 mai - juin 2016 l’industrie italienne, grâce au soutien de l’Espagne (GMV) et de la Belgique (Spacebel), se mobilise pour développer à l’arraché le logiciel de pilotage Vega. C’est avec ce logiciel que Vega connaît le succès que l’on sait.

Et la Commission de s’en mêler…

On le voit : ce remue-ménage socio-économique autour de la prise de contrôle d’Arianespace par Airbus Defence & Space et Safran a un impact sur l’industrie des satellites. Ce problème n’est pas simple à résoudre. La Commissaire danoise Margrethe Vestager, en charge de la politique de concurrence en Europe, doit remettre pour juillet ses conclusions qu’on espère positives. Mais le processus d’évaluation se révèle plus compliqué qu’il ne semblait à première vue. Ainsi, dans un communiqué officiel, la Commission s’est fixée comme échéance la date du 10 août pour conclure son enquête. Le fait que Airbus Safran Launchers devienne l’acteur majoritaire d’Arianespace pose-t-il vraiment problème pour le respect des règles de la libre- concurrence en Europe ? Il ne faudrait pas trop tergiverser afin que soit protégé le business d’Arianespace. Au même moment, on assiste à une redoutable montée en puissance du concurrent américain SpaceX.

2.2. Salon de Berlin ILA 2016 : le transport spatial européen en vedette

ILA 2016, le Salon aérospatial de Berlin qui s’est déroulé du 1er au 4 juin (avec quelque 150.000 visiteurs) fait figure de salon régional (comparé au Salon du Paris-Le Bourget), mais il fait la part belle au spatial autour d’une magnifique présentation de l’Europe dans l’espace (pavillon ESA). La Russie avec Roscosmos, ainsi que l’Ukraine avec Yuzhmash/Yuzhnoye montraient leurs compétences spatiales. La Pologne était présente avec son industrie aéronautique et, pour la première fois, avec la Polish Space Agency (POLSA) créée en septembre 2014.

Manifestement, le transport spatial européen avait les honneurs d’ILA 2016. Avec cette maquette (au 1/4), (déjà) impressionnante, d’Ariane 6.4 à l’entrée du pavillon ESA, placé sous le signe « Space for Earth » (De l’Espace pour la Terre). Les propulseurs cryogéniques Vulcain 2 et Vinci y figuraient en bonne et due place pour bien montrer la réalité du développement en cours d’Ariane 6. Non loin de là, sur le stand OHB, l’attention se focalisait sur une maquette du Dream Chaser de la société américaine SNC (Sierra Nevada Corp). On sait que l’entreprise brêmoise coopère avec SNC pour une « européanisation » du planeur spatial privé (concept « lifting body », à corps portant). Des négociations entre l’ESA et SNC portent sur l’emploi de l’IBDM (International Berthing & Docking Mechanism) : ce système d’arrimage, dit « universel » à l’étude depuis plusieurs années est proposé par la firme belge QinetiQ Space sur le Dream Chaser qui doit ravitailler l’ISS avec 5,5 t de fret à partir de 2019 (6 missions déjà commandées par la NASA dans le cadre du contrat CRS-2 (Commercial Resupply Services).

Sur le stand de BavAIRia, de petits modèles de l’avion-fusée Skylon et de son propulseur cryogénique hybride SABRE (Synergistic Air-Breathing Rocket Engine) WEI n°86 2016-03 - 15

WALLONIE ESPACE INFOS n°86 mai - juin 2016 faisaient état de l’intérêt de l’industrie chimique bavaroise pour le motorisation du système britannique d’accès à l’espace.

2.3. Micro-lanceurs à bas coût ? La Commission s’intéresse à la question…

La Commission porte un sérieux intérêt à l’accès européen à la dimension spatiale. Dans le cadre de son programme Horizon 2020 de Recherche et Développement, elle a lancé des études technologiques - pour un investissement total de plus 8 millions € - sur des projets en Europe de petits lanceurs : - Le système de lancement semi-réutilisable ALTAIR (Air Launch space Transportation using an Automated aircraft and an Innovative Rocket) est un projet de lanceur qui combine un avion automatique réutilisable transportant une fusée d’un concept innovant pour satelliser 50 à 150 kg en orbite basse. Cette étude de 36 mois a démarré le 1er décembre 2015 pour un montant de 3.974.546 € ; les 9/10 sont pris en charge par Horizon 2020. Elle associe l’ONERA pour la coordination, Bertin Technologies et CNES (France), GTD Sistemas de Informacion (Espagne), Nammo Raufoss (Norvège), Piaggio Aero industries (Italie), Spacetec Partners (Belgique), Ecole Polytechnique de Zurich (Suisse).

- Le micro-lanceur SMILE (SMall Innovative Launcher in Europe) fait appel à un concept innovant pour mettre en orbite basse jusqu’à 50 kg pour moins de 500.000 € le kg (grâce à la production 3D). L’objectif est de trouver le complément à la panoplie actuelle des Vega et Ariane. L’étude qui a débuté ce 1er janvier pour une durée de 36 mois a obtenu le financement de 4.058.642 €, dont 3.990.925 € pris en charge par le budget Horizon 2020. Elle a fait l’objet d’une présentation à la conférence European Space Solutions qui s’est tenue à La Haye du 30 mai au 3 juin. Le consortium comprend la Fondation NLR (Pays-Bas), comme coordinateur, avec des entreprises de Norvège (Nammo Raufoss, Andoya Space Center), d’Espagne (PLD Space, en train de développer le lanceur Arion-2), d’Allemagne (avec le DLR, impliqué dans le projet brésilien du petit lanceur VLM), du Danemark (Terma), de Roumanie (INCAS), des Pays-Bas (Airborne Technology Centre, ISIS), de Grèce (Heron Engineering), de France (Tecnalia).

2.4. « Premières » en Russie et en Chine : nouveaux centres de lancements qui deviendront des hauts lieux de l’astronautique au cours des années 2020

WEI n°86 2016-03 - 16

WALLONIE ESPACE INFOS n°86 mai - juin 2016

Au cours de ce deuxième trimestre 2016, ce sont deux nouveaux centres de lancements qui ont été inaugurés en Asie par la Russie et par la Chine. Ils sont appelés à devenir d’importants complexes d’accès à l’espace pour des missions fort ambitieuses d’exploration spatiale. - La Russie, avec son agence spatiale Roscosmos et sous l’impulsion du Président Poutine, contribue au développement de l’Extrême-Orient en y édifiant le cosmodrome de Vostochny depuis début 2011 dans la région de l’Amour, près de la frontière chinoise (51°49’Nord, 128°15’Est). Il s’agit du deuxième grand chantier de l’ère Poutine, après le complexe olympique de Sotchi. Un premier complexe de lancements, qui s’inspire de l’ELS (Ensemble Lancement Soyouz) du Centre Spatial Guyanais, était inauguré avec le lancement d’un Soyouz-2, le 28 avril 2016. Il est prévu qu’un autre ensemble pour les lanceurs Angara soit édifié aux côtés de l’aire des Soyouz, afin d’être opérationnel en 2019… Le nouveau cosmodrome russe qui s’étendra sur 551 km² doit servir à des missions habitées - dès 2020 - avec un vaisseau pour 4 cosmonautes qui doit succéder à l’actuel Soyouz. - La Chine, avec la CASC (China Aerospace Science & Technology Corporation), prépare la nouvelle génération de ses fusées modulaires Longue Marche/CZ-7 et CZ-5, dont les propulseurs utilisent des ergols écologiquement propres (kérozène, oxygène et hydrogène liquides). Leur mise en œuvre a nécessité un complexe dédié à leur exploitation : le Wenchang Satellite Launch Center ou WSLC (19°34’ Nord, 110°52’Est) s’étend sur 1.200 hectares de la côte nord-est de l’île de Hainan, dont les plages constituent le grand atout touristique. D’ores et déjà les autorités locales entendent tirer parti du centre de lancements spatiaux comme point d’attraction grâce à l’aménagement d’un musée de l’astronautique. Il était inauguré par le lancement réussi d’une première CZ 7 le 25 juin. Il doit être suivi du vol en novembre de la puissante CZ 5. Si Beijing donne le feu vert à un programme habité de vols autour et sur la Lune, ce complexe sera aménagé pour accueillir le lanceur lourd CZ-9, qu’étudie actuellement la CASC (China AeroSpace Corporation). - Dans le reste du monde, au moins deux nouveaux sites privés de lancements spatiaux sont en cours d’aménagement pour des mises sur orbite dès 2017-2018: celui de pour le micro-lanceur Electron sur la bande côtière de la Péninsule Mahia (Nouvelle Zélande), celui de SpaceX pour les lanceurs sur la plage de Boca Chica près de la cité de Brownsville (à la frontière entre le Texas et le Mexique).

2.5. Electron, LauncherOne, Vector Space : rendez-vous en 2017 de premiers micro-lanceurs américains pour leur premier vol

A l’heure du « NewSpace », de jeunes entreprises misent sur le déploiement de petits, voire très petits satellites pour des connexions internet autour du globe ou pour des observations de l’environnement terrestre. Il leur faut disposer de systèmes de transport spatial à bas coût pour des satellisations « sur mesure ». Ce qui explique la multiplication d’initiatives privées de micro-lanceurs. Aux Etats-Unis, deux projets prennent forme, soutenus par des fonds à risques, avec l’objectif de réaliser des lancements dès 2017. Il faut leur ajouter le surprenant projet de Vector Space ? qui est le fruit de recherches universitaires en Californie sur le développement de fusées- sondes réutilisables. WEI n°86 2016-03 - 17

WALLONIE ESPACE INFOS n°86 mai - juin 2016

- Le LauncherOne biétage de Virgin Galactic sera largué à quelque 10,5 km d’altitude un Boeing 747-400 de la flotte Virgin Atlantic mis aux couleurs de l’entreprise de transport spatial de Sir Richard Branson qu’il a rebaptisé « Cosmic Girl ». Grâce à l’emploi de ce gros porteur, le mciro-lanceur pourra satelliser 300 kg en orbite héliosynchrone et jusqu’à 450 kg en orbite équatoriale. Le prix du lancement se situera aux alentours de $ 10 millions. Les tests des propulseurs kérolox NewtonThree (1er étage) et NewtonFour (2ème étage) se succèdent apparemment sans problèmes. Les essais de lancement dans les airs sont annoncés pour 2017. L’exploitation commerciale du LauncherOne est prévue pour 2018 pour déployer sur orbite des petits satellites pour les constellations OneWeb et Sky & Space Global.

- L’Electron biétage de Rocket Lab, également à 2 étages en matériaux compostes et avec propulseurs Rutherford (oxygène liquide/kérozène) de conception originale, doit effectuer un premier lancement avant la fin de l’année. Il pourra placer 150 kg sur une orbite héliosynchrone à 500 km depuis le nouveau site qui est en cours d’implantation en Nouvelle Zélande. Rocket Lab qui vient de fêter son 10ème anniversaire termine, avec quelque 200 essais au banc, la qualification en vol des moteurs kérolox Rutherford dont la fabrication fait largement appel au processus 3D. Il annonce le prix d’un lancement Electron pour moins de $ 5 millions, avec une cadence de jusqu’à 100vols par an. Il insiste sur le fait qu’il sera le premier opérateur de mises sur orbite commerciales à partir de son propre complexe de lancements !

2.6. Micro-lanceur brésilien : un partenariat entre AEB (Brésil) et DLR (Allemagne) avec OHB et MT Aerospace

Le Brésil pourra-t-il un jour lancer des satellites depuis la base d’Alcantara ? Son lanceur VLS-1 a connu bien des déboires et l’AEB (Agence spatiale brésilienne) a décidé d’arrêter son développement devenu trop coûteux. Par ailleurs, le projet Cyclone 4 avec l’Ukraine a tourné court faute de financement et à cause de retards, laissant inachevée une importante infrastructure de lancements au CLA (Centro de

WEI n°86 2016-03 - 18

WALLONIE ESPACE INFOS n°86 mai - juin 2016

Lançamento de Alcantara) sur une zone côtière au Nord du Brésil. Un partenariat germano-brésilien a pris forme autour du lanceur VLM (Veiculo Lançador de Microsatelite), dérivé du VLS mais moins complexe et amélioré. Avec le VLM à 3 étages à poudre, il s’agira de satelliser jusqu’à 200 kg en orbite basse. Le DLR (Deutsche Zentrum für Luft-und Raumfahrt) et OHB (avec MT Aerospace) apportent leur soutien technologique à l’AEB, l’IAE (Instituto de Aeronautica e Espaço) militaire et l’industrie brésilienne (notamment Avibras) dans la fabrication et la qualification des propulseurs solides brésilien S50 (12 t de poudre). Une première tentative de satellisation avec le VLM est annoncée pour fin 2018. La Swedish Space Corp (SSC) est intéressée par le développement du microlanceur VLM.

2.7. Le lanceur national Tronador II : l’Argentine avant le Brésil pour réussir le lancement d’un satellite ?

La CONAE (Comision Nacional de Actividades Espaciales) a fait du microlanceur biétage Tronador II une priorité de son programme spatial. Elle a opté pour la propulsion à liquides – - moteurs kérolox (kérozène/oxygène liquide) T10 de 100 kN, puis T30 de 295 kN - qui est actuellement en développement avec le programme VEX (Vehiculos Experimentales). Une fusée VEX-5A doit être testée en juillet ou en août à partir de la base Pipinas de Punta Indio: il s’agira d’une étape cruciale de l’ambitieux programme Tronador. L’objectif depuis un nouvel ensemble de lancements sur la base navale de Puerto Belgrano est de pouvoir satelliser

WEI n°86 2016-03 - 19

WALLONIE ESPACE INFOS n°86 mai - juin 2016

250 kg en orbite basse dès 2019-2020. Une version améliorée Tronador III, avec un 3ème étage, est à l’étude.

2.8. La Chine et l’Inde à l’heure du transport spatial : création de compagnies privées pour les lancements de petits satellites…

En Asie, la Chine et l’Inde font la démonstration de leur capacité de lancer des satellites de façon régulière grâce à des investissements publics conséquents. D’une part, avec les Longue Marche de la CASC (China AeroSpace Corp) . D’autre part avec les PSLV et GSLV de l’ISRO (Indian Space Research Organisation). Ce qui n’empêche point des initiatives privées d’y prendre forme pour proposer des services de lancements compétitifs. Ce sont des équipes de jeunes ingénieurs qui osent relever le défi de l’accès « low cost » à l’espace.

- OneSpace, société chinoise créée en juin 2015 avec l’aval du National Defense Science & Industry Bureau, a pour objet la commercialisation d’un lanceur à poudre dérivé du à 3 étages, capable de satelliser 1 t en orbite héliosynchrone. Elle le décrit comme le « space express » car son lanceur peut être mis en œuvre dans un court délai. Son premier lancement, avec mise en orbite de 500 kg, est prévu en 2018. On en saura plus au Salon Zhuhai Air Show 2016, du 1er au 6 novembre prochain. - Landspace technology, spin-off de la Tsinghua University, vise dans un premier temps le marché des microsatellites avec un lanceur économique à l’horizon 2020. - Shenzhen Yu Long Aerospace Science & Technology, qui développe des fusées- sondes à poudre, projette d’expérimenter un lanceur à propulsion liquide en 2019- 2020. Elle ne manque pas d’ambition puisqu’elle annonce un système habité pour aller dans l’espace en 2025.

- Bellatrix Aerospace, dont le siège se trouve à Vidyaranyapuram (Mysore), propose deux lanceurs biétages, dits économiques, à propulsion liquide, avec structures en composites de carbone, sur le thème « Imagineering the future beyond ». L’entreprise indienne mise sur des technologies innovantes et annonce la réutilisation du 1er étage. Elle développe ses propres moteurs, l’Aeon de 41 kN (oxygène liquide/kérozène ?)et le Kalam de 800 kN (oxygène liquide/méthane). . Le Chetak (12 t au décollage), avec 4 Aeon pour le 1er étage et 1 Aeon pour le 2ème, est destiné à placer 150 kg en orbite héliosynchrone (microsats et nanosats). Prix annoncé : $ 2 million ! . Le Garuda (43 t) avec un moteur Kalam pour le 1er étage et 1 Aeon pour le 2ème, pourra satelliser plus d’1 t en orbite héliosynchrone. Prix annoncé : $ 5.4 million ! Mais pas la moindre info sur le site de lancements…

3. Télédétection/GMES

3.1. Interview de Volker Liebig, le Mr Satellite EO de l’ESA: « Le libre accès aux données est le ticket d’entrée à la nouvelle économie du ‘big data’ »

WEI n°86 2016-03 - 20

WALLONIE ESPACE INFOS n°86 mai - juin 2016

Ce 1er juillet - trois mois avant l’échéance prévue -, Volker Liebig quitte ses fonctions de directeur ESA des programmes d’observation de la Terre, ainsi que de chef de l’ESRIN à Frascati, près de Rome. Son successeur était son proche collaborateur pour la planification des missions de satellites européens de télédétection (*). Depuis octobre 2004, ce spécialiste allemand de géophysique qui soufflera ses 59 bougies en septembre, a donné une forte impulsion au développement en Europe de satellites de télédétection qui répondent aux besoins cruciaux de l’humanité partour sur le globe. Durant son mandat de 12 années, V. Liebig a réussi à faire de l’observation de la Terre la plus importante activité, aux multiples défis, pour l’ESA et pour l’Europe dans l’espace. Elle comprend pour l’ESA les missions inédites Earth Explorer à des fins scientifiques et pour la Commission européenne les observatoires opérationnels Sentinel du système Copernicus. Pour cette activité clef, on a affaire à un budget de 1.603 millions € pour 2016. Ce qui représente 30.5 % des ressources de l’ESA !

L’entretien qui suit a été réalisé par Théo Pirard le 9 mai, lors du Symposium « Living Planet » de Prague. Ce Symposium qui se tient tous les trois ans - depuis 2007 - est un événement que l’on doit à Volker Liebig. Avec les chercheurs et industriels concernés par la télédétection spatiale, il fait le point sur l’exploitation des données des missions Earth Explorer de l’ESA, puis Sentinel de la Commission. Cette année, placé sous le thème des opérations Copernicus, iil a permis de réunir dans la capitale tchèque quelque 3300 participants. Dont un trio du CSL (Centre Spatial de Liège). Dans l’exposition, le stand du VITO (Mol), avec une maquette grandeur nature de PROBA-V, ne passait point inaperçu.

Quel changement majeur constatez-vous durant votre mandat de 12 années à la tête des programmes européens de satellites de télédétection ?

Volker Liebig : Toute activité confondue, le principal changement au cours de cette période a été de faire du système Copernicus une réalité opérationnelle pour une mission globale touchant à l’environnement et à la sécurité. L’avènement des satellites Sentinel, financés par l’Union européenne, constitue un sérieux changement et une chance formidable pour l’image de l’Europe dans le monde. A présent, des utilisateurs sur l’ensemble du globe ont accès de manière régulière à des données opérationnelles qu’ au début de mon mandat de Directeur, on rêvait juste d’avoir. En parallèle, nous avons mis au point les missions scientifiques des Earth Explorers. Nous sommes en train de préparer EarthCARE (Clouds Aerosols & Radiation Explorer), FLEX (Fluorescence Explorer), puis Biomass. Nous sommes dans le processus de choisir la mission Explorer 9. Par ailleurs, nous avons pour Eumetsat démarré le développement de deux nouvelles générations de satellites météorologiques, les MTG (Meteosat Third Generation) et Metop SG (Second Generation).

Le segment spatial de Copernicus pour la Commission européenne, n’est-ce pas votre grand succès ?

V.L. : Je répondrai par l’affirmative. Il s’agissait d’un grand défi et on a réussi à le relever pour la Commission européenne, notre partenaire. En fait, nous réalisons pour WEI n°86 2016-03 - 21

WALLONIE ESPACE INFOS n°86 mai - juin 2016 l’environnement et la sécurité civile ce que nous avons réalisé depuis 35 ans pour la météorologie. Copernicus est l’un des deux principaux systèmes que l’Union a voulus dans l’espace pour rendre service à la société globale. L’autre est Galileo pour la navigation avec des satellites civils.

Comment parvenir à faire naître une synergie avec la Commission?

V.L. : C’est une tâche délicate, car l’ESA et la Commission européenne sont des organizations fort différentes. D’un côté, on a une organisation axée sur les problèmes d’ingénierie. Nos teams d’ingénieurs ont l’habitude de mettre au point des lanceurs et des satellites. De l’autre, on a une Commission qui doit s’en référer à la législation européenne et rendre compte que l’espace est un moteur efficace pour développer l’emploi et promouvoir le high-tech en Europe. L’ESA et la Commission ont des différences d’objectifs et de cultures. Nous devons apprendre à vivre ensemble, vu que nous sommes complémentaires. La réussite de l’entente au sein du couple est de prendre ce qu’il y a de mieux chez chaque partenaire. . Copernicus est l’exemple réussi de ce que l’Europe peut réaliser ensemble et un beau modèle pour l’avenir.

Avez-vous un don de diplomate pour négocier avec la Commission ?

V.L. : Je crois que la clef réside surtout dans l’efficacité de l’ESA pour la gestion de ses programmes. Ce qui permet à la Commission d’aller de l’avant avec ses satellites pour des applications globales. Nous avons démontré que nous sommes un partenaire fiable en investissant au préalable dans le segment spatial du système Copernicus. J’ai su convaincre les Etats membres de l’ESA d’investir dans des missions prototypes, et ce, dès la mi-2000, bien des années avant l’Union ne soit en mesure de financer les satellites Sentinel. Nous avons soutenu la Commission avec succès lors des négociations budgétaires avec le Parlement et les Etats membres de l’Union. Cela a pris tout au plus une année pour finaliser les négociations du contrat entre l’Union et l’ESA.

Pourquoi la réalisation du système Copernicus a semblé plus facile que le développement du système Galileo ?

V.L. : Nous avions établi des objectifs clairs en ce qui concerne les règles respectives de l’ESA et de la Commission. En fait, pour le segment spatial de Copernicus, nous avons eu recours à la procédure bien éprouvée de l’ESA pour la commande de ses satellites à l’industrie européenne. La Commission a accessé notre façon de faire, plus flexible et efficace, pour les contrats des satellites Sentinel. Pour Galileo, la procédure est différente, vu que la Commission met en œuvre son outil d’attribution des contrats, peu adapté à l’acquisition de systèmes spatiaux. Si on compare Copernicus et Galileo pour les commandes de satellites, nous avons pu gagner plusieurs mois et réaliser des économies en ce qui concerne la réalisation des Sentinels.

WEI n°86 2016-03 - 22

WALLONIE ESPACE INFOS n°86 mai - juin 2016

Vous avez déjà signé les contrats pour quatre Sentinel-1, quatre Sentinel-2 et quatre Sentinel-3 afin de garantir la continuité des services opérationnels jusqu’aux années 2030. Les quatre satellites de chaque série seront-ils semblables ?

V.L. : Il y a quelques petites différences au niveau des spécifications des 2 premiers A et B et des 2 suivants C et D. Il a fallu tenir compte de l’obsolescence d’éléments de l’avionique. Quelques aménagements sont apportés dans la charge utile. A bord des 3ème et 4ème satellites radar Sentinel-1, sera embarqué un récepteur AIS (Automated identification System) pour le suivi du trafic maritime. De même les versions C & D des Sentinel-3 seront équipées d’un altimètre à haute performance.

Quel est l’opérateur des Sentinels ?

V.L. : L’ESA est le principal opérateur. Nous mettons en œuvre les satellites à partir de l’ESOC à Darmstadt (Allemagne). Pour ce qui est des satellites optiques Sentinel-3, l’ESA a la responsabilité des observations multispectrale concerenant les terres, tandis que l’organisation Eumetsat est chargée de l’étude des phénomènes océaniques et atmosphériques. Pour Copernicus, nous avons confié ce qui touche à l’atmosphère et à l’océan à Eumetsat, vu son expertise. Les Sentinel-1 et Sentinel-2, ainsi que le Sentinel-5P pourtant consacré à l’analyse des composants atmosphériques, sont du ressort de l’ESA. Pour des services spécifiques avec les Sentinels, l’ESA collabore étroitement avec l’EMSA (European Maritime Safety Agency), l’ECMWF (European Centre for Medium-range Weather Services), ainsi qu’ avec l’EEA (European Environment Agency) pour les données in situ.

Si les versions A et B des Sentinels donnent entière satisfaction au-delà de leur vie utile, postposerez-vous les lancements des versions C et D ?

Une fois que les C & D seront prêts à être livrés par l’industrie, nous déciderons avec la Commission européenne si nous allons les stocker ou mettons sur orbite. J’espère bien que les A et B fonctionneront plus longtemps que les sept ans pour lesquels ils sont spécifiés. Di c’est le cas, nous les garderons au sol. Nénamoins, nous souhaitons avoir une année de chevauchement pour procéder à la calibration et la validation de leurs instruments. Répétitivité des observations, disponibilité sur le long terme aux données, politique d’accès ouvert et libre à ces données constiuent les clefs pour rendre les utilisateurs confiants afin qu’ils investissent dans de nouvelles applications. Et çà fonctionne déjà ! Maintenat que Copernicus est une réalité opérationnelle, nous avons déjà soigné des accords pour le segment sol dans 11 pays différents. L’intérêt ne va que croître. D’ailleurs, des sociétés se sont mis à développer des services commerciaux avec les données Copernicus. Plus de 30.000 utilisateurs dans la communauté scientifique et dans le secteur indsutriel se sont inscrits pour proposer des traitements spécifiques.

Le Sentinel 5P sera satellisé à la fin de cette année : pourquoi cette mission particulière ?

WEI n°86 2016-03 - 23

WALLONIE ESPACE INFOS n°86 mai - juin 2016

V.L. : Il s’agit d’un précurseur, qui comblera l’écart avec les Sentinel-4 et les Sentinel-5 qui sont des instruments pour l’étude de l’atmosphère à bord des satellites météo de nouvelle génération d’Eumetsat . A savoir les MTG-S (Meteosat Third Generation-Sounder) et les Metop-SG (Second Generation) qui seront satellisés durant la prochaine décennie. Sentinel-5P est un petit satellite à une mission assez bon marché : on utilise l’instrument néerlandais TROPOMI (Troposperic Monitoring Instrument) pour établir des mesures de chimie atmosphérique.

Vous êtes le partisan du libre accès aux données de télédétection du système Copernicus. Comment alors avoir un retour sur investissement à long terme ?

V.L. : Le libre accès aux données des observations Sentinel est le ticket d’entrée à la nouvelle économie à l’heure de la société ‘big data’. Alors que le numérique s’impose de plus en plus dans notre société, il est essentiel de tirer parti de la l’investissement pour Copernicus afin que l’observation de la Terre soit partie prenante de l’économie basée sur les plates-formes de données. Le développement des Sentinels représente un investissement que les contribuables de l’Union ont déjà payé. Il est dès lors correct de leur fournir en retour les données gratuitement. Aux Etats-Unis, le système Landsat de la NASA a perdu de son intérêt quand les utilisateurs ont dû payer pour avoir accès aux données de télédétection. C’est comme le GPS dont les signaux de géo- localisation sont libres d’accès. Imaginez que ces signaux ne soient plus gratuits. Plus personne n’y aura recours pour naviguer par satellite avec son smartphone. La gratuité des données, c’est l’idée révolutionnaires de la nouvelle économie. Elle favorise l’éclosion d’un business d’innovations liées à des applications inattendues.

Quel peut bien être l’avantage opérationnel du service public Copernicus , comparé à des initiatives privées qui se lancent dans le déploiement de constellations pour l’observation de notre planète ?

V.L. : L’avènement de Copernicus est à l’origine d’un changement en profondeur des règles du jeu en matière de télédétection spatiale. Primo, il y a la répétivité élevée des observations avec la mise en œuvre d’au moins deux Sentinels sur la même orbite. Ce qui permet de visualiser la Terre dans ss globalité tous les six jours ! Avec l’observatoire européen Envisat, il fallait 32 jours pour réaliser cette vision globale. Il s’agit d’une différence significative pour stimuler des applications opérationnelles à des fins commerciales. Secundo, la durabilité garantie d’une infrastructure opérationnelle pour les vingt ans à venir grâce aux Sentinels dits C et D.

Durant votre carrière au service de l’ESA, quelle a été votre grande déception ?

V.L. : C’est très clair. La perte du satellite Cryosat qui devait inaugurer la famille des Earth Explorer, m’a beaucoup affecté. C’était mon premier lancement comme Directeur ESA pourl’Observation de la Terre. Je me trouvais à l’Esrin quand on a dû constater l’échec. Cryosat-1 n’a pu se séparer de l’étage supérieur et est tombé surles glaces de l’Arctique. Je fus très déçu, mais ce drame donna lieu à une réaction positive. Dans les trois mois qui ont suivi, l’ESA a soumis à son Conseil la décision

WEI n°86 2016-03 - 24

WALLONIE ESPACE INFOS n°86 mai - juin 2016 de reconstruire Cryosat dans un court délai. Etant donné le haut intérêt d’une étude détaillée de la couverture glaciaire, cette décision a pu être prise très vite. Ce qui démontre la réactivité de l’ESA pour remplacer un outil clef dans la connaissance d’un milieu terrestre qui change.

Vous n’avez pas été déçu par la perte soudaine d’Envisat ?

V.L. : Pas vraiment. Envisat avait largement dépassé sa durée de vie. Prévu pour des opérations durant cinq années, il avait 10 ans sur orbite quand il s’est arrêté de fonctionner. La panne ppouvait survenir à tout moment, si bien que ce ne fut une déception. On aurait espéré qu’il ait pu poursuivre ses observations et mesures jusqu’à ce que les premiers Sentinel soient satellisés.

Vous n’êtiez pas d’emblée favorable à la technologie microsat pour l’observation de la Terre, comme celle développée avec le Proba « made in Belgium »?

V.L. : Il faut remettre dans son vrai contexte le développement de la plate-forme Proba de micro-satellite autonome. Sa réalisation s’est faite dans le cadre du GSTP (General Support Technology Programme) de l’ESA. Nous avons eu l’agréable surprise de voir que le Proba-1 expérimental était un bon observateur sur orbite. Il démontre qu’un satellite léger et compact peut être un outil utile pour des missions de télédétection. Nous continuons à employer Proba-1 qui fonctionne toujours. Et nous collaborons avec le VITO en Belgique pour Proba-Végétation qui est un très bon précurseur des Sentinel-3. Nous comptons bien utiliser des microsats pour de prochaines missions ESA de télédétection. Ainsi est-il question d’avoir recours à une plate-forme Proba pour le radar passif Saocom-CS que l’ESA va développer en partenariat avec l’Argentine.

La Belgique envisage un successeur à Proba Vegetation sous la forme d’un mini- satellite Global Végétation en coopération avec la Chine. Comment l’ESA se positionne au sujet de ce rapprochement sino-belge ?

V.L. : Global Végétation est une initiative prise par le gouvernement belge de réaliser un satellite en partenariat avec une institution publique chinoise. Il y a des discusssions pour savoir comment l’ESA peut ou non s’impliquer dans ce satellite. Nous devons faire preuve d’une grande vigilance en ce qui concerne les règles ITAR : sont-elles respectées par le projet de satellite belgo-chinois. Leur non-respect pourrait mettre en danger les autres missions de l’ESA. Surtout que nous disposons déjà des observations de Sentinel-3. Ne perdons pas de vue que ces Sentinel-3 remplissent une mission assez similaire en ce qui concerne le suivi du couvert végétal. En fait, Proba-Vegetation constituait un « gapfiller » pour Sentinel-3. Maintenant que le premier Sentinel-3 est sur orbite, il fournit d’intéressants produits sur la végétation globale. Néanmoins, nous n’excluons aucun autre observateur de la végétation. Ce qui est un plus pour la répétitivité des prises de vues.

WEI n°86 2016-03 - 25

WALLONIE ESPACE INFOS n°86 mai - juin 2016

Alors, comment voyez-vous la compétition des opérateurs privés avec des constellations de satellites d’observation à des fins commerciales?

V.L. : Il est encore trop tôt de juger dans quelle mesure ces opérateurs pourront réussir. J’espère et souhaite qu’ils connaîtront le succès. Certains visent des marchés niches comme la vision TV « en direct » depuis l’espace. Je suis convaincu que l’avenir de la télédétection spatiale à des fins commerciales n’est pas dans la vente des données, mais plutôt dans l’essor de nouvelles idées pour connecter des services de la sphère internet. La fourniture de ces services pour des applications encore inédites est la clef du succès des systèmes de satellites d’observation.

Dans quelle mesure ces opérateurs privés, vos concurrents, ont-ils accès aux données des Sentinels pour combler des vides dans leurs observations ?

V.L. : Les données des observatoires Sentinel sont libres de droit pour tout le monde. Y compris pour les sociétés privées et nous espérons bien qu’ils vont participer à la création d’éléments de business basés sur leur exploitation.

Y aura-t-il d’autres missions de type Sentinel pour le système Copernicus de surveillance du globe pour l’environnement et la sécurité ?

V.L. : La Commission est en train de voir quels besoins vont être prioritaires pour la prochaine génération. Le suivi du dioxyde de carbone (CO2) paraît avoir la priorité pour le système Copernicus. Il y a bien d’autres propositions, comme la surveillance « à la Cryosat » des glaces sur les mers, un instrument dans l’infrarouge thermique pour les Sentinel-2, des senseurs dans l’hyperspectral ou à très haute résolution. Personnellement, je crois que cette dernière possibilité de mission va devenir une initiative privée. Nous avons entamé la phase de consultation des utilisateurs pour connaître leurs besoins. Ce qui donnera lieu en 2017 à une définition de critères. La réponse à la demande, j’en suis convaincu, va se faire dans le cadre d’une coopération internationale ou sous la forme de PPP (Partenariat Public-Privé). L’ESA entend contribuer au respect de l’accord COP 21 des Nations Unies pour le contrôle du changement climatique. Elle a entrepris des travaux de préparation sur le projet Carbonsat. Reste à investir dans une technologie qui exigera des années d’efforts pour son développement. Cet investissement dans le cadre du prochain EOEP-5 (Earth Observation Envelope Programme) sera au menu du prochain Conseil ESA au niveau ministériel, qui se tiendra à Lucerne les 1er et 2 décembre.

Envisagez-vous des initiatives PPP (Partenariat Public-Privé) dans un proche avenir ?

V.L. Je suis persuadé que nous allons avoir davantage des initiatives PPP pour la prochaine génération des Sentinels. Pour la première génération, nous n’avions pas retenu l’option de la très haute résolution. Si la Commission décide à l’avenir qu’elle a besoin de vues à très haute résolution, notamment à des fins sécuritaires comme le contrôle des frontières, on peut envisager cette possibilité via un PPP. L’industrie

WEI n°86 2016-03 - 26

WALLONIE ESPACE INFOS n°86 mai - juin 2016 semble intéressée à investir. Il y a déjà un domaine où l’industrie a déjà investi dans un PPP. C’est le cas d’EDRS (European Data Relay Satellite System) qui, pour ses liaisons laser à haut débit avec un satellite géostationnaire, a trouvé Copernicus comme premier client. Les Sentinel-1 et Sentinel-2 sont équipés de terminaux laser pour transmettre leurs importants flux de données.

La Chine et l’Inde se dotent de satellites géostationnaires pour des prises de vues à haute résolution. Qu’en est-il en Europe ?

V.L. : Nous travaillons sur deux concepts de satellites géostationnaires pour des observations à haute résolution. Le premier est un observatoire GEO pour des images de 5 m de résolution. L’autre est un satellite pour l’observation des océans avec une résolution de 20 m. L’industrie européenne des systèmes spatiaux est à l’oeuvre pour élaborer des modèles d’affaires possibles en vue de tels systèmes.

Peut-on un jour s’attendre à une approche européenne qui soit unifiée pour la mise en œuvre de satellites d’observation à usage dual , à la fois civil et militaire ?

V.L. : Des discusssions viennent de démarrer. Il est clair que l’approche duale permettra d’économiser l’argent public. Si des projets voient le jour en Europe pour combiner systèmes civils et militaires, ils pourront tirer parti de l’expertise que l’ESA a acquise avec ses équipes d’ingénieurs qui gèrent des satellites à finalité civile depuis plusieurs décennies. Il serait logique d’utiliser la même expertise pour les satellites militaires européens. L’ESA est fort bien préparée pour cette éventualité. Elle a régulièrement des rencontres avec l’EDA (European Defence Agency) pour la mise en œuvre des technologies à usage dual.

Comment voyez-vous l’avenir des satellites d’observation ?

V.L. : Un avenir radieux. Nous assistons au développement rapide du monde internet et ce phénomène va se poursuivre avec des connexions à haut débit, avec l’essor d’une économie de plates-formes numériques. Nous constatons que, au cours des 12 dernières années, le programme ESA d’obervations de la Terre a quadruplé, ce qui en a fait le programme le plus important de l’ESA. Par ailleurs, le secteur de valorisation des observations faites par satellites a augmenté d’environ 8 % par année durant la dernière décennie et nous voyons une forte demande pour les données géo-spatiales en parallèle avec une révolution dans les TIC (Technologies de l’Information et de la Communications). Mis ensemble avec le système Copernicus, des algorithmes pour le « big data » et pour le « cloud processing » donnent lieu à des nouveautés fantastiques pour lesobservations de la Terre, vu que vous pouvez traiter sur station de travail d’énormes quantités de données. Ce n’était pas possible il y a une dizaine d’années.

Pour conclure cet entretien, revenons à votre brillante carrière à l’ESA. Quel sera votre avenir à partir de ce 1er juillet ?

WEI n°86 2016-03 - 27

WALLONIE ESPACE INFOS n°86 mai - juin 2016

V.L. : Avant tout, j’aiderai le directeur général de l’ESA et mon successeur (*) dans la préparation du Conseil ministériel de décembre prochain. Le directeur général m’a demandé de rester à l’ESA jusqu’en mars 2017. Ce que je ferai après, honnêtement, je ne le sais pas encore. J’ai juste besoin d’un peu de temps pour prendre une décision. Je suis heureux de vivre une époque passionnante pour les nouveaux développements de la technologie spatiale.

(*) Dès ce 1er juillet, Volker Liebing est remplacé à la Direction ESA des programmes d’observation de la Terre par un chercheur autrichien, Josef Aschbacher. Il est un expert bien connu à l’ESA puisqu’il y travaille depuis 2001, aux côtés de Volker Liebig.

3.2. Constellations privées de petits satellites pour observer en continu (en quasi direct) notre Terre

Dans le cadre du Symposium « Living Planet » qui a accueilli quelque 3300 participants à Prague du 9 au 13 mai, deux entreprises privées américaines ont présenté leurs systèmes de constellations pour une vision en continu et en haute résolution de notre planète. Points communs entre elles : elles ont eu recours à l’ISS (International Space Station) pour expérimenter leurs produits et elles ont acquis des systèmes européens de satellites d’observation avec leurs banques de données pour se faire une clientèle.

- Planet Labs (à présent rebaptisée Planet), qui a vu le jour dans la Silicon Valley, mise sur la technologie Triple Cubesat pour produire à la chaîne des nano-satellites compacts et légers de télédétection, ultra compacts. Elle joue la carte de la réactivité pour rendre rapidement compte des changements soudains qui touchent l’environnement, suite à des séismes, des pollutions ou à des phénomènes météo. Avec son rachat de la constellation RapidEye (5 microsats de 150 kg), qui est née d’une initiative allemande, elle dispose d’un porte-feuille d’images multispectrales sur l’ensemble du globe et propose des services d’interprétation pour diverses applications. C’est PlanetScope, son accès « en direct » à l’imagerie « à la carte » de télédétection, qui constitue son principal atout.

Les nano-satellites de Planet ont été testés dès 2013 sous le nom de Dove, puis de Flock (un total de 90 !) en étant déployés de l’ISS (International Space Station). Ils étaient capables de prendre des vues de 3 à 5 m de résolution depuis 400 km d’altitude. Puis 11 Flock-1 étaient satellisés sur orbite héliosynchrone à 620 km d’altitude au moyen du lanceur russo-ukrainien . Pour la fin de l’année, Planet prévoit la mise en œuvre, sur cette même orbite, d’une constellation de quelque 150 nano-satellites d’observation. Avec une telle flotte évoluant à 475 km, chaque point sur la Terre pourra être observé chaque jour avec une résolution de 3,7 m ! Avec une trentaine de stations réparties sur le globe, Planet sera en mesure de recueillir quotidiennement jusqu’à 11 Terabytes de données ou 1,3 million d’images.

WEI n°86 2016-03 - 28

WALLONIE ESPACE INFOS n°86 mai - juin 2016

- Urthecast, qui est basée à Vancouver (Canada), teste depuis début 2014 le marché de la télédétection spatiale en équipant le module russe de l’ISS (International Space Station) de deux caméras vidéo multispectrales pour des images en continu : Theia (1 m de résolution avec une fauchée de 4 km) et Iris (5 m de résolution avec une fauchée de 50 km). Le 22 juin 2015, elle annonçait l’achat de la société espagnole Deimos Imaging avec ses deux satellites (Deimos-1 pour observer avec 22 m de résolution, Deimos-2 pour des vues de moins d’1 m) et avec sa banque d’images.

Prochaine étape : le déploiement, pour être opérationnelle en 2018, de la constellation UrtheDaily de 8 mini-satellites d’observation optique (5 m de résolution). A l’horizon, Urthecast prévoit OptiSAR, une constellation de 16 mini-satellites dotés d’un senseur optique (0,50 m de résolution) et d’un SAR en bande L et X pour une vision tout temps, de jours comme de nuit. Plus que jamais, les activités humaines à la surface terrestre n’échapperont pas à des observatoires sur orbite.

4. Télécommunications/télévision

4.1. GLIS 2016 : le spatial, moteur clef de la connectivité

Les TIC ont envahi la vie quotidienne à l’échelle planétaire. Les Technologies de l’Information et de la Communication ont besoin d’une connectivité sécurisée à des débits de plus en plus élevés. La GLIS 2016 (Global Conference on Space and the Information Society) a fait le point à Genève les 6 et 7 juin sur les défis pour les systèmes spatiaux.

L’imposant complexe de l’UIT (Union International des Télécommunications), qui fait face à l’Office des Nations Unies à Genève, a accueilli la GLIS 2016 organisée sous les auspices de l’IAF (International Astronautical Federation). L’objectif de l’UIT, institution spécialisée de l’ONU avec 193 pays membres, est de connecter tous les habitants de la planète, quel que soit l’endroit où ils habitent et quels que soient leurs moyens. Il répondait bien au thème « Mettre le spatial à la portée de tous les pays » de la conférence, placée sous le signe du numérique, à l’heure où notre village global se trouve connecté avec des systèmes de plus en plus performants de télécommunications, tant au sol que sur orbite. L’UIT, avec son Département des Services Spatiaux au sein du Comité du Règlement des Radiocommunications 1906- 2016, veille sur l’efficacité des satellites dans l’écosystème mondial des télécommunications.

On a affaire à la montée en puissance de l’économie de l’information dont il faut garantir la durabilité jusque dans l’espace: en gérant la ressource limitée des fréquences, en empêchant les risques d’interférences dans un environnement encombré, en veillant à la disponibilité de capacités pour les satellites scientifiques et sondes spatiales, en sécurisant l’accès à des banques de données de plus en plus conséquentes, en exploitant au mieux les TIC pour la sauvegarde du milieu terrestre

WEI n°86 2016-03 - 29

WALLONIE ESPACE INFOS n°86 mai - juin 2016 menacé par le réchauffement climatique. C’est ce qu’ont rappelé des représentants de la NASA, de l’ESA et de Roscosmos, ainsi que les présidents du CNES et de l’ASI (Agenzia Spaziale Italiana). Jean-Yves Le Gall qui présidera l’IAF le 1er septembre a insisté sur le caractère changeant du secteur spatial durant ces dernières années avec l’avènement d’un nouvel âge que l’on appelle NewSpace : selon lui, le changement ressemblera à un SmartSpace, avec le recours à des systèmes spatiaux toujours plus réactifs, miniaturisés, modulaires ou flexibles. Et de dresser le constat de la fin des barrières entre les systèmes de l’espace et les NBIC (Nanotechnologie, Biotechnologie, Informatique, Sciences Cognitives).

Les cinq sessions de la CLIS 2016 ont mis en évidence l’impact, comme sur le côté fragile, des technologies spatiales dans l’essor mondial des TIC. Depuis les relais à haut débit, géostationnaires ou en constellations, aux satellites d’observation - notamment radar -, de navigation, de collecte de données. Trois opérateurs de satellites ont exprimé leurs vues : SES (devenu le n°1 global avec 65 satellites suite au rachat de la constellation ), (préparant Quantum, satellite intelligent en bande Ku à lancer en 2019) et le nouveau OneWeb (avec 648 satellites en orbite basse à l’horizon 2020). Du côté de l’industrie des systèmes spatiaux, à part Lockheed Martin, les grands constructeurs de satellites étaient absents des panels. Deux acteurs européens des nano- et micro-satellites ont présenté leurs vues sur les constellations: la PME néerlandaise ISIS (Innovative Solutions in Space) et la société sud-africaine SCS (Space Commercial Services Holdings)

GLIS 2016 a souligné pour le segment spatial les résultats positifs de la Conférence mondiale des Radiocommunications 2015, qui s’est tenue en novembre. Néanmoins, on reste vigilant pour la prochaine qui aura lieu au début de 2019. Son agenda concernera à 49 % les activités dans l’espace. Il sera à nouveau question de la cohabitation des réseaux terrestres et des constellations pour l’emploi des bandes C (6/4 GHz), Ku (14/11 GHZ), Ka (30/20 GHz), Q-V (50/40 GHz et au-delà), vu l’appétit grandissant pour des systèmes mobiles à haut débit.

4.2. Thales Alenia Space Belgium/TAS Belgium: à la mode du Spacebus Neo « tout électrique »

Le 7 juin, en présence d’Elke Sleurs, Secrétaire d’Etat fédéral pour la Politique scientifique (et initiatrice de la future Agence spatiale interfédérale de Belgique), Thales Alenia Space Belgium a signé ses premiers contrats pour sa nouvelle génération d’équipements de puissance pour les satellites « tout électrique » de Thales Alenia Space. Il s’agit de deux contrats pour l’Africa Broadband Satellite d’Eutelsat et pour le Comsat NG militaire de la DGA (Direction Générale de l’Armement) française. Il s’agit des deux premiers satellites à utiliser la plate-forme Spacebus Neo. Patrick Bury, directeur général adjoint de TAS Belgium, commente ce nouveau succès pour le n°1 du spatial belge : « Thales Alenia Space nous a confié le développement de la majorité des équipements électroniques de la nouvelle génération Spacebus Neo. Ces nouveaux produits présentent des niveaux de performance, de compétitivité, de flexibilité et de légèreté sans précédent. » WEI n°86 2016-03 - 30

WALLONIE ESPACE INFOS n°86 mai - juin 2016

4.3. Nouvelles constellations de petits satellites en projet pour la 5G :

Et la prolifération de se poursuivre de plus belle. Il ne se passe pas un mois sans qu’un système de constellation avec micro-satellites soit annoncé dans le monde. Non sans une certaine surenchère pour conquérir quelque 4 milliards d’internautes sur le globe. C’est bel et bien l’ère du SmartSpace, comme le note Jean-Yves Le Gall, président du CNES. On peut se demander le niveau d’investissements à consentir pour que l’internet haut débit - 4G, voire 5G – et mobile - jusque dans les avions et sur les navires – puisse voir le jour grâce à la dimension spatiale. En tout cas, de quoi justifier l’essor de micro-lanceurs « sur mesure » pour le déploiement sur différentes orbites.

- Boeing Co en a surpris plus d’un en informant la FCC (Federal Communications Commission) sur un ambitieux projet - pour la prochaine décennie - d’une constellation de 1.396 micro-satellites (près du double que la constellation OneWeb !) qui seront produits en série pour des connexions haut débit dans les bandes C (4/6 GHz) et V (entre 40 et 75 GHz) qui ont été demandées à l’UIT (Union Internationale des Télécommunications). Ils seront répartis sur 35 plans d’orbite inclinée à 45 degrés et sur 6 plans à 55 degrés, à 1200 Km d’altitude. Boeing déjà une extension avec 1560 microsatellites supplémentaires sur 12 plans à 55 degrés (1200 km d’altitude) et sur 21 plans à 88 degrés (1000 km). En fin de compte, 2.956 miro- satellites pour des communications personnelles et mobiles à large bande ! Qui dit mieux ? Le géant aérospatial de Seattle est à la recherche d’un candidat crédible qui soit prêt à investir dans pareille méga-constellation. Aucun chiffre n’est donné pour l’investissement à réaliser.

- Sky & Space Global (SSG), entreprise britannique née en Israël mais basée en Australie, prévoit pour 2020 la mise en œuvre d’une constellation de 200 nano- satellites pour de l’internet haut débit notamment en Afrique et pour les îles du Pacifique. Trois démonstrateurs, employant la technologie Cubesat, sont en préparation : chacun des trois Diamonds a une masse de moins de 10 kg. Ils seront satellisés par un PSLV indien en 2017. Virgin Galactic, qui est actionnaire de SSG, a obtenu de lancer la constellation au moyen du lanceur LauncherOne.

4.4. Quid de l’avenir de OneWeb ? Il reste 2 milliards € à financer…

Airbus Defence & Space prend pied dans le segment des constellations de petits satellites. Le groupe aérospatial relève le défi technologique de la mise en œuvre du système OneWeb de 648 micro-satellites pour créer dès 2020 un internet performant sur l’ensemble du globe. Un demi milliard de dollars sont déjà financés par , Echostar, Bharti, Salinas, Qualcomm, Coca-Cola, Virgin, MDA, Airbus… La prochaine tranche à financer doit faire appel à de nouveaux investisseurs dans les mois à venir. Ce sont en tout quelque $ 2,5 milliards qu’il s’agit d’investir dans satellites, lancements, stations au sol…

WEI n°86 2016-03 - 31

WALLONIE ESPACE INFOS n°86 mai - juin 2016

A la GLIS 2016, OneWeb a fait l’objet d’une présentation de Tony Azzarelli, responsable de la stratégie et des aspects réglementaires. Le but est de faire en sorte que les 54 % de la population mondiale n’ayant aucun accès à un internet efficace disposent d’un système qui offre un débit de 25 à 50 Mbps depuis l’espace. Les 648 relais à 1.200 km sur 18 plans d’orbite fonctionneront dans les bandes Ku et Ka. Chaque satellite de 150 kg, équipé de la propulsion électrique, aura une durée de vie d’au moins 7 années. La ligne de production en série - jusqu’à 3 satellites par jour ! - va être testée à Toulouse. Elle sera implantée dans une nouvelle usine dans le parc industriel qui jouxte le Kennedy Space Center du Cape Canaveral (Floride). Le calendrier déploiement sera one ne peut plus serré. Le premier lot d’une dizaine de satellites expérimentaux doit être lancé fin 2017 par un Soyouz depuis le Centre Spatial Guyanais. La mise en place de la constellation donnera lieu en 2018-2019 à une vingtaine de lancements depuis Kourou et Baïkonour, ainsi qu’au moyen de 39 LauncherOne aéroportés de Virgin Galactic.

5. Navigation/Galileo

5.1. Déploiement complet de la constellation IRNSS : l’Inde a son système de navigation opérationnel !

Les Indiens dans l’espace n’ont pas fini de nous surprendre. Durant la première moitié de cette année, trois vols réussis du lanceur PSLV ont permis le déploiement de la 1ère génération d’IRNSS (Indian Regional Navigation Satellite System). Dans les mois à venir, l’ISRO (Indian Space Research Organisation) pourra déclarer opérationnel son système régional avec sept satellites - chacun d’une masse de 1.425 kg équipé d’une horloge atomique au rubidium ultra-précise -, à quelque 35.800 km : 3 « fixes » sur une position géostationnaire, 4 « évoluant » sur des trajectoires inclinées par rapport à l’orbite géostationnaire. D’ores et déjà, l’ISRO prépare la deuxième génération des satellites IRNSS pour la prochaine décennie.

5.2. Constellation Beidou NSS de la Chine : globalement opérationnelle à l’horizon 2020 ?

Lors de la 59ème session du COPUOS (Committee on the Peaceful Uses of Outer Space) à Vienne, le 8 juin, le China Office a fait le point sur le Beidou Navigation Satellite System (BNSS)/Compass, dont la constellation est entrée dans la phase 3 de son déploiement. La phase 2 s’est achevée le 27 décembre 2012 avec la mise à disposition du système pour des services régionaux de navigation par satellites. Avec l’objectif d’un positionnement avec une précision de moins de 10 m. Un million de récepteurs font l’objet en Chine d’une promotion pour diverses applications. Par ailleurs, Beijing mise sur la coopération internationale – via des accords avec les Etats-Unis, la Russie et l’Union européenne - pour que son BNSS/Compass coexiste avec succès aux côtés du GPS, de Glonass et du GNSS.

WEI n°86 2016-03 - 32

WALLONIE ESPACE INFOS n°86 mai - juin 2016

Depuis 2015, ce sont sept satellites Beidou de nouvelle génération - avec des horloges sécurisées plus performantes et des signaux plus puissants de navigation – qui ont déjà été mis en orbite : Beidou Inclined GEO/Beidou-17 (30 mars 2015), deux Beidou-3 M1 & M2-MEO/Beidou-18 et Beidou-19 (25 juillet), Beidou-3 Inclined GEO/Beidou- 20 (30 septembre), Beidou-3M MEO/Beidou-21 (1er février 2016), Beidou-2 Inclined GEO/Beidou-22 (29 mars), Beidou GEO/Beidou-23 (12 juin). Aucune info n’est donnée sur l’état de fonctionnement de chaque satellite opérationnel de la constellation Beidou.

5.3. Galileo Integrated Logistics Support (ILS) à Transinne-Libin calendrier serré pour sa mise en œuvre durant la seconde moitié de 2017

L’Ardenne belge désormais de plus en plus à l’heure Galileo avec le Centre ESA de Redu-Libin (avec Redu Space Services) et avec le Galileo ILS (Integrated Logistics Support) de Transinne-Libin (avec VitroCiset Belgium). Le premier est chargé des tests sur orbite (IOT) de chaque Galileo FOC au moyen de sa plus grande parabole (21 m de diamètre). Le second va être édifié autour d’un square inauguré le 17 juin dernier pour les nouveaux aménagements du parc d’activités économiques de Galaxia (20 hectares). Autour de ce square dont la réalisation sous l’impulsion d’IdeLux a coûté 3,5 millions € - financés conjointement par la Wallonie et par le FEDER – on aura l’Euro Space Center (présent à Transinne depuis 25 ans) et le centre d’entreprises Galaxia avec l’incubateur WSLLux (sciences de l’ingénieur) de l’ESA et un centre de connaissances géré par IdeLux. Ils seront rejoints en 2017 par le centre Galileo Integrated Logistics Support (ILS) qui doit, dans un nouveau bâtiment de 2.300 m², assurer le support technique des 16 stations, répartie sur le globe, du segment sol Galileo. Sa construction doit démarrer cet automne pour une mise en service durant l’été 2017.

6. Sécurité & Espace/Défense spatiale

6.1. POLSA, l’agence spatiale polonaise : priorité aux satellites d’observation à usage dual pour la sécurité et pour la défense

Depuis 2015, la Pologne envisage de se doter d’un ou de deux satellites d’observation, qui répondent à des besoins de sécurité et des objectifs de défense. Elle a chargé la POLSA, son agence spatiale créée le 26 septembre 2014, de réaliser des études de faisabilité sur des observatoires optiques et radar à haute résolution. Entretemps, les Universités et Instituts de recherche, concernés par des activités en télédétection, sont en train de s’initier au traitement des données grâce aux satellites radar Cosmo- SkyMed de l’Italie. POLSA et le Ministère polonais de la Défense vont, dans les prochains mois, finaliser un contrat pour un ou deux types de satellites. L’objectif est de faire naître une industrie polonaise de systèmes spatiaux (lanceurs, satellites). Les deux grands constructeurs européens de satellites d’observation se positionnent pour ce contrat avec des filiales en Pologne : Thales Alenia Space Polska, PZL Warszawa- Okecie d’Airbus (qui va s’équiper de salles blanches et moyens de tests).

WEI n°86 2016-03 - 33

WALLONIE ESPACE INFOS n°86 mai - juin 2016

6.2. Premiers pas, encore timides, pour une approche paneuropéenne dans la mise en œuvre de satellites d’observation à usage dual (civil et militaire)

Volker Liebig, en charge de la Direction ESA pour l’Observation de la Terre jusqu’au 30 juin - il est depuis ce 1er juillet remplacé par son « bras droit », l’Autrichien Josef Aschbacher -, est conscient qu’il faut harmoniser en Europe, dans un souci d’économies, les systèmes de satellites d’observation civils et militaires. Il nous a confié dans une interview (voir texte complet dans les pages qui précèdent) qu’il nous donnait lors du Living Planet Symposium à Prague : « Des discussions viennent de démarrer. Il est clair que l’approche duale permettra d’économiser l’argent public. Si des projets voient le jour en Europe pour combiner systèmes civils et militaires, ils pourront tirer parti de l’expertise que l’ESA a acquise avec ses équipes d’ingénieurs qui gèrent des satellites à finalité civile depuis plusieurs décennies. Il serait logique d’utiliser la même expertise pour les satellites militaires européens. L’ESA est fort bien préparée pour cette éventualité. Elle a régulièrement des rencontres avec l’EDA (European Defence Agency) pour la mise en œuvre des technologies à usage dual. »

7. Science/Cosmic Vision

7.1. Rôle clef de Spacebel pour l’excellence des mesures sur le phénomène des ondes gravitationnelles (mission LISA-Pathfinder)

Lancé par la 6ème Vega le 3 décembre 2015, le satellite LISA (Laser Interferometer Satellite Antenna) Pathfinder de 1,9 t a gagné sa position sur le Point Lagrange L1 en janvier 2016. Ce démonstrateur vise à valider les technologies permettant de mesurer avec une grande précision les ondes gravitationnelles de l’Univers, ondulations dans le tissu Espace-Temps comme l’avait prédit Albert Einstein (1879-1955). Les premières mesures, enregistrée depuis mars dernier, sont d’excellente qualité. L’entreprise belge Spacebel contribue à ce succès prometteur en tant que développeur pour Airbus Defence & Space du logiciel du traitement des données à bord de LISA Pathfinder. Ce logiciel DHS (Data Handling Software) gère tous les échanges de données à bord : depuis la communication entre le contrôle d’attitude et d’orbite et les capteurs et actionneurs très précis du système jusqu’au stockage des données scientifiques qui proviennent des opérations de test dans une mémoire de masse avant leur téléchargement vers les stations sol.

7.2. En quête de la vie extra-terrestre: Liège en première ligne pour la découverte d’exoplanètes « proches » qui soient habitables

Plus que jamais, grâce à son Université, Liège est la Cité ardente de l’espace. Moins d’une semaine après la mise en orbite de son nano-satellite OUFTI-1, ce sont ses astrophysiciens1 qui étonnent le monde entier. Un groupe de chercheurs de l’Institut d’Astrophysique a en effet révélé dans un article paru dans la prestigieuse revue scientifique Nature la découverte de trois exoplanètes de taille terrestre et potentiellement habitables en orbite autour d’une WEI n°86 2016-03 - 34

WALLONIE ESPACE INFOS n°86 mai - juin 2016 mini étoile "ultra-froide", rebaptisée TRAPPIST-1, et située à seulement 40 années-lumière de la Terre2. La découverte pourrait bien s'avérer historique car elle représente ni plus ni moins que la première opportunité de détecter de la vie en-dehors du système solaire ! En effet, la petite taille3 et la proximité de l'étoile rendent possible l'étude détaillée de la composition atmosphérique des planètes par la prochaine génération de grands télescopes, y compris la détection de possibles traces chimiques de vie.

Certains astronomes de l'ULg font partie de la famille grandissante des "chasseurs d'exoplanètes", à l’affût de systèmes planétaires autour d’autres étoiles que le Soleil. Cette quête ne cesse de s’intensifier : on détecte les exoplanètes au rythme annuel de plusieurs centaines, avec l’espoir de découvrir celle qui nous apprendra enfin que la vie existe ailleurs. Il pourrait bien s'agir d'une des trois nouvelles planètes découvertes par les astronomes liégeois, et la presse internationale ne s'y est pas trompée. Durant les trois jours qui ont suivi la publication de cette découverte, Michaël Gillon - à la tête de l’équipe à l’origine de cette avancée majeure - et son collègue Emmanuel Jehin ont été sollicités de toutes parts, assaillis de questions depuis tous les continents. En 24 heures la nouvelle a fait le tour du monde et ils ont fait le buzz sur des chaînes TV d’envergure internationale et la Une de nombreux journaux et sites de news sur Internet …

TRAPPIST : un petit télescope dans la cour des grands

Mais à quoi doit-on cette découverte extraordinaire ? Non pas à une mission spatiale de grande envergure, mais à un modeste télescope que Michaël Gillon et Emmanuel Jehin ont conçu et appelé TRAPPIST (pour Transiting Planets & Planetesimals Small Telescope). C’est au cœur d’un observatoire totalement robotisé que ce petit télescope de 75 kg, doté d’un miroir principal d’à peine 60 cm, est piloté à distance depuis un PC, une tablette ou un smartphone, au bureau ou au domicile, par les astronomes de l'ULg. Implanté à l’Observatoire La Silla de l’ESO dans le désert d’Atacama au Chili, ce télescope financé par le FNRS depuis 2010 a pour unique mission l’étude des exoplanètes en transit et le suivi des petits corps (comètes, astéroïdes) du système solaire. Les astronomes liégeois sont seuls maîtres à bord pour optimiser et consacrer tout le temps nécessaire à ces recherches de longue haleine, Michaël Gillon et Emmanuel Jehin dirigeant, respectivement, les programmes 'exoplanètes' et 'comètes et astéroïdes' de TRAPPIST.

« L’idée originale - qui nous a permis de réaliser cette découverte avant tout le monde - était d’aller jeter nos filets du côté des petites étoiles nommées naines ultra-froides, ayant des températures inférieures à 2.700° C (à comparer au 6000°C du Soleil), pour voir si elles avaient des planètes semblables à notre Terre, précise Michaël Gillon. On ne peut bien les observer qu’avec des détecteurs ayant une bonne sensibilité dans le proche infrarouge. C’est ce que nous avons réussi à faire. » Ainsi les astrophysiciens ont-ils fait preuve d’une certaine audace en se lançant sur la piste de ces étoiles naines ultra-froides. En effet la plupart cherchent les planètes potentiellement propices à la vie autour d’étoiles semblables au Soleil, mais elles sont très difficiles à détecter et impossibles à étudier en détail à cause de la forte luminosité de leur étoile. La zone habitable – où se trouve l’eau sous forme liquide - autour des étoiles ultra-froides est par contre beaucoup plus proche de l’étoile et les planètes qui orbitent dans cette zone le font plus rapidement, et donc les possibles transits se

WEI n°86 2016-03 - 35

WALLONIE ESPACE INFOS n°86 mai - juin 2016 manifestent de façon bien plus fréquente. De plus dans la Galaxie, jusqu'à 20% des étoiles seraient des naines ultra-froides dont de nombreuses dans le voisinage du Soleil. « Des conditions donc favorables et un challenge qui s’est révélé payant et qui ouvre de nouvelles perspectives dans la quête des mondes habités. » précise Emmanuel Jehin.

Et ce n’est qu’un début… pour une suite encore plus exaltante !

En effet, forts de leur avance dans la quête internationale de la vie dans l’Univers, les chercheurs de l'ULg sont décidés à encore aller bien plus loin. Ils terminent actuellement l’implantation d’un second télescope dans l’ marocain, à 2 700 m d’altitude. TRAPPIST-Nord situé à l’observatoire de l’Oukaimeden, va compléter son frère jumeau du Chili et scruter le ciel d’hémisphère boréal cette fois. Ce nouvel observatoire est financé par un crédit gros équipement de l’ULg et un ARC. Il est également au centre d’une nouvelle collaboration entre l’ULg et l’université Cadi Ayyad de Marrakech avec notamment des thèses en co-tutelle. Mais aux côtés de cette double TRAPPIST, il y aura le quatuor de télescopes SPECULOOS (pour Search for habitable Planets Eclipsing Ultra-Cool Stars) qui vont être installés à proximité du VLT à Paranal au Chili !

Il s’agit cette fois d’un projet bien plus ambitieux, avec quatre télescopes identiques ayant des miroirs primaires de 1 m, robotisés comme l’est TRAPPIST : ils seront totalement dédiés à la recherche de ces fameuses exoplanètes autour d’étoiles ultra-froides. Ce nouveau projet est financé par un ERC et associe dans un consortium les Universités de Cambridge et King Abdulaziz de Jedah qui chacune ont financé un télescope. Et Michaël Gillon, également à la base et à la tête de SPECULOOS, de se montrer enthousiaste quant à l’avènement du projet prévu au printemps 2017: « Avec ces nouveaux télescopes très performants, on va surveiller pendant cinq ans les 500 étoiles naines froides les plus proches et on devrait statistiquement détecter plusieurs nouveaux systèmes, chacun représentant une nouvelle opportunité de détecter de la vie ailleurs… »

Les Exoplanètes sont les vedettes de deux médias qui viennent de paraître : - n°321, juin 2016 (version papier seulement distribuées en Belgique, version électronique sur http://athena.wallonie.be), consacre quatre pages à la découverte de TRAPPIST-1. - Espace & Exploration n°34, juillet-août 2016, a mis les Exoplanètes à la une pour son numéro estival. On peut le commander ou s’abonner sur le site www.espace- exploration.com

(1) L'équipe liégeoise à l’origine de cette découverte est dirigée par le chercheur FNRS Michaël Gillon, et comprend ses collègues Emmanuel Jehin, Valérie Van Grootel, et Pierre Magain, ainsi que les doctorants Laetitia Delrez, Artem Burdanov, et Cyrielle Opitom.

(2) 1 année-lumière est la distance que parcourt en un an la lumière à près de 300.000 km/s. C’est-à-dire, grosso modo, 10.000 milliards de km ! 40 années-lumière est donc une distance énorme à échelle humaine, mais néanmoins très petite à l'échelle de notre Galaxie qui a un diamètre de 100.000 années-lumière.

WEI n°86 2016-03 - 36

WALLONIE ESPACE INFOS n°86 mai - juin 2016

(3) TRAPPIST-1 est à peine plus grande que la plus grosse planète du système solaire, Jupiter, qui est elle-même dix fois plus petite que le Soleil.

8. Exploration/Aurora

8.1. ExoMars-2 reporté à l’année 2020 : le Directeur Général de l’ESA déçu par un nouveau retard qu’il doit financer

La décision de reporter la mission russo-européenne ExoMars 2019, rebaptisée Exomars-2, était attendue bien avant l’envol d’ExoMars 2016/ExoMars-1. La sonde est en route vers la Planète Rouge qu’elle atteindra le 19 octobre prochain. Le report d’ExoMars-2 à la prochaine fenêtre martienne en juillet 2020, pour des raisons techniques qui concernent tant la partie de la Russie que celle de l’Europe, ne fait point le bonheur de Jan Woerner, Directeur général de l’ESA. A Prague, le 9 mai, avant l’ouverture du Living Planet Symposium organisé par l’ESA, il n’a pas caché sa frustration : « Cette décision ne m’a pas vraiment surpris. […] Je me suis battu pour éviter ce report, mais ce ne fut pas possible. Je suis vraiment décontenancé par cette décision ». Il lui faut trouver un financement supplémentaire pour un programme qui atteint le 1,3 milliard €. Soit le double de ce qui était prévu initialement. J. Woerner ne veut en aucun cas réduire le budget des missions scientifiques au profit d’Exomars.

L’ESA a pu obtenir 1 milliard € de ses Etats membres. Au prochain Conseil ministériel de l’ESA qui se tiendra à Lucerne en décembre, un supplément qui reste à évaluer devra être débloqué pour permettre la réalisation russo-européenne d’ExoMars-2. Le Conseil ESA du 15 juin, sous l’impulsion de David Parker, Directeur ESA pour le vol spatial habité et pour l’exploration robotique, a donné un signe positif en acceptant d’injecter 77 millions € dans la mission ExoMars-2. Ce sont principalement les délégations de l’Italie (avec 34 millions €) et du Royaume-Uni (19 millions €) qui se sont montré les plus déterminées pour leurs industriels (respectivement Thales Alenia Space, Airbus Defence & Space). Fadura encore faire des efforts car on s’attend à ce que le budget ExoMars atteigne les 1,56 milliard €. L’arrivée d’un rover européen sur la Planète Rouge est à ce prix.

8.2. Des Hommes près de Mars avant 2030 ? Une prédiction de Jean-Yves Le Gall, président du CNES

La prochaine décennie va être marquée par l’arrivée de robots autour de Mars (dont une sonde des Emirats arabes!) et sur son sol (dont le rover européen d’ExoMars-2). D’ores et déjà, les prochaines fenêtres martiennes intéressent Elon Musk et son entreprise SpaceX. En 2018, une capsule Red Dragon, avec des expériences de la NASA, va se poser sur Mars en 2019… Comme pour fêter les 50 ans des premiers pas de l’Homme sur la Lune avec l’historique mission Apollo 11. Jean-Yves Le Gall, président du CNES, y voit un bel effort du privé pour mettre la Planète Rouge à la portée des Terriens. Dans son éditorial du CNES Mag n°69, consacré au thème de Mars, la nouvelle frontière, il ose cette surprenante

WEI n°86 2016-03 - 37

WALLONIE ESPACE INFOS n°86 mai - juin 2016

« prophétie »: « La révolution que connaît le secteur spatial, portée par l’innovation au service des applications, pourrait bien avoir une conséquence inattendue : la formidable accélération de l’exploration martienne. Envisagée il y a encore six mois pour 2040-2050, la mission habitée vers Mars est en train de se rapprocher à une vitesse vertigineuse, puisque ses promoteurs nous parlent à présent de 2030, voire de 2025 ! La raison ? Les bénéfices apportés par la spectaculaire diminution du coût des satellites et des lancements, rendue possible par la multiplication des projets et l’augmentation des cadences. Et ce qui n’était qu’un concept, l’envoi vers Mars d’un vaisseau suffisamment grand pour permettre à quatre ou six personnes de séjourner deux ans dans l’espace, est en train de devenir un projet et bientôt une réalité. »

9. Vols habités/International Space Station/Microgravité

9.1. Missions d’astronautes aux Etats-Unis : de la pénurie à l’abondance en 2018 avec trois vaisseaux spatiaux (Dragon V2, Starliner, Orion MPCV)

Dès 2018, les astronautes américains disposeront de trois vaisseaux pour aller dans l’espace : deux privés - le Starliner de Boeing, le Dragon V2 de SpaceX -, ainsi qu’ un public – l’Orion MPCV de la NASA, réalisé par Lockheed-Martin. Après sept années de disette - le a été mis hors course en juillet 2011 -, la NASA mise sur des systèmes privés pour l’envoi d’astronautes dans l’ISS (International Space Station) sur orbite à quelque 400 km. Sa desserte sera confiée à des vaisseaux réutilisables de Boeing et de SpaceX. Ainsi le CST-100/Crew Space Transportation Starliner et le Dragon V2, conçus pour emmener jusqu’à 7 astronautes, vont se relayer pour les allers-retours à bord de la station. SpaceX n’hésite pas à clamer qu’elle devancera Boeing : le premier vol expérimental de son Dragon V2, avec des astronautes de la société et de la NASA pourrait avoir lieu fin 2017. Il mettra fin à la dépendance de l’Amérique pour le vaisseau Soyouz russe dont la conception remonte à l’ère soviétique (années 60) pour le duel lunaire…

Certes, la présence de Boeing et de SpaceX aux côtés de la NASA dans des formules de partenariat public-privé marque un tournant pour l’astronautique. Ce qui n’empêche pas la NASA de développer avec Lockheed Martin son vaisseau Orion de 25 t, dit MPCV (Multi-Purpose Crew Vehicle) pour l’exploration de la Lune et du système solaire. Il faudra attendre jusqu’en 2021 son premier vol avec un équipage de 4 astronautes autour de la Lune. Au même moment, la Chine mettra en service un véhicule habité de nouvelle génération pour l’exploitation de sa station spatiale de longue durée. De même, la Russie prévoit de tester son nouveau vaisseau baptisé Federatsia qui doit remplacer le Soyouz durant la prochaine décennie. Constat : l’Orion américain, le vaisseau chinois des années 2020, le Federatsia russe présentent des traits communs avec l’emploi d’une capsule de forme conique…

9.2. China Space Station (CSS): voici un descriptif de ses modules- laboratoires pour inviter la communauté internationale à leur exploitation

WEI n°86 2016-03 - 38

WALLONIE ESPACE INFOS n°86 mai - juin 2016

Beijing a décidé de miser sur sa technologie des systèmes spatiaux pour entretenir des relations de coopération internationale dans l’espace. Le programme spatial de la CASC (China AeroSpace Corp) est en train de faire un nouveau bond en avant avec la mise en service des lanceurs CZ-5, CZ-6 et CZ-7 de nouvelle génération. Lors de la 59ème session du COPUOS (Committee on the Peaceful Uses of Outer Space) à Vienne, le 14 juin, Ms WU Ping, Deputy Director, CMSA (China Manned Space Agency), a décrit le planning pour la mise en œuvre de la CSS pour 3 à 6 personnes sur une orbite inclinée à 42-43 degrés entre 340 et 450 km. Elle a insisté sur plusieurs éléments de laboratoires : écologie, biotechnologie, physique des fluides, phénomènes de combustion, fusion de matériaux, expériences en lévitation, etc. Elle a présenté les conditions d’une coopération à l’exploitation de la CSS, dans le cadre de l’ONU.

Schéma de l’assemblage de la CSS de 2018 à 2023

WEI n°86 2016-03 - 39

WALLONIE ESPACE INFOS n°86 mai - juin 2016

Le module central Tian He avec un collier d’arrimage multiple constituera le cœur de la CSS : il doit être satellisé par le lanceur CZ-5 en 2018.

Le nouveau lanceur CZ-5B, mis en œuvre à partir du nouveau centre de lancements de Wenchang, doit effectuer son premier vol en novembre. Il servira à satelliser le module central Tian He en 2018. Ce lancement donnera bel et bien le coup d’envoi de la construction de la CSS. WEI n°86 2016-03 - 40

WALLONIE ESPACE INFOS n°86 mai - juin 2016

Le module d’expériences I, baptisé Wen Tian, sera le premier laboratoire à venir s’arrimer sur le module central Tian He, après que celui-ci ait été inspecté et validé par un séjour de taïkonautes avec un vaisseau . Wen Tian sera équipé d’un bras télémanipulateur et d’un sas de sortie extra-véhiculaire.

WEI n°86 2016-03 - 41

WALLONIE ESPACE INFOS n°86 mai - juin 2016

Le module d’expérimentation II, appelé Meng Tian, constituera un laboratoire polyvalent, sur lequel le ravitailleur automatique Tianzhou viendra s’arrimer après avoir été satellisé par le lanceur CZ-7 depuis Wenchang.

10. Débris spatiaux/Space Situational Awareness (SSA)

Démonstrateur chinois à l’essai pour l’enlèvement d’épaves sur orbite

La Chine plus que jamais présente dans l’espace, même pour y enlever les débris. Le lanceur CZ-7, pour son premier vol du 25 juin a servi à tester le démonstrateur technologique Aolong-1. Il s’agit d’un satellite expérimental ADRV (Active Debris Removable Vehicle) qui manoeuvre dans l’espace pour enlever des débris spatiaux… mais aussi pour inspecter des satellites !

11. Tourisme spatial/véhicules suborbitaux

Blue Origin (Jeff Bezos) avec New Shepard habité dès 2017: en train de prendre de vitesse SpaceShipTwo de Virgin Galactic (Richard Branson)

S’envoyer en l’air jusqu’à la frontière de l’espace : ce devrait être possible dès fin 2017 pour tout être… fortuné. Cet aller-retour qui permettra de franchir la Ligne de Karman (*) qui définit la frontière entre le domaine terrestre et le milieu spatial qui se situe à 100 km d’altitude deviendra routinier à la fin de cette décennie. Il y a dix ans, il était question de faire voler des touristes en microgravité à la lisière du monde spatial. Le vol habité suborbital paraissait à portée de systèmes privés. Il y avait eu en 2004 l’impulsion de l’Ansari X Prize, prix qui récompensait la première firme privée réussissant à dépasser cette frontière à deux reprises endéans les deux semaines. L’exploit était réussi par l’avion-fusée SpaceShipOne (SS1) avec un pilote d’essais à bord.

(*) du nom du physicien hongrois-américain Théodore von Karman (1881-1963),grand spécialiste d’aéronautique.

Dans la foulée du SS1, Sir Richard Branson, le patron du groupe Virgin, lançait son initiative commerciale Virgin Galactic de vols spatiaux avec des bonds à plus de 100 km dès 2013... Dans le monde, plus de 500 personnes réservaient leur billet. Mais le développement du SpaceShipTwo (SS2) - pour 2 pilotes et six passagers - se révélait plus complexe et plus périlleux que prévu. Son premier exemplaire se désarticulait dans les airs le 31 octobre 2014. Le co-pilote, qui aurait été à l’origine d’une erreur de pilotage, trouvait la mort dans cet accident. L’escapade d’un aller-retour dans l’espace - sans mise sur orbite (**) - est loin d’être de la routine sans risques. Virgin Galactic ne semble plus en mesure de gagner la course du tourisme suborbital… Blue Origin, l’affaire de Jef Bezos, qui est le créateur et patron de la boutique en ligne Amazon, démontre sa capacité de réutiliser une fusée et sa capsule : du novembre 2015 au 18 juin, 4 vols du New Shepard ont été réussis, apparemment sans problèmes. Les vols WEI n°86 2016-03 - 42

WALLONIE ESPACE INFOS n°86 mai - juin 2016 avec une capsule améliorée, pour pouvoir emmener un équipage, vont se succéder dans les mois à venir.

(**) Pour se mettre à tourner autour de la Terre, il faut atteindre la vitesse orbitale de 28 000 km/h (près de 8 km/s).

2017 devrait être la grande année dans le développement des services privés de tourisme suborbital. Virgin Galactic annonce la reprise, dans les mois à venir, des essais d’un nouveau SS2 dont la fiabilité a été renforcée. On attend avec curiosité cette reprise. Son objectif est d’avoir un SS2 opérationnel durant 2018. Entretemps, Blue Origin, aura sans doute permis à des équipages de touristes de voler à plus de 100 km d’altitude… A bord de la capsule New Shepard, lors de bonds balistiques à sensations fortes qui durent environ 10 minutes - dont 2 minutes de microgravité -, en volant jusqu’à la vitesse supersonique de Mach 3 (3 765 km/h). Faute de moyens financiers, XCOR, troisième prétendant américain au vol suborbital avec l’avion biplace Lynx, a décidé de mettre en veilleuse sa réalisation, et ce, bien avant qu’ un premier essai en vol ne puisse être envisagé.

12. Petits satellites/Technologie/Incubation

L’Inde spatiale, avec son lanceur PSLV, championne des mises sur orbite « low cost » de mini-, micro- et nano-satellites

Le Space Center, alias SHAR (Shiharikota Range), est devenu le rendez-vous mondial des constructeurs et opérateurs de petits satellites (mini-, micro- et nano-satellites). Le lanceur indien PSLV, qui se révèle fiable et précis pour ses mises sur orbite, est devenu l’incontestable concurrent du Dnepr russo-ukrainien exploité par Kosmotras. Il vole régulièrement en orbite héliosynchrone pour des satellites de télédétection de plus en plus performants, aux côtés desquels on trouve des petits satellites d’autres pays. Comme le montre ce tableau diffusé par Peter De Selding, rédacteur business spatial et Europe dans l’espace pour le site et le magazine SpaceNews.

WEI n°86 2016-03 - 43

WALLONIE ESPACE INFOS n°86 mai - juin 2016

Et la série continue en 2016… Après trois lancements dédiés au déploiement des trois derniers satellites de la constellation IRNSS (Indian Regional Navigation Satellite System), le PSLV-C34 a servi le 22 juin à placer sur orbite héliosynchrone à 500 km une charge utile de 1.288 kg. Elle comprenait le -2C d’observation pour des prises de vues avec une résolution de 60 cm, ainsi que 19 autres petits satellites, pour la plupart destinés à des missions de télédétection: BIROS de 130 kg (Allemagne pour le DLR), LAPAN-A3 de 120 kg (Indonésie), Skybox Gen2-1 de 110 kg (USA pour la société Terra Bella), M3MSat de 85 kg (Canada), GHGSat-D de 25,5 kg (Canada), 12 Dove/Flock-2P de type Cubesat – chacun de 4,7 kg - (pour Planet Labs), et 2 Cubesat (1,5 kg, 1 kg) d’étudiants indiens. Le prochain (et dernier de l’année) PSLV-C35, qui sera lancé en août, doit satelliser Resourcesat-2A pour l’ISRO. En même temps que Alsat-2B de 120 kg (Algérie), Alsat-1B de 110 kg (Algérie), Alsat-1N(ano) de 7 kg (Algérie), Pathfinder-1 de 50 kg (USA), de 20 kg (Allemagne), Venta-1 de 20 kg (Allemagne), NLS-19 de 7 kg (Canada).

13. Education/formation aux sciences et techniques spatiales

Commune de Libin : capitale européenne de l’éducation aux systèmes spatiaux WEI n°86 2016-03 - 44

WALLONIE ESPACE INFOS n°86 mai - juin 2016

Il y a 25 ans - le 19 juin 1991 -, l’Euro Space Center (ESC) voyait le jour à la Barrière de Transinne, le long de l’autoroute E411, à mi-chemin entre Bruxelles et Luxembourg. Le bourgmestre de Libin Léon Magin (1920-1991) pouvait vivre cet événement en ayant atteint l’objectif de mettre l’espace à la portée du grand public, notamment des jeunes. L’infrastructure s’inspirait d’abord du concept américain de « space camp » autour d’un modèle grandeur nature de la navette spatiale (maquette unique en Europe !).

Par la suite, sous l’impulsion de l’actuel directeur Jean-Marcel Thomas, le complexe pédagogique prenait une coloration résolument européenne, devenant la propriété conjointe de l’Etat fédéral, de la Région wallonne et de la province de Luxembourg. Dans son orbite, IdeLux a fait naître le centre d’affaires Galaxia de Libin-Transinne, qui est axé sur le business spatial. Derrière une grande muraille de panneaux solaires, on a l’incubateur technologique WslLux qui aide de jeunes pousses à tirer parti des retombées d’applications dans l’espace.

La raison d’être de l’ESC est le Centre ESA de Redu, près du Village du Livre, en pleine campagne ardennaise. Cet ensemble de paraboles blanches pointées vers le ciel sert au contrôle des petits satellites PROBA, aux tests sur orbite des satellites de navigation Galileo, à la gestion de satellites géostationnaires pour l’agence spatiale européenne et pour l’opérateur grand-ducal SES. Depuis septembre dernier, à l’initiative de Hugo Marée, chef du Bureau Education de l’ESA (et ancien directeur de l’ESC), avec le soutien du gouvernement belge (2 millions €), il s’est équipé d’outils « dernier cri » de formation à la mise en œuvre des systèmes spatiaux. Ils viennent s’ajouter aux actions éducatives que l’ESA propose gracieusement (sur acceptation du dossier d’inscription) à ses 22 états membres pour stimuler l’intérêt des jeunes à la technologie des satellites et expériences pour l’espace.

- L’ESA Academy s’adresse aux ingénieurs, polytechniciens, physiciens pour un apprentissage, durant une semaine, à l’emploi du CDF (Concurrent Design Facility) pour mener à bien la conception en équipe d’une mission spatiale.

Appel urgent aux étudiants de niveau universitaire qui sont intéressés par la conception de missions spatiales

Pendant une semaine, du 20 au 23 septembre, l’Academy Training & Learning Programme de l’ESA propose à un étudiant de chacun des 22 Etats membres de l’ESA l’occasion de se familiariser à un atelier Concurrent Engineering au Centre ESA de Redu. Il s’agit d’initier la nouvelle génération d’ingénieurs et chercheurs à un processus informatisé pour concevoir et développer sur ordinateur des produits et systèmes pour le domaine spatial. L’ESTEC à Noordwijk dispose d’une installation CDF (Concurrent Design Facility) pour l’élaboration de ses missions dans l’espace. Le stage proposé à Redu permettra à ses participants de faire connaissance avec la méthode utilisée par l’ESA dans son CDF. Voir le site ESA pour en savoir plus.

WEI n°86 2016-03 - 45

WALLONIE ESPACE INFOS n°86 mai - juin 2016

- L’e-robotics lab est destiné à sensibiliser les enseignants européens du secondaire – puis du primaire dès janvier 2017 – à l’emploi des robots dans l’exploration spatiale.

Le Cubesat lab est en préparation pour 2017 : les équipes d’étudiants disposeront d’un laboratoire unique en Europe, spécialement équipé pour préparer et tester leur nano-satellite. On y trouvera, à l’échelle de la technologie Cubesat, les systèmes d’intégration, ainsi des moyens de tests, comme une petite cuve et un pot vibrant

14. Wallonie-Bruxelles dans l'espace

14.1. Nouvelles d’OUFTI-1 en orbite : contact perdu le 3 juin 2016 avec le nano-satellite expérimental liégeois…

C'est avec succès que le nanosatellite OUFTI-1 est lancé depuis la Guyane française et inséré dans son orbite nominale, le 25 avril 2016. Les systèmes du satellite se sont allumés et les antennes déployées, de façon automatique et au moment précis voulu. La balise de code Morse a alors immédiatement commencé ses transmissions en "CW" et code Morse, lesquelles ont été captées avec succès sur Terre par de nombreux radio- amateurs. Dès ce moment, la balise a transmis de façon continue son message - qui contient notamment des informations basiques de télémétrie – et ce, jusqu'au samedi 7 mai (en Belgique) -, donc durant les 12 premiers jours de la mission. Des radio- amateurs du monde entier nous ont très gracieusement envoyé environ 500 rapports avec les signaux audio reçus et/ou la télémétrie décodée. Ces informations sont disponibles sur le site web OUFTI-1 (http://events.ulg.ac.be/oufti-1/en/radioamateurs).

Le 7 mai, la balise de code Morse est devenue silencieuse. Après trois jours intensifs d'écoute et d'analyse, l'équipe OUFTI-1 a alors décidé de commencer à activer le système de radiocommunication AX.25 destiné aux télécommandes et à la télémétrie (TC/TM). Une première télécommande était envoyée au satellite le mardi 10 mai - un moment historique - à partir de la station sol principale à l'Université de Liège en Belgique. Cette première télécommande ne demandait pas de réponse du satellite. L'équipe a ensuite envoyé plusieurs télécommandes plus avancées, chacune pour plusieurs passages sur plusieurs semaines. Las ! le satellite n'a répondu à aucune sollicitation, tandis que la balise Morse est demeurée silencieuse.

Afin d'éliminer tout problème au niveau de sa station sol et de ses capacités de TC/TM en AX.25, l'équipe a décidé d'envoyer des télécommandes à partir d'une autre station sol, comme cela a été fait le vendredi 3 juin depuis la station sol du Von Karman Institute for Fluid Dynamics (VKI) situé près de Bruxelles. OUFTI-1 n'a obéi à aucune télécommande… A ce stade, après un nombre important de tentatives variées pour établir le contact avec le satellite, il semble très clair qu'un problème technique est survenu à bord, probablement à partir du 7 mai, ce qui explique qu’il soit devenu sourd-muet. La capacité à communiquer avec le satellite via TC/TM est, bien entendu, un prérequis pour activer le système innovant de radiocommunication D-STAR en mode numérique.

WEI n°86 2016-03 - 46

WALLONIE ESPACE INFOS n°86 mai - juin 2016

Sur base des informations reçues des radios-amateurs du monde entier et des symptômes observés, l'équipe OUFTI-1 a obtenu des éléments d'information très utiles concernant le comportement du satellite en orbite. Elle reste à l’écoute afin de surveiller le satellite à intervalles périodiques et d’essayer de comprendre la nature du problème qui a provoqué la panne du nano-satellite et l’échec de sa mission principale.

La construction du satellite, le lancement, les opérations initiales en orbite et les challenges techniques survenus récemment ont tous contribué à faire du projet et de l'aventure OUFTI-1 une expérience éducative hors du commun pour tous, aussi bien étudiants que chercheurs et académiques. L’équipe des professeurs, chercheurs et ingénieurs qui ont permis la réalisation d’OUFTI-1 tenait à remercier les radios- amateurs du monde entier qui l’ont aidée à comprendre le comportement du satellite en orbite grâce à leurs rapports d'écoute. Reste à entamer le développement d’un OUFTI-2 plus ambitieux, notamment avec l’emport d’une nano-caméra dans l’hyperspectral.

14.2. Missions spatiales avec du "made in Wallonie-Bruxelles"

Régulièrement, sous la forme de ce tableau, nous faisons état des lancements de satellites ou des missions spatiales qui utilisent du matériel des membres de Wallonie Espace.

Il ne se passe pas une semaine sans qu'une mission spatiale dans le monde n'implique un centre de recherches ou une entreprise en Wallonie et à Bruxelles.

Ce résultat est rendu possible grâce aux efforts consentis par l'Etat belge, depuis quatre décennies, dans les programmes de l'Europe dans l'espace. Afin d'être au courant des principales caractéristiques (maître d'oeuvre, plate- forme, performances, planning...) des satellites et lanceurs (classés par pays), le site de Gunter's Space, bien tenu à jour, est à recommander : http://www.skyrocket.de/space/ Pour l'actualité quotidienne concernant le spatial dans le monde : http://www.spacetoday.net/ http://www.spacedaily.com/

Evénement spatial Participation wallonne de chercheurs et d’industriels Lancement V229, le 9 mars, d’-ECA Participation au lanceur Ariane 5 de SABCA (servocommandes, avec le satellite de télécommunications Eutelsat- structures), de Thales Alenia Space Belgium (nombreux éléments et 65 WestA (SSL, ex-Space Systems/Loral) pour le composants d’avionique pour la case à équipements), Safran Aero système Eutelsat (France). Boosters (vannes et organes de commande). Centre de Contrôle n°3 (pour les opérations du compte à rebours) équipé et mis en œuvre par Thales Alenia Space Belgium. Implication de Cegelec dans le fonctionnement du Centre Spatial Guyanais.

WEI n°86 2016-03 - 47

WALLONIE ESPACE INFOS n°86 mai - juin 2016

Lancement , le 14 mars, de la sonde Participation de Thales Alenia Space Belgium à TGO. Instrument à ExoMars 2016, comprenant TGO (Trace Gas bord pour l’expérience NOMAD (Nadir & Occultation for Mars Orbiter) et EDM (Entry, Descent & landing Discovery) de l’Institut Royal d’Aéronomie Spatiale, qui est Demonstrator) Schiaparelli réalisés par Thales constitué de SO (Solar Occultation), de LNO (Limb, Nadir & Alenia Space pour l’ESA (Europe) et Roscosmos Occutation) et UVIS (Ultraviolet Imaging Spectrograph) : à sa (Russie).Arrivée à la Planète Rouge le 19 octobre réalisation ont participé le CSL (Centre Spatial de Liège) pour les prochain. tests sous vide, Amos, -X, Thales Alenia Space Belgium. Lancement VS14 du Soyouz ST guyanais, le 25 Participation de Thales Alenia Space à l’équipement sauvegarde du avril, avec le satellite d’observation radar lanceur Soyouz guyanais. Participation de Thales Alenia Space Sentinel-1B (Thales Alenia Space Italia) pour le Belgium à Sentinel-1B. Implication du CSL dans le traitement des système Copernicus (Commission Européenne), données SAR de Sentinel-1B. Réalisation à l’ULg, à HEPL/ISIL et avec les Cubesats est@r-2 (Politecnico di HELMO du nano-satellite OUFTI-1, avec les industriels wallons : TorinoItalie), AAUSat-4 (AAU/Danemark) et Deltatec, Thales Alenia Space Belgium, Microsys, CSL, Spacebel, OUFTI-1 (ULg/Belgique), le micro-satellite Open Engineering, V2i, Samtech/Siemens, Technifutur. Microscope (CNES/France) Lancement VS15 du Soyouz ST guyanais, le 24 Participation de Thales Alenia Space Belgium à l’alimentation mai, avec deux Galileo FOC (OHB + SSTL), électrique de chaque Galileo FOC. Thales Alenia Space Belgium à baptisés Andriana et Liene, pour le déploiement bord du Soyouz ST guyanais avec le système KSE (Kit Sauvegarde d’une constellation civile de satellites de Européen). A noter que le Centre ESA de Redu, avec Redu Space navigation (Commission Européenne- Services, est chargé des tests sur orbite, en bande L, de chaque GSA/European GNSS Agency) satellite Galileo FOC. Contribution de Spacebel au logiciel de manipulation des données à bord de chaque satellite en soutien des opérations au sol. Implication de VitroCiset Belgium dans la logistique du segment sol du système Galileo. Lancement V230, le 18 juin, d’Ariane 5-ECA Participation au lanceur Ariane 5 de SABCA (servocommandes, avec le satellite de télédiffusion directe Echostar- structures), de Thales Alenia Space Belgium (nombreux éléments et 18 (SSL, ex-Space Systems/Loral) pour composants d’avionique pour la case à équipements), Safran Aero Echostar/Dish Network Corp (USA) et le satellite Boosters (vannes et organes de commande). Centre de Contrôle n°3 de télécommunications d’affaires BRIsat-1 (SSL) (pour les opérations du compte à rebours) équipé et mis en œuvre par pour le réseau de Bank Rakyat Indonesia. Thales Alenia Space Belgium. Implication de Cegelec dans le fonctionnement du Centre Spatial Guyanais. Lancement V232, prévu le 24 août, d’Ariane 5- Participation au lanceur Ariane 5 de SABCA (servocommandes, ECA avec les satellites de télécommunications structures), de Thales Alenia Space Belgium (nombreux éléments et Intelsat 33E/EpigNG (Boeing) et Intelsat 36 composants d’avionique pour la case à équipements), Safran Aero (SSL) pour l’opérateur global Intelsat Boosters (vannes et organes de commande). Centre de Contrôle n°3 (USA/Luxembourg) (pour les opérations du compte à rebours) équipé et mis en œuvre par Thales Alenia Space Belgium. Implication de Cegelec dans le fonctionnement du Centre Spatial Guyanais. Lancement VV07 de Vega, le 3 décembre, avec SABCA comme sous-systémier du pilotage des quatre étages avec le satellite d’observation à usage dual PeruSat-1 des EMAs (Electro-Mechanical Actuators) ou servo-vérins (Airbus Defence & Space) pour les Forces électromécaniques et comme fournisseur de la structure de base du 1er Armées (Chili), avec quatre satellites étage. Thales Alenia Space Belgium pour de l’électronique dans la d’observation Skysat C (SSL) pour l’opérateur centrale inertielle. Spacebel pour la contribution au logiciel de bord. commercial Terra Bella financé par Google Implication de Cegelec dans les bancs d’essais des EMAs de SABCA (USA) et dans le fonctionnement du Centre Spatial Guyanais. Lancement V231, prévu en septembre, d’Ariane Participation au lanceur Ariane 5 de SABCA (servocommandes, 5-ECA avec le satellite de télécommunications structures), de Thales Alenia Space Belgium (nombreux éléments et NBN Co-1B/ II (SSL) pour composants d’avionique pour la case à équipements), Safran Aero l’opérateur NBN Co (Australie) et le satellite de Boosters (vannes et organes de commande). Centre de Contrôle n°3 télécommunications Gsat-18 (ISRO) pour le (pour les opérations du compte à rebours) équipé et mis en œuvre par système Insat (Inde). Thales Alenia Space Belgium. Implication de Cegelec dans le fonctionnement du Centre Spatial Guyanais.

WEI n°86 2016-03 - 48

WALLONIE ESPACE INFOS n°86 mai - juin 2016

15. CALENDRIER 2016-2017 D'"EVENEMENTS SPATIAUX" POUR LA BELGIQUE (*) Théo Pirard prévoit de participer à ces événements.

Note : si vous avez des conférences qui peuvent intéresser des chercheurs et ingénieurs du domaine spatial, n’hésitez pas à les communiquer pour les inclure dans cet agenda.

2016

30 juillet-7 août : 41st COSPAR Scientific Assembly, à Istanbul (Turquie). C’est le rendez- vous, tous les deux ans, de la communauté mondiale des chercheurs, décideurs et responsables de laboratoires et instituts scientifiques qui s’impliquent dans la mise en œuvre de systèmes pour l’exploration de l’espace, la découverte de l’Univers, les aspects de la vie en impesanteur… La tenue de cette conférence internationale risque d’être fort pertrubée par le climat d’insécurité qui règne en Turquie, suite aux attentats terroristes dans l’aéroport international Ataturk d’Istanbul.

(*) 8-12 septembre : IBC 2016, à Amsterdam (RAI), rendez-vous européen (conférence et exposition) concernant les TIC (Technologies de l’Information et de la Communication).

(*) 12-16 septembre : World Satellite Business Week, organisé par Euroconsult à l’Hôtel Westin, Paris. Incontournable, il s’agit d’une semaine de conférences, qui réunit les top managers des entreprises ayant un rôle influent sur le développement des systèmes spatiaux, permet de faire le point sur l’état du monde pour le business dans l’espace (satellites de télécommunications, de télédétection). Elle comprendra le 20th Summit for Satellite Financing, le 13th Symposium on Satcom Market Forecasts, le 8th Summit on Earth Observation Business. Un rendez-vous à ne pas manqueer par les acteurs du business spatial à l’heure de l’essor des TIC (Technologies de l’Information et de la Communication) grâce à la dimension spatiale (internet large bande, imagerie haute résolution, banque d’images, traitement des données…)

20-22 septembre : Industry Space Days 2016, organisé par l’ESA à l’ESTEC, Noordwijk (Pays-Bas). Le rendez-vous annuel européen des industriels intéressés par les systèmes et services dans l’espace.

(*) 22 septembre : Colloque Le chanoine Lemaître, un Carolo, père du Big Bang, à partir de 16 h, au Palais des Beaux-Arts de Charleroi, dans le cadre des activités « société, lettres et arts » de l’Académie royale de Belgique. Voir sur le site : www.academieroyale.be

(*) 22 septembre : Grande soirée d’anniversaire (de 18 h 30 à 23 h) – sur invitation – à Louvain-la-Neuve pour les vingt ans de l’association Wallonie Espace qui fait partie du Pôle de Compétitivité Skywin (Plan Marshall).

(*) 26-30 septembre 2016: 67th IAC à Guadalajara (Mexique) sur le thème « Making space accessible and affordable to all countries ». Mettre le spatial à la portée de tous les pays : tel est le thème retenu pour l’édition 2016. Ce sera l’occasion de faire plus ambple connaissance avec les activités spatiales en amérique Latine : Argentine, Brésil, Mexique, Vénézuela, Bolivie, Chili, Pérou, Nicaragua… Elon Musk, le fondateur et boss de SpaceX, devrait

WEI n°86 2016-03 - 49

WALLONIE ESPACE INFOS n°86 mai - juin 2016 profiter de cette conférence annuelle qui réunit la communauté mondiale de l’astronautique pour donner des détails sur la mission du Red Dragon qu’il a programmée dès 2018-2019 – en partenariat avec la NASA - sur la Planète Rouge !

(*) 30 octobre, à 18 h : Il y a 50 ans, le grand duel pour la Lune, organisée par l’ASBL Amis du Ban de Soiron, à l’Eglise de Soiron-Pepinster. Deux fans de l’astronautique – le physicien Christian Barbier (Centre Spatial de Liège) et l’historien Théo Pirard (Space Information Center/Belgium) – vont s’affronter dans une joute oratoire, émaillée de documents photos et vidéo, pour faire revivre le match historique entre Russes et Américains pour être les premiers sur la surface lunaire et revenir en toute sécurité...

(*) 2, 3 & 4 novembre: 3rd Space Access International Conference, à Paris, organisée par Astech Paris Region pour mettre en évidence les enjeux des systèmes spatiaux pour le business d’applications innovantes.

8-11 novembre : 10th ESA Roundtable on micro & nano technologies for space applications, organisé par l’ESA à l’ESTEC.

(*) 14-18 novembre : ESWW 13 ou 13th European Space Weather Week, à Ostende, organisé par le STCE (Solar terrestrial Centre of Excellence), par l’ESA et le Space Weather Working Team (Observatoire Royal de Belgique).

(*) 1er-2 décembre : Conseil ESA au niveau ministériel à Lucerne (Suisse). Au menu : le développement d’Ariane 6, la participation européenne à l’ISS, une mission - avec la NASA - d’exploration d’un astéroïde, le financement de nouveaux programmes de technologie spatiale…

2017

(*) 24-25 janvier 2017 : 9th Annual Conference on European Space Policy, au Bâtiment Charlemagne de la Commission Européenne à Bruxelles, organisée avec beaucoup d’à-propos par Business Bridge Europe avec les acteurs du spatial en Europe. Le thème retenu :. L’occasion à ne pas manquer de faire le point sur les ambitions de l’Europe dans l’espace au lendemain du Conseil ministéirel ESA de Lucerne.

7-9 février : SmallSat Symposium - Silicon Valley, au Computer History Museum, Mountain View (Californie).

(*) 24-28 avril : 11th IAA Symposium on Small Satellites for Earth Observation, organisé par le DLR à la Berlin-Brandenburgische Akademie der Wissenschaften. Cette conférence d’une semaine - l’une des premières concernant la technologie des petits satellites pour l’observation de la Terre – est l’occasion de faire le point sur les nouvelles tendances en matière de systèmes spatiaux de télédfétection. Notamment à l’heure où se multiplient dans le monde les constellations de micro- et nano-satellites d’observation.

(*) 19-25 juin 2017 : 52ème Salon International de l’Aéronautique et de l’Espace, à Paris- Le Bourget. L’événement aérospatial qui est attendu tous les deux ans comme étant le plus grand salon pour l’aviation, le spatial, la sécurité et la défense.

WEI n°86 2016-03 - 50

WALLONIE ESPACE INFOS n°86 mai - juin 2016

25-29 septembre 2017 : 68th IAC à Adélaïde (Australie). Le Congrès international d’Astronautique se déroule dans l’Hémisphère Sud, près de la région Asie-Pacifique, en Australie (pour la deuxième fois).

18-29 juin 2018 : UNISPACE+50 à Vienne, organisé par l’UNOOSA, le Bureau de l’ONU pour les Affaires spatiales. Il s’agira de la quatrième conférence et exposition mondiale qui fera le point sur les activités spatiales sur l’ensemble du globe. Les précédentes éditions ont eu lieu en août 1968, puis en août 1982, et en juillet 1999. Que de chemin parcouru dans l’espace depuis un demi-siècle ! Les Etats se font un point d’honneur, avec leurs agences nationales, leurs acteurs scientifiques et industriels, à présenter leurs réalisations et compétences. La Belgique devrait être de la partie avec sa nouvelle agence spatiale interfédérale.

UNISPACE+50 va mettre en évidence les quatre piliers sur lesquels s’appuie un programme spatial national : le business de l’espace, la société de l’espace, l’accès à l’espace, la diplomatie à l’heure spatiale.

(*) Septembre-Octobre 2018 : 69th IAC à Brême (Allemagne)

14-22 juillet 2018 : 42nd COSPAR Scientific Assembly, à Pasadena (Californie)

Eté 2019 : un IAC à Washington D.C. ou à Orlando (Floride) pour célébrer les 50 ans de l’Homme sur la Lune (mission Apollo 11).

Annexes-tableaux (en anglais)

A.1. Calendrier des prochaines missions de l’Europe dans l’espace (2015-2022)

Cette liste, qui veut montrer que la technologie spatiale est une réalité bien vivante dans l’Union européenne, s’efforce d’être la plus complète possible mais elle ne prétend pas être exhaustive. La difficulté réside dans la mise à jour de ce calendrier, car le planning des missions – surtout d’ordre scientifique et technologique - n’est guère respecté. On s’efforce, dans la mesure du possible et sans être certain des dates de lancement, d’inclure les pico- et nano-satellites (Cubesat) qui est réalisés par des teams d’étudiants comme outils d’éducation et de recherche… S’il manque l’une ou l’autre mission, pouvez-vous le signaler ([email protected]) ?

Surlignés en bleu : les missions ESA, Eumetsat et Union Surlignés en rouge : les missions ESA vers l’ISS Surlignés en vert : les satellites d’opérateurs commerciaux Si vous avez des suggestions à faire, des modifications à apporter, n'hésitez pas à le faire: elles seront les bienvenues. Courriel : [email protected]

NAME Launch Launcher Mission (agency/operator) Prime contractor SES-9 4 March 2016 Falcon 9 FT Communications (SES) Boeing Satellite Systems

WEI n°86 2016-03 - 51

WALLONIE ESPACE INFOS n°86 mai - juin 2016

EUTELSAT-65 WEST A 9 March 2016 Ariane 5 Communications (Eutelsat/Echostar) Space Systems/Loral EXOMARS-1 TGO + 14 March 2016 Proton Mars exploration with orbiter and lander Thales Alenia Space EDM LANDER SCHIAPARELLI (ESA + Roscosmos) SENTINEL-1B 25 April 2016 2 CSG Radar observations GMES (ESA) Thales Alenia Space (I) MICROSCOPE 25 April 2016 Soyuz 2 CSG Technology (CNES + ESA) CNES + ONERA OUFTI-1 25 April 2016 Soyuz 2 CSG Télécom D-Star (Amsat ?) Un. Liege + CSL + ESA AAUSAT-4 25 April 2016 Soyuz 2 CSG Maritime surveillance (AAU) Aalborg University + ESA E@STAR-2 25 April 2016 Soyuz 2 CSG Technology (Polytechnics Turin) Polytechnics Turin + ESA GALILEO FOC 13-14 24 May 2016 Soyuz CSG Navigation (Commission + ESA) OHB-System + SSTL MAX VALIER SATELLITE July 2016 PSLV Astronomy Quadsat (Inst Bozen) Inst Bozen + MPE Garching BEESAT-4 July 2016 PSLV Technological Cubesat (TU Berlin) TU Berlin + DLR ? /SEOSAR 2016 Dnepr? Military radar (CDTI) CDTI + EADS CASA + INTA EUTELSAT 117 WestB 2016 Falcon 9 v.1.1 Communications (Eutelsat Americas) Boeing Satellite Systems GALILEO FOC 7 & 10-12 2016 Ariane 5 ES Navigation (Commission + ESA) OHB-System + SSTL AALTO-1 2016? TBD Earth Observation (VTT Finland) VTT Finland PILSENCUBE 2016? TBD Communications (Un. West Bohemia) Un. West Bohemia POLYTEC-1/NAOSAT 2016? TBD Earth observations (Un. Pol. Valencia) Noasat + Un. Valencia ROBUSTA-1B 2016? TBD Radiation testing (Un. Montpellier) ESA + Un. Montpellier ELISE 2016? TBD 12U Cubesat demonstrator (Nexeya) Nexeya + Silicom TECHNOSAT 2016? TBD Technological microsat (TU Berlin) TU Berlin + DLR ? CYGNUS CRS-5 2016 230 COTS module to ISS (Orbital Sciences) + Thales Alenia Space Italia BIROS/FIREBIRD 2016 Soyuz Infrared earth observations (DLR) DLR + ? NORSAT-1 July 2016 ? Vega Sea & space surveillance (Norsk Norsk Romsenter + Un. Romsenter) Toronto OTB-1 2016? TBD Orbital Test Bed (SSTL) SSTL LAPAN TUBSAT-A3? 2016? PSLV HDTV Earth imagery (TU Berlin) TU Berlin + LAPAN FLYING LAPTOP 2016? Soyuz Technology (IRS Un.Stuttgart) IRS Un.Stuttgart MICROPPTSAT ? 2016? Vega ? Cubesat micropropulseurs (ARC) Austrian Research Centers ATMOCUBE 2016? Vega ? Cubesat scientifique (Un. Trieste) Un. Trieste AYSEM-1 2016? PSLV ? Türkish Cubesat (Bahcesehir Un) Bahcesehir University/ CalPoly BEOSAT ? 2016? PSLV ? Space environment (ERIG) Univ. Braunschweig ESTELLE 2016? Dnepr Technology (Estonia) Tartu University + NanoSpace IMSAT ? 2016? PSLV or Vega Remote sensing microsat (ASI) Carlo Gavazzi Space ? NADEGE 2016? TBD Triple Cubesat techno (Nexeya) Nexeya + Silicom HEIDELSAT 2016? PSLV ? Triple Cubesat (FH Heidelberg) FH Heidelberg + DLR ESTCUBE-2 2016? TBD Micro-propulsion (Un. Tartu) Un. Tartu, Estonia NUTS 2016 TBD Gravity waves (NTNU) NTNU, Norway VKI RE-ENTSAT 2016 TBD Re-entry experiment (VKI) VKI, Belgium + ? INFLATESAIL 2016 TBD Solar sail demonstrator (SSC) Surrey Space Center GOSSAMER-1 2016 TBD Solar sail demonstrator (DLR + ESA) DLR/Kayser Threde CFOSAT? 2016 Oceanography (CNES + CNSA) CNSA + Thales Alenia Space SENTINEL-5 2016 Rokot Atmosphere chemistry (ESA + TNO) Airbus D&S UK + TNO PRECURSOR SES-10 2016 Falcon 9 FT Broadcasts/communications in Latin Airbus D&S America (SES) OPS-SAT 2016 TBD Technological triple cubesat (ESA) GomSpace +TU Graz QBITO 2016 TBD Spain QB50 (Un Pol Madrid) E-USOC + VKI SES-11/ECHOSTAR 105 2016 Falcon 9 FT Broadcasts/communications (SES) Airbus D&S NOVASAR-S 2016 TBD S-band radar satellite (UKSpace + SSTL SSTL) -1F 2016 Ariane 5 Communications (Hispasat) SSL OPSAT-3000 2016 Vega Dual-use high-resolution EO (It. IAI (Israel), CGS + Telespazio Min.Defence) UPMSAT-2 UNION 2016 Dnepr ? Earth environment monitoring (UPM) UPM + INTA WEI n°86 2016-03 - 52

WALLONIE ESPACE INFOS n°86 mai - juin 2016

VENTA-1 2016 Dnepr ? AIS Quadsat (Ventspils + Un. Bremen) Ventspils + Augstkola + OHB NEMO-HD 2016? Dnepr ? Earth observations (SFL + Space-SI) + Space-SI (Slovenia) PRISMA ITALIA 2017? Vega ? Security monitoring (ASI) Carlo Gavazzi Space ALMASAT-EO 2017? Vega ? Earth Observations (Min Univ & Res) AlmaSpace GAMASAT-1 2017 TBD Reentry test (Un. Porto) Un. Porto + Tekever) OPTOS-2G 2017 TBD Astrophysics (INTA + ?) INTA DELFFI/ + PHI 2017 TBD Formation flight (TU Delft) TU Delft + ISIS PICASSO 2017 TBD Aeronomy (Clyde Space) BISA, Belgium REMOVE DEBRIS 2017 Vega? Technology (SSC) ESA + SSC GOSSAMER-3 2017 TBD Large solar sail demonstrator (DLR) DLR / ? S-NET-1/-2/-3/-4 2017 TBD Nanosat constellation (TU Berlin) TU Berlin + BST NANOSAT-2A 2017 TBD Technology (INTA + ?) INTA METOP-C/EPS 2017 Soyuz 2 CSG Polar meteo (Eumetsat +NOAA) Airbus D&S Satellites VENµS 2017 Vega Observations (CNES + ISA) ISA + French & Israeli industry SENTINEL-3B 2017 Soyouz 2 ? Oceanography GMES (ESA) Thales Alenia Space (F) HISPASAT AG-1 2017 Ariane 5 Communications (ESA + Hispasat) OHB + Thales Alenia TARANIS 2017 Vega Analysis of lightning & stripes (CNES) CNES + CNRS GÖKTÜRK-3 2017 TBD SAR Earth Obs (TAI + Tübitak) TAI + ? TUBIN 2017 TBD Earth Observation in infrared (TU TU Berlin + BST Berlin) GALILEO FOC 15-18 2017 Ariane 5 ES Navigation (Commission + ESA) OHB-System + SSTL EUTELSAT-172B 2017 Ariane 5 Communications (Eutelsat) Airbus D & S AMAZONAS-5 2017 Ariane 5 ? Communications (Hispasat) SSL/Space Systems/Loral MUSIS CSO-1 2017 Vega ? Spy satellite (DGA) Airbus D&S + Thales Alenia Space INGENIO-SEOSAT 2017 Vega Observations (CDTI + ESA) EADS CASA SES-12 2017 Ariane 5 Broadcasts/communications (SES) Airbus D&S ERA/ISS NAUKA 2017? Proton ISS remote manipulator (ESA) EADS Dutch Space MODULE SES-14 2017 Falcon 9 FT Communications (SES) Airbus D&S SES-15 2017 Ariane 5 Communications (SES) Boeing Satellite Systems SES-16/GOVSAT 2017 Falcon 9 FT Military communications (LuxGovsat + Orbital Science Corp SES) ENMAP 2017 PSLV Hyperspectral imagery (DLR) Kayser-Threde AZERSPACE-2 2017 Ariane 5 Powerful comsat (Azerspace + Intelsat) SSL ADM-AEOLUS 2017 Vega Lidar measurements (ESA) Airbus D&S ESEO 2017 Vega? Student earth observation microsat SITAEL/AlmaSpace (ESA) SENTINEL-2B 2017 Soyuz 2 Observations GMES (ESA) Airbus D&S CHEOPS 2017 Vega ? Exoplanets monitoring (ESA) SSTL PROBA-3A 2018 Vega Formation flight (ESA) QinetiQ Space PROBA-3B 2018 Vega Formation flight target (ESA) EADS CASA + Sener GALILEO FOC 19-22 2018 Ariane 5 ES Navigation (Commission + ESA) OHB-System + SSTL SIMBA 2018 TBD Sun-earth Imbalance (RMI) RMI Belgium + ? HEINRICH HERTZ 2018 TBD Communications (DLR + ?) OHB-System + Airbus D&S ? EU:CROPIS 2018 TBD Biological laboratory (DLR) DLR + ? EARTHCARE 2018 Soyuz Earth Explorer (ESA + JAXA) TBD GLOBAL 2018? Earth observations (Belspo + VITO) VITO + SAST + OIP V(EGETATION)1 SAOCOM-CS 2018? TBD Passive radar mission (ESA + CONAE) QinetiQ Space or SSTL? OPSIS 2018 Vega High-Resolution EO (ASI) CGS + Italian industry + OHB SUMO 2018 TBD Ozone measurements (LATMOS) Polytechnique Palaisseau MTG-I-1 (METEOSAT) 2018 Ariane 5 GEO meteo imager (ESA/Eumetsat) Thales Alenia Space + OHB

WEI n°86 2016-03 - 53

WALLONIE ESPACE INFOS n°86 mai - juin 2016

BEPICOLOMBO 2018 Ariane 5 Mercury orbiters (ESA + JAXA) Airbus D&S + JAXA 2018 Atlas 5 Solar exploration (ESA) Airbus D&S MUSIS CSO-2 2018 Vega ? Spy satellite (DGA) Airbus D&S + Thales Alenia Space JAMES WEBB ST 2018 Ariane 5 Astronomy/Astrophysics (NASA) Northrop Grumman + ESA SENTINEL- 2018 Vega Oceanography (ESA + Eumetsat) Thales Alenia Space + Airbus 6/CRYOSAT-JASON-4 Defence & Space MPCV ORION 2018 SLS Block1 Manned spacecraft (NASA + ESA) Lockheed Martin + Airbus D&S MTG-S-1 (METEOSAT) 2019 Ariane 5 GEO meteo sounder (ESA/Eumetsat) Thales Alenia Space + OHB COSMO SG-1 & SG-2 2019 TBD Dual-use radar satellites (Defensa/ASI) Thales Alenia Space Italia SIGMA/MARCONI-1 2019 ? TBD Broadband communications (ASI + Italian industry + ? PPP) MICROCARB 2019 Soyuz or Vega Chemistry of atmosphere (CNES) CNES + ? SIGMA/MARCONI-2 2019 TBD Broadband communications (ASI + Italian industry + ? PPP) PROBA-ALTIUS? 2019 TBD Atmosphere chemistry (ESA + BISA) QinetiQ Space SARAH AKTIV-1 2019 Falcon 9 v.1.1 Satellite émetteur radar (Bundeswehr) OHB + Airbus D&S SARAH PASSIV-1 & -2 2019 Falcon 9 v.1.1 Satellite récepteur radar (Bundeswehr) OHB SENTINEL-6/JASON-4 2019 Vega ? Oceanography & Polar monitoring Thales Alenia Space + Airbus CRYOSAT (ESA) D&S? EUTELSAT 2019 Ariane 5? Intelligent comsat (ESA + Eutelsat) SSTL + Airbus D & S QUANTUM EUTELSAT BB 2019 TBD HTS with spotbeams (Eutelsat) Thales Alenia Space AFRICA MUSIS CSO-3? 2019 Vega ? Spy satellite (DGA + Bundeswehr) Airbus D&S + Thales Alenia Space 2019 TBD Cosmology (ESA) Thales Alenia Space ARIANE 6.2 2020 Ariane 6.2 New generation (Airbus) ESA + ASL DEMONSTRATOR SWOT 2020 TBD Ocean topography (CNES + NASA) TBD + NASA/JPL PROBA-4 IMP ? 2020 Vega ? Asteroid mission (ESA) TBD EXOMARS-2020 Rover 2020 Proton-Breeze Mars rover (ESA + NASA) ? Thales Alenia + Airbus D&S CERES-1, -2, -3 2020 Vega C Electronic intelligence (DGA + CNES) Airbus D&S + Thales Alenia Space MTG-I-2 (METEOSAT) 2020 TBD GEO meteo imager (ESA/Eumetsat) TBD SWUSV 2020 Vega ? Space Weather forecasts (CNES + CAS TBD ?) BIOMASS 2020 Soyuz? Earth Explorer (ESA) Airbus Defense & Space AIM with Cubesats 2020 Soyuz Asteroid Impact Mission (ESA) TBD + NASA

ARIANE 6.4 2021 Ariane 6.4 New generation launch vehicle (Airbus) ESA + ASL DEMONSTRATOR EPS/METOP SG-1 2021 TBD Polar Meteo (ESA + Eumetsat) Airbus Defence & Space OTOS 2021 ? TBD Super High resolution EO (DGA + Airbus D&S + Thales Alenia CNES) Space? SMILE/INSTANT 2021 ? Space Weather from L5 (ESA + CAS) European platform? SHALOM 2021 TBD Hyperspectral EO (ISA + ASI) IAI + Rafael + Italian industry GLOBAL 2021 TBD Earth observations (Belspo + VITO) VITO + QinetiQ Space + OIP? V(EGETATION)2 COMSAT NG-1 2021 ? Ariane 5 ou 6 Military Satcom (DGA + CNES) Thales Alenia Space + Airbus D&S FLEX 2022 Vega Photosynthesis monitoring (ESA) TBD COMSAT NG-2 2021 ? Ariane 5 ou 6 Military Satcom (DGA + CNES) Thales Alenia Space + Airbus D&S WEI n°86 2016-03 - 54

WALLONIE ESPACE INFOS n°86 mai - juin 2016

EXOMARS-2022 2022 ? TBD Mars Science (ESA + NASA) TBD JUICE 2022 Ariane 5 Jupiter Moon exploration (ESA + Airbus Defence & Space NASA?) EPS/METOP SG-2 2023 TBD Polar Meteo (ESA + Eumetsat) Airbus Defence & Space MTG-I-3 (METEOSAT) 2023 TBD GEO meteo imager (ESA/Eumetsat) Thales Alenia Space + OHB PLATO 2024 Soyuz ? Exoplanetary science (ESA) TBD ATHENA X-IFU 2028 Ariane 5 ? X-ray observatory (ESA) TBD © Space Information Center/Belgium – January 2016

4. Export contrats for the satellite industry in Europe

This alphabetical list review the known contracts signed by the European industry of space systems for spacecraft outside Europe to be launched during the period 2016-2020. It also includes the major contracts for payloads or platforms.

NAME Contractor (Country) Mission (launch schedule) Prime contractor (State) “AFRICA” EOSAT-1/- Not disclosed (Morocco) High-resolution observations (2017) Thales Alenia Space (France) 2 ALSAT-1B ASAL/CNTS (Algeria) Remote sensing microsats [2015] SSTL + DMCII ALSAT-2B ASAL/CNTS (Algeria) Remote sensing micro-satellites (2010) Airbus D&S (France) ALSAT NANO? ASAL (Algeria) + UKSpace Techno Triple Cubesat (2016) Surrey Space Centre (UK) AONESAT-1? AOneSat Communications GEO telecommunications (2016?) *Thales Alenia Space (France) (Switzerland/India) ARABSAT-6B Arabsat (Saudi Arabia) GEO telecom/broadcasts (2014) Airbus D&S (France) + *Thales Alenia Space (France) ARSAT-1/-2 ArSat (Argentina) GEO telecommunications (2014-17) * Thales Alenia Space + Airbus & /-3 ? D&S BANGABANDHU-1 BTRC/Bangladesh GEO telecommunications (2017-2018) Thales Alenia Space (France) Telecommunication Regulatory Commission (Bangladesh) BADR-7/ Arabsat (Saudi Arabia) GEO telecom/broadcasts (2015) Airbus D&S (France) + ARABSAT-6B *Thales Alenia Space (France) BELINTERSAT-1 Belintersat (Belarus) GEO telecom/broadcasts (2016) *Thales Alenia Space (France) DIRECTV LATIN DirecTV (USA) GEO broadcasts (2016) Airbus D&S Satellites (France) AMERICA /INTELSAT-31 ECHOSTAR-105 Echostar (USA) + SES GEO broadcasts & communications (201) Airbus D&S Satellites (France) /SES-11 (Luxembourg) EKSPRESS AMU-1 RSCC (Russia) GEO telecom/broadcasts (2015) Airbus D&S (France) EKSPRESS 80 RSCC (Russia) GEO telecom/broadcasts (2018) * Thales Alenia Space EKSPRESS 103 RSCC (Russia) GEO telecom/broadcasts (2018) * Thales Alenia Space FALCON EYE-1 UAE Armed Forces (UAE) Very high-resolution observations (2017, Thales Alenia Space + Airbus D&S & -2 2018) (France) GEO-KOMPSAT-2B KARI (South Korea) GEO meteorological observations (2019) *Airbus D&S (France) GÖKTURK-1 Min Defence (Turkey) High-resolution observations (2015) Telespazio + Thales Alenia Space HELLASAT-3/ Arabsat (Saudi Arabia) & GEO High-power broadcasts (2017) Thales Alenia Space (France) EUROPASAT (United Kingdom) INMARSAT-6 F1 & F2 Inmarsat (United Kingdom) GEO Mobile Services (2020-2021) Airbus D&S (France) IRIDIUM NEXT Iridium Satellite (USA) Mobile comsat constellation (2016-2019) Thales Alenia Space (France) /IRIDIUM PRIME? KAZSTSAT/Earth Ghalam KJC (Kazakhstan) Remote sensing micro-satellite (2015) SSTL (United Kingdom) Mapper KOREASAT-5A KT Sat (South Korea) GEO Telecom (2017) Thales Alenia Space (France) KOREASAT-7 KT Sat (South Korea) GEO Telecom (2016) Thales Alenia Space (France)

WEI n°86 2016-03 - 55

WALLONIE ESPACE INFOS n°86 mai - juin 2016

LAPANSAT-A2 LAPAN (Indonesia) Remote sensing micro-satellite (2016) *TU Berlin (Germany) LAPANSAT-A3 LAPAN (Indonesia) Remote sensing micro-satellite (2016) *TU Berlin (Germany) NEXSTAR-1 & -2 Aniara Communications GEO Telecommunications (2017) * Elecnor Deimos (Spain) + (India) European partners ONEWEB OneWeb (USA) Megaconstellation of microsats for internet Airbus Defense & Space (France + MICROSATS (900) connectivity (2017-2019) Germany) OUTERNET-1, -2, -3 Outernet Inc (USA) Cubesat internet constellation (2017) Clyde Space (United Kingdom) PERUSAT-1 Min Defence (Peru) High-resolution observations (2016) Airbus D&S Satellites (France) SGDC-1 Visiona Technologia (Brazil) Governmental communications (2016) Thales Alenia Space (France) TELKOM-3S PT Telekomunikasi GEO Telecom (2016) Thales Alenia Space (France) (Indonesia) TELSTAR-12 Telesat (Canada) GEO telecom (2015) Airbus D&S Satellites (France) VANTAGE YAMAL-601 Gazprom Space Systems GEO communications (2018) *Thales Alenia Space (France) (Russia) * Payload contractor SSL = Space Systems Loral SSTL = Surrey Satellite Technology Ltd © Space Information Center/Belgium – December 2015

A.3. Table of planned/expected contrats related to civilian satellites for communications and broadcasts

The most profit-making space business concerns the satellite systems for communications and broadcasts (see in this Directory the table reviewing all the spacecraft in operational service and in preparatory status). This new and original table summarizes the known/announced satellites for which a RFP is in progress or in project. European satellite industry has to play a significantly promising role, in spite of the high value of the euro. Space Systems/Loral as One of the main aggressive contenders for comsat contracts was acquired by Canada’s MDA (McDonald Dettwiler & Associates).

SATELLITE (Operator/country) Position (frequencies) Status & particular aspects (launch year) ABS-8 (Asia Broadcast Satellite/Hong 116.1°E (C-, Ku- & Ka- First UTS (Ultra High Throughput Satellite) for Asia, contracted Kong) bands) to Boeing, but crucial problem to get US funding through Ex-Im Bank. If Ex-Im authorization is not revived by US Congress, RFP to be reissued, with some chance for European industry (2018) ABS-9 (Asia Broadcast Satellite/Hong 16°W (Ku- & Ka-bands) International RFP to be issued in 2016, if the funding is acquired. Kong) All-electric UTS (Ultra High Throughut Satellite) to cover Europe, Africa and Americas, giving a global dimension to ABS services for DTH platforms. (2019) ABS-10 (Asia Broadcast Satellite/Hong 159°E (Ku) & Ka-bands) International RFP to be issued in 2016, if the funding is acquired. Kong) All-electric UTS (Ultra High Throughut Satellite) to cover Asia, Oceania and Pacific region with DTH platforms. (2019)0 AFRICASAT-2A (Measat Satellite 5.7° E (C-, Ku & Ka-bands) RFP in progress for satellite, but contract not yet finalized. Systems/Malaysia) Measat looking for a partner such as Eutelsat or Arabsat… (upgrade for Africasat-1/Measat-1 positioned at 46°East, replacement of Africasat-2/Measat-2 positioned at 5.7°East) ALCOMSAT-1 (ASAL/Algeria) 24.5°E? (C- & Ku-band – Indigenous development, with technical assistance of CASC, of a Northern beams) SmallGEO-type comsat since September 2013. Launch contract with CGWIC/China Great Wall Industry Corp (2018). AL YAH-3/YAHSAT-3 (Yahsat/United 20°W (Ka-band) First private comsat operator in the Middle East interested by the Arab Emirates) market of Latin America for broadband connections. Contracts with Orbital Sciences (Geostar-3) et Arianespace. (2016) AMAZONAS-5 (Hispasat/Spain) 61° W (Ku- & Ka-band) Replacement Amazonas-4B after cancellation of contract with WEI n°86 2016-03 - 56

WALLONIE ESPACE INFOS n°86 mai - juin 2016

Orbital Sciences. SSL as prime contractor. To be launched by Arianespace or SpaceX? (2017) AMOS-6 (Spacecom/Israel) 4°W (Ku- & Ka-bands) After international RFP, Israel Aerospace Industries (IAI) selected as prime contractor, with Canadian MDA as payload contractor. Heavy satellite with hybrid propulsion, to be launched by Falcon 9 FT. To replace Amos-2 and to add Ka-band capacity (to be used by Eutelsat following contract with Facebook for efficient internet coverage of Africa) to the ‘hot bird’ position of Spacecom. (2016). AMOS-7 & -8 (Spacecom/Israel) 17°W and ? (Ku- & Ka- Powerful satellite(s) to cover Latin America. Specifications under bands) study for international RFP. To be contracted in 2016. (2018- 2019) AMOS-E (IAI/Israel) TBD (Ku or Ka-band) Compact “all-electric” comsat to be proposed by IAI to emerging markets or new operators. (2018?) ANGOSAT-1 (Ministry 24.5°E (C- & Ku-band – In- delivery contract with Russian RKK and Telecoms/Angola) Southern beams) Rosoboronexport. Negotiations finalized in May 2011. Total cost of the full system: around 245 million euros. To be launched by Angara 5 (2017 or 2018, with a full coverage of Eastern and Southern Africa). ANIARA NEXSTAR-1 & -2 ? (Aniara 50°E, 98°E or 160° E (Ku- Private operator in India with small GEO satellites. Contract to Communications/India) band) Dauria Aerospace for two 16-Ku band spacecraft to cover Middle East and Africa. Launcher not yet selected, but possibility of dual launch with Indian GSLV MkII (2018) ANIK G-2 (Telesat/Canada) 107.3° E (Ku- & Ka-bands?) Multipurpose broadcasting & . Contract planned in 2016. (2017) AONESAT-1 (AOneSat 47.5° W (C-, Ku, Ka- New operator based in Switzerland. Company created by Indian Communications/Switzerland + India) bands ?) family Pavuluri (Hyderabad) with views for global broadband business. First medium-size Ekspress-1000N type comsat,with payload of Thales Alenia Space, contracted through MOU with ISS Reshetnev in order to cover Latin America. Launcher not yet selected. (2018?) APSTAR-5C or TELSTAR-18 138°E (C- & Ku-bands) HTS comsat to be jointly used by Telesat Canada and by APT VANTAGE (APT Satellite Satellite. Contract with SSL for SSL 1300 spacecraft. Launcher Holdings/Hong Kong) not yet selected (2018) APSTAR-6C (APT Satellite TBD (C-band, Ku-band, Ka- DFH-4 communications and broadcasting satellite: contract with Holdings/Hong Kong) band CGWIC. To be launched by (2018) APSTAR-9/MYSAT-1 (APT Satellite 142°E (Ku-band, Ka-band Plan to expand coverage and services. Geosynchronous position Holdings/Hong Kong) ?) preserved by using -5A. Contract with CGWIC (China Great Wall Industry Corp) for in-orbit delivery of high-power DFH-4 type comsat (launched on 17 October 2015) APSTAR-10 (APT Satellite TBD (Ku-band, Ka-band?) In-orbit delivery contract with CGWIC, including financing Holdings/Hong Kong) services, for high-power DFH-4 type comsat (2017) ARABSAT-6A & -6E? 26°E, 34°E ? (Ku- & Ka- Sixth generation of Arabsat spacecraft: contract with Lockheed (Arabsat/Saudia Arabia) bands) Martin. To be launched by (2017). ARMSAT-1 (Armcosmos, Armenia) 71.4°E (Ku-band) National comsat, for coverage of Eastern Europe and Central Asia, to be developed with the assistance of Roscosmos or CGWIC? (2018?) ARSAT-1/-2/-3 (ArSat/Argentina) 71,8° W, 81° West (Ku- Part of SSGAT (Sistema Satelital Geoestacionario Argentino de band) Telecomunicaciones). Invap SA as prime contractor, with Thales Alenia Space selected for the payload after an international RFP. Launches with Arianespace. (2014, 2015, 2018) AZERSPACE-2/INTELSAT-38 45°E (Ku- & Ka-bands) Comsat developed with Intelsat as partner to share (Azercosmos/Azerbaidjan, Intelsat) geosynchronous position and frequencies. Coverage of Europe, Middle East, Africa, Central and South Asia, To be used jointly with Azerspace-1 which is in GEO since February 2013. Satellite contract to SSL. To be launched by Ariane 5. (late 2017) BANGABANDHU-1 (Bangladesh 119.1° (C- and Ku-band) Powerful comsat with up to to 40 transponders. Orbital slot Telecommunications Regulatory acquired from Intersputnik (Russia). Technology transfer with Commission/Bangladesh) SPARRSO (Space Research & Remote Sensing Organization).

WEI n°86 2016-03 - 57

WALLONIE ESPACE INFOS n°86 mai - juin 2016

Plan for in-orbit delivery contract and turnkey system: Thales Alenia Space with Arianespace. (2017) BELINTERSAT-1 (Belintersat/Belarus) 51.5° E (14 transponders in After international RFP launched in 2010, CGWIC (China Great C-band, 26 transponders in Wall Industry Corp) selected for in-orbit delivery contract – Ku-band) DFH-4 type comsat for services in Central Asia, Africa and Europe - Financial support of Chinese Ex-Im (2015) – Launched by Chinese Long March 3B (2016) BELINTERSAT-2 (Belintersat/Belarus) Tbd (transponders in C- Belintersat looking for an international partner to go ahead with Ku- and Ka bands?) the 2nd comsat (2019?) BITSAT (Dunvegan Space LEO system (S-band Constellation of up to 24 low-cost Triple Cubesats for “cloud systems/USA) frequencies) computing” services around the globe (first satellites to be launched in late 2016) BRISAT-1 (PT BRI/Bank Rakvat 150.5° E (C- & Ku-band) SSL (ex-Space Systems Loral) as contractor for the medium-size Indonesia) comsat to connect the 11,000 bank branches of Babk Rakvat Indonesia across the Indonesian Archipelago. Launch contract with Arianespace (2016) BSAT-4A (Broacasting Satellite 110°E (Ku-band) Broadcasting satellite contracted with SSL. Launcher still to be Corp/Japan) selected. (2017) BULGARIASAT-1 (Bumilsatcom TBD (Ku-band) High-power broadcasting saltellite to cover the Balkans. After /Bulgaria) international RFP, SSL (ex-Space Systems/Loral) with SSL 1300 spacecraft, selected as prime contractor. SpaceX Falcon 9 FT as launch vehicle. (2016) CHINASAT-9A/SINOSAT-4 (China 92.2°E (Ku-band) High-power DFH-4 comsat of 5.1 t to be launched by Long Satcom/China) March 3B (2016) CHINASAT-15/(China Satcom/China) 51.5°E (C-, Ku- & Ka- High-power DFH-4 comsat of 5.4 t to be launched by Long bands) March 3B (2016) CHINASAT-16 (CASC-China Satcom TBD (Ka-band) HTS (High Throughput Satellite), based upon DFH-4 platform, /China) with multi-spot beam payload to cover China. (2017) CHINASAT-18 (CASC-China Satcom TBD (Ka-band) HTS (High Throughput Satellite), based up on DFH-4 bus, with /China) multi-spot beam payload to cover China. (2018) CHINASAT-M (China Satcom/China) 125°E (C- & Ku-bands) 5.4-t DFH-4 comsat to be launched by Long March 3B (2016?) CONGOSAT-01 (Renatelsat/Congo) TBD (C- & Ku-bands) Announcement of a contract for in-orbit delivery with China Telecom and CGWIC (China Great Wall Industry Corp). No recent info about development status (2017 or 2018?) DIRECTV-15/SKY MEXICO-1 102.75°W (Ku- & Ka- 6.3-t broadcasting satellite, with powerful -3000 (DirecTV/USA) bands) platform, to cover North America with high-power beams. Airbus D&S Satellites selected as prime contractor – Launched by Ariane 5. (May 2015) DIRECTV SKY BRASIL-1 or 43°W (Ku- & Ka-bands) Powerful DTH satellite to cover Brasil and Latin America. Airbus INTELSAT-32e (DirecTV-Sky D&S Satellites selected as builder with a Eurostar 3000 platform. Brasil/USA-Brasil) To be launched by Ariane 5-ECA (2016) DPRK COMSAT-1? (KCST- TBD (C-band & ?) Indigenous development of a geosynchronous satellite in the NADA/North Korea) Space Plan 2012-2017 of DPRK, but no recent info. To be launched by a national rocket. Possible cooperation with China ? (2018 ?) ECHOSTAR-18 (Dish Network Corp- 110°W (Ku-band) Direct broadcasting satellite for the Dish Network Corp, in Echostar/USA) replacement of Echostar-10. Space Systems/Loral as prime contractor. Launcher not yet selected (TBD) ECHOSTAR-19/JUPITER-2 (Hughes 109°W (Ka-band) SSL (Space Systems Loral) as prime contractor for interactive Network Systems/USA) broadband LS-1300 satellite with high-power beams to cover North America. Atlas 5 selected as launch vehicle (2016) ECHOSTAR-21/TERRESTAR-2 10° E (S-band) Purchase of Solaris Mobile Ltd (Ireland), with S-band payload of SOLARIS MOBILE (Echostar/USA) Eutelsat W2A/10A in order to develop S-band multimedia applications in Europe. Use of Terrestar-2 satellite, with 6.9 t launch mass and large dish antenna, contracted with SSL (Space Systems Loral). To be launched by Proton. (2016) ECHOSTAR-23 (Dish Network Corp- 121°W? (Ku-band) Purchase of cancelled CMBStar-1: SSL (Space Systems Loral) as Echostar/USA) prime contractor with LS-1300 spacecraft. Launcher not yet selected. (2016 ?)

WEI n°86 2016-03 - 58

WALLONIE ESPACE INFOS n°86 mai - juin 2016

ECHOSTAR-105/SES-11 105°W (C- & Ku-bands) Joint Echostar-SES communications satellite to cover North (Echostar/USA & SES/Luxembourg) America, Mexico et the Carribean. Eurostar-3000 spacecraft of Airbus Defence & Space. To be launched by Falcon 9 FT. (2016) EGYPT NAVISAT-12A (Defence 35.5°E? (L-, C-, X- & Ka- National comsat system for dual-use governmental services. Ministry of Egypt?) bands) International RFP in progress for contract in 2016. (2019) EIGHTYLEO (eightyLEO/Germany) LEO constellation (S-band?) Private project for a constellation with relay microsats in low- orbit for personal communications. (TBD) EKSPRESS AM-7 (RSCC) 40° E (L-, C- & Ku-bands) 5.7 t satellite contract with Airbus D&S: Eurostar 3000 bus with 16 kW payload. Launched by Proton. (2015) EKSPRESS AM-8 (RSCC) 14°W (C- & Ku-bands) AM-8 to be built by ISS Reshetnev for the platform and Thales Alenia Space for the payload. Launched in GEO by Proton- Breeze DM-03. (2015) EKSPRESS AM-9? (RSCC) 36° E? (C-, Ku- & Ka- RFP in progress for a possible contract in 2016. (2018) bands?) EKSPRESS AMU-1 36° E (70 repeaters in Ku- Airbus D&S selected with Eurostar-3000 spacecraft. Capacity to /EUTELSAT-36C (RSCC/Eutelsat) & Ka-bands) be jointly operated by RSCC and Eutelsat. Launched by Proton- Breeze M. (2015) EKSPRESS AMU-2 (RSCC) 103° E (80 repeaters in C- International RFP in progress for selection in 2016. Pressure of & Ku-bands) Roscosmos to get the contract for a Russian enterprise of space systems. (2018) ENERGIA-100 (Energia- TBD (Ka-band) Small HTS (High Throughput Satellite) developed by RKK Telecom/Russia) Energia for broadband connections in Russia. In partnership with Rostelecom. To be launched by Angara 5 with AngoSat-1 (2017 or 2018) ES’HAIL-2 (Es’hailSat, ictQatar/Qatar) 26°E (Ku- & Ka-bands), Partnership with Arabsat for the joint use of the capacity. After close to Badr position of the international RFP, Mitsubishi Electric selected as prime Arabsat system contractor.To be launched by Falcon 9 FT (2017) EUTELSAT-9B + EDRS-A (Eutelsat + 9°E (Ku-bands + optical Airbus D&S as prime contractor. Hosted payload for EDRS Airbus D&S Services) relay for data intersatellite (European Data Relay Satellite) – with laser beams - contracted to links) Airbus D&S Services following PPP with ESA. Launched by Proton. (January 2016) EUTELSAT-7C (Eutelsat) 7°E (Ku-band) High-power “all-electric” comsat to be co-positioned with Eutelsat-7A to cover Europe and Africa. Contract with SSL for the satellite. Launch vehicle yet to be selected (2018) EUTELSAT-65 WestA (Eutelsat + 65°W (C-, Ku- & Ka-bands, Eutelsat offer selected by Anatel for the use of Brazilian position Anatel/Brazil) with spotbeams) to cover Latin America. Contract with SSL (ex-Space System/Loral). Availability of services for the Olympic Games of Rio. To be launched by Ariane 5. (2016). EUTELSAT-172B (Eutelsat) 172°E (C- & Ku-bands, with Innovative HTS (High Throughput Satellite) to cover Asia-Pacific spotbeams) for broadband links and mobile connectivity. With the partnership of Panasonic Avionics Corp. All-electric Eurostar 3000EOR platform developed by Airbus Defence & Space. Ariane 5 as launcher. (2017) EUTELSAT BB FOR AFRICA 4°W ? (Ka-band with Innovative « all-electric » HTS based on Spacebus Neo (1st (Eutelsat) spotbeams) contract), developed by Thales Alenia Space. For the development of Internet services in Africa, for Facebook, in addition to Ka-band capacity leased on AMOS-6. (2019) EUTELSAT QUANTUM (Eutelsat) TBD (Ku-band) Intelligent communications satellite for multipurpose services. Spacecraft developed through PPP between Eutelsat and ESA. Airbus Defence & Space as prime contractor, with SSTL (Surrey Satellite Technology Ltd) for the GMP-T platform. Launch contract with SpaceX: still to be confirmed (2019) GOVSAT/SES-16 21.5°E (X- & Ka- bands) Establishment of public-private enterprise LuxGovSat (LuxGovsat/Luxembourg) (Luxembourg gov + SES). Satellite contracted to Orbital ATK. Designed to receive additional payload during orbital lifetime? To be launched by Falcon 9 FT from SpaceX commercial center at Boca Chica, Texas (2018). GSAT-6/6A (ISRO/India) TBD (C- & S-bands) 2.1-t comsat based on the I-2K platform, deploying a large dish for mobile services and governmental communications. Launched

WEI n°86 2016-03 - 59

WALLONIE ESPACE INFOS n°86 mai - juin 2016

by GSLV MkII. (2015 with success/2017) GSAT-7A (ISRO/India) 74°E (UHF, S-, C- & Ku 2.6-t comsat based on the I-2K platform, identical to GSAT-7 in bands) GEO since August 2013 after successful Ariane 5 launch.(2017) GSAT-9 (ISRO/India) 48°E (Ku-band) 2.2-t comsat using the I-2K platform with high-power transponders. To be launched by GSLV MkII (2017) GSAT-11 (ISRO/India) TBD (Ku- & Ka-bands) Advanced 4-t comsat based on the I-4K platform. To be launched by the heavy GSLV MkIII or by a non-Indian rocket (2016) GSAT-15 (ISRO/India) 93.5°E (Ku-band, L-band 3.1-t comsat based on the I-3K bus. Successfully launched by GAGAN payload) Arianespace (November 2015) GSAT-17 (ISRO/India) 93.5°E (C-, Ku & S-bands) 3.5-t I-3K spacecraft decided in 2015. To be launched by Ariane 5-ECA (2017) GSAT-18 (ISRO/India) 74° E (C- & Ku-bands) 3.5-t I-3K spacecraft decided in 2015. To be launched by Ariane 5-ECA (2016) GSAT-19E (ISRO/India) TBD (C-, Ka & S-bands) Powerful I-6K spacecraft currently in development. To be launched by the first GSLV MkIII Demonstration (2016 or 2017) GSAT-20 (ISRO/India) TBD (C-, Ku- & Ka-bands?) Powerful I-6K spacecraft to be launched by 2nd GSLV MkIII Demonstration (2018) HEINRICH HERTZ/H2SAT (DLR + TBD (Ka-band) OHB as prime contractor with SmallGEO/Luxor bus. Broadband OHB + ESA? ) services with advanced Ka-band payload for dual use. Launcher not yet selected. (2018) HELLASSAT-3/EUROPASAT 39°E (Ku- & Ka-bands, S- Powerful broadcasting satellite contracted by Arabsat to Thales (Arabsat/Greece + Saudi Arabia & band) Alenia Space. Addtional S-band hosted payload for Inmarsat to Inmarsat/UK) cover Europe with MSS broadcasts. To be launched by Falcon Heavy. (2017) HELLASSAT-4 39°E? (Ku- & Ka-bands) Joint venture between Hellasat/Arabsat and KACST (King Abdul- /SAUDIGEOSAT-1 (Arabsat/Greece + Aziz City for Science & Technology). Powerful 6-t spacecraft for Saudi Arabia) broadcasts, carrying many innovations, contracted with Lockheed Martin. To be launched by Ariane 5. (2018) HISPASAT AG1/36W-1 (ESA + 36° W (Ku- & Ka--bands) Luxor/SmallGEO bus (ARTES 11 programme) with payload Hispasat /Spain) developed by TESAT and Thales Alenia Space. Contract signed with OHB System. PPP between ESA and Hispasat for the payload. To be launched by Ariane 5. (2016) HISPASAT-1F/ 30W-6 (Hispasat/Spain) 30°W (Ku-& Ka-bands) High-capacity communications satellite for broadband connections. SSL selected as prime contractor. To be launched by Proton or Falcon 9. (2017) HYLAS-3/EDRS-C (Avanti 22.5°E (Ka-band) Small GEO platform of OHB carrying EDRS-C of Airbus D&S Communications, United Kingdom + Services/TESAT + Avanti payload for broadband Ka ESA) communications through PPP agreement with ESA. Launch contract with Arianespace (2017) HYLAS-4 (Avanti Communications, 0°E (Ka-band) Broadband comsat, with 64 Ka-band transponders, based upon United Kingdom) Geostar-3 bus. Contracts with Orbital ATK for satellite and Arianespace for launch. (2017) HORIZONS-3E (Sky Perfect JSAT + 169°E (C- & Ku-bands) Continuation of Intelsat-Jsat partnership. HTS (High Troughput Intelsat = Horizons-3 Satellite Satellite) with advanced digital payload based Intelsat Epic NG LLC/Japan-USA) platform for Asia-Pacfic region. To be jointly operated by Sky Perfect JSAT for own purposes and by Intelsat Horizons Satellite within the global system of new generation Epic platforms. Satellite and launch contracts not yet announced. (2018) INMARSAT 5/GLOBAL EXPRESS Atlantic, Pacific & Indian Contract for up to 4 powerful spacecraft for mobile broadband (Inmarsat/United Kingdom) Oceans (89 Ka-band services: Boeing Satellite Systems as prime contractor with BSS- transponders on each 702HP bus. Proton-Breeze M launch contract with ILS. Falcon satellite) Heavy for 4th satellite (2013, 2015, 2017) INMARSAT 6 (Inmarsat/United TBD (L-band & Ka-band) Two all-electric Eurostar 3000EOR satellites, contract with Kingdom) Airbus D&S. Launcher not yet selected (2020, 2021) INTELSAT-30 DLA-1 & -31 DLA-2 95°W (C- & mostly Ku- Co-located high-power LS-1300 satellites of SSL (ex-Space (Intelsat/Luxembourg – DirecTV Latin bands) Systems/Loral), for DTH broadcasts in Latin America (DLA: America) DTH Latin America). Ariane 5 launch for Intelsat-30 DLA-1 , Proton-Breeze M launch for Intelsat-31 DLA-2 (2015) INTELSAT-32E/SKY BRASIL-1 TBD (Ku-band) Powerful DTH satellite to cover Brasil and Latin America. Airbus WEI n°86 2016-03 - 60

WALLONIE ESPACE INFOS n°86 mai - juin 2016

(Intelsat/Luxembourg – DirecTV Latin D&S Satellites selected as builder with a Eurostar 3000 platform. America To be launched by Ariane 5 (2016) INTELSAT-34/HISPASAT 55W-1 55.5° E/Atlantic Ocean (C- Replacement of Intelsat 27 lost at launch with 3SL, on 31 (Intelsat/Luxembourg) and Ku-bands) January 2013, of the medium-power 6.2-t HS702 satellite developed by Boeing Satellite Systems. Specific coverage of Latin America. Replacement contract in 2013 with 3.3-t comsat of SSL (ex-Space Systems/Loral). Launched by Ariane 5. (2015) INTELSAT-36 MULTICHOICE 68.5°E (C- & Ku-bands, Powerful satellite to be co-located with Intelsat-20 for pan- (Intelsat/Luxembourg – Multichoice mainly for DTH broadcasts) african coverage. SSL (Space systems/Loral) selected as prime /South Africa) contractor. To be launched by Ariane 5. (2016) INTELSAT EPIC-1/-29E & -2/- 29°E, 33°E (C- and Ku- Versatile high-power satellites, using an innovative heavy 33E/NEXT GENERATION bands with broadband platform, for mobile broadband applications: after international (Intelsat/Luxembourg) spotbeams/high throughput RFP, contracts in 2012 and in 2013 to Boeing Satellite Systems. technology) Launches with Ariane 5. (January 2016 & 2017) INTELSAT EPIC-3/-35E/NEXT 35°E (C- and Ku-bands with Versatile high-power satellites, using an innovative heavy GENERATION (Intelsat/Luxembourg) broadband spotbeams/high platform, for mobile broadband applications: Boeing Satellite throughput technology) Systems selected as prime contractor. Launcher not yet selected. (2017) INTELSAT-38/AZERSPACE-2 45°E (Ku- & Ka-bands) Comsat developed with Azercosmos as partner for joint use of Intelsat, Azercosmos/Azerbaidjan) geosynchronous position and frequencies. Coverage of Europe, Middle East, Africa, Central and South Asia. LS-1300 comsat contracted in 2015 with SSL To be launched by Ariane 5. (2017) INTELSAT-39 IRANSAT-1, -2 & -3 (SRI-Space 24.19 °E, 34°E (Ku-bands) Civilian project of small geosynchronous satellites to carry 2 Ku- Research Institute & ISA/Iranian Space band transponders for digital broadcasts. Indigenous development Agency/Iran) in progress with North Korea? (2020?) IRIDIUM NEXT LEO constellation (L- band, Thales Alenia Space (with Orbital Sciences as US partner) (Iridium Communications/USA) with interlinks) selected as prime contractor for the space segment (72 satellites in orbit + 9 ground spare satellites). Launch services with nine Falcon 9 FT rockets of SpaceX - 10 satellites on each launcher - from Vandenberg AFB and Dnepr from Yazny. Contract with Canadian Aireon LLC for hosted payload to collect ADS-B signals for aeronautical traffic monitoring. Up to 58 satellites equipped to collect AIS (Automated Identification System) signals for maritime traffic surveillance. (2016-2018/progressive replacement of the existing and operational 66-satellite constellation) IRIDIUM PRIME LEO constellation (L-band, Expansion of Iridium Prime to offer LEO missions with hosted (Iridium Communications/USA) with interlinks) payload for innovative research and applications. Iridium Next satellites, based upon EliteBus platform and made by Thales Alenia Space in Orbital Sciences facility, proposed to welcome 265-kg instrumentation for up to 17 Mbps of data. An average of 2 to 6 satellites launching per year. Use of Iridium Next ground infrastructure (after 2018?). JCSAT-14 (Sky Perfect JSAT/Japan) 154°E (C- & Ku-bands) Replacement of JCSAT-2A with SSL (ex-Space Systems/Loral) as prime contractor. LS-1300 satellite to be launched by Falcon 9 v1.2 (2016) JCSAT-15 (Sky Perfect JSAT/Japan) 110°E (Ku-band) Replacement of JCSat-110. Contract to SSL (Space systems Loral) for high-power LS-1300 broadcasting satellite. To be launched by Ariane 5. (2016) JCSAT-16 (Sky Perfect JSAT/Japan) 0°E (C- & Ku-bands) First of five comsats to be ordered until end of the decade. Contract to SSL for LS-1300 comsat, to be launched by Falcon 9 FT. (2016) JCSAT-17 Sky Perfect JSAT/Japan) TBD (S-, C- & Ku-bands) Contract with Lockheed Martin for modernized A2100 comsat. Launcher not yet selected. (2019) JUPITER-2/ECHOSTAR-19 (Hughes 109.1° W, close to Jupiter-1 SSL (ex-Space Systems Loral) as prime contractor for interactive Network Systems/USA) (Ka-band) broadband satellite with powerful 6.6-t spacecraft to cover North America with broadband spotbeams to meet HughesNet Gen4 high-speed internet services. Atlas 5 selected as launch vehicle

WEI n°86 2016-03 - 61

WALLONIE ESPACE INFOS n°86 mai - juin 2016

(2016) KACIFIC-1a & -1b (Kacific Broadband From 130 to 170°E (Ka- System starting operations with a hosted Ka-band multibeam Satellite/Singapore) band) payload to enhance broadband connections in the Pacific. Contracts not yet finalized. (2018?) KOREASAT-5A (KT Corp/South 113°E (Ku-band) Upgraded Spacebus 4000B2 spacecraft of 3.5 t contracted to Korea) Thales Alenia Space. To be launched by Falcon v.1.2.(2017) KOREASAT-7 (KT Corp/South Korea) 116°E (Ku- & Ka-bands) Upgraded Spacebus 4000B2 spacecraft of 3.5 t contracted to Thales Alenia Space. To be launched by Ariane 5.(2016) KYPROSAT ? (Kypros Satellites TBD (Ku-, Ka-bands) Partnership with SSTL (Surrey Satellite Technology Ltd) as an /Kyprus) offer for new operators. LAOSAT-1 (Min. 128.5° E (C- & Ku- bands) In-orbit delivery contract with CGWIC (China Great Wall Telecommunications/Laos) Industry Corp), in order to cover South East Asia, from Pakistan to Papua New Guinea. Satellite made by CAST (Chinese Academy of Space Technology) for launch with Long March 3B/G2 launch. (November 2015) LEOSAT CONSTELLATION (Leosat SSO at 1,800 km (Ka-band) Constellation of 80-100 microsats for secured links between Inc/USA) enterprises around the globe. Feasility study made by Thales Alenia Space (to be operational in 2019?) LYBID-1/UKRCOMSAT-1 (NSAU- 48° E (Ku-band & Ka-band) High-power satellite (transponders of 120 W) built by MDA UkrCosmos/Ukraine) (McDonald Dettwiler & Associates – ex-SPAR Aerospace) as prime contractor with ISS Reshetnev platform (Ekspress 1000H). Canadian funding of the system. Development delayed by financial problems in Ukraine. Launch with “made in Ukraine” Zenit 3LB? (postponed to 2017?) MEASAT-2a (Measat Satellite 148°E (C-, Ku- and Ka- Negotiations in progress for a partnership with high-power Systems/Malaysia) bands?) comsat operator, to cover South East Asia and Pacific. Satellite and launcher ontracts expected in 2016. (2018) MEXSAT-1/CENTENARIO & 116.8°W (L- & Ku-bands) Governmental contract with Boeing Satellite Systems, including 2 -2/MORELOS-3 (SCT-Secretaria de Boeing 702HP Geomobile satellites equipped with 22-m L-band Communicaciones y antenna. Mexsat-1 lost with Proton-Breeze M failure in May Transportes/Mexico) 2014. Mexsat-2 launched by Atlas 5 (October 2015) MYANMAR-SAT? (M-Tel/Myanmar or TBD (C- & Ku-band) Negotiations with satellite operators - especially Intersputnik - for Birmania) the use of orbital slot and frequencies. Singtel and CGWIC well positioned for development contract? (2018?) NBN CO-1A/SKY MUSTER & -1B 140°E & 154° E (Ka-band) High-power satellite system for NBN (National Broadband (NBN/Australia) Network), covering Oceania and surroundings. Space Systems/Loral as prime contractor for 6.4-t SSL-1300 spacecraft. Launch contract with Arianespace (Ariane 5). (September 2015, 2016) NBN CO-1C (NBN/Australia) TBD (Ka-band) Need for a third broadband comsat. RFP to be decided for contract in 2016 ? (2018?) NEOSAT/EUTELSAT (ESA + TBD (Ku- & Ka-bands) New-generation platform for geo comsats. Technologies Eutelsat/Europe) developed for Spacebus neo and for Eurostar neo. (2019) NICASAT-1 (TBD/Nicaragua) TBD (Ku-band) Communication & broadcasting satellite for Latin America. Based on DHF-4 bus, to be developed and delivered in orbit by CGWIC (2018?) NIGCOMSAT-2 19° E (L-, C- , Ku- and Ka- Contract with CAST through CGWIC to upgrade the capacity of (Nigcomsat/Nigeria) bands) Nigcomsat-1R and to achieve a global system. Coverage of Africa, Middle East, China and Central Asia (2018 ?) NIGCOMSAT-3 22° W (L-, C- , Ku- and Ka- Contract with CAST through CGWIC to upgrade the capacity of (Nigcomsat/Nigeria) bands) Nigcomsat-1R and to achieve a global system. Coverage of Africa, the Americas (2018 ?) NYBBSAT-1/SILKWAVE-1 (New 105°E (L-band) High-power L-band satellite, based upon 702MP platform, to York Broadband LLC/USA + CMMB support mobile services in China, then in Asia. Purchase of Vision/Hong Kong) Asiastar satellite at 105°E to start services during 2015. Contract with Boeing for first satellite. Launcher not yet selected. (2018) NYBBSAT-2 & -3 (CMMB TBD (L-band) High-power L-band satellites to be based on “made in China” Vision/Hong Kong) DFH-4 Contracts with CGWIC? (2017-2018) ONE WEB (One Web + Virgin Galactic Up to 648 operational Project to produce up to 900 microsats of 150 kg for global

WEI n°86 2016-03 - 62

WALLONIE ESPACE INFOS n°86 mai - juin 2016

+ Qualcomm + Airbus D&S) satellites in 1,200 km internet connections at low cost. Technical and financial (Ku-band) partnership with Airbus Defense & Space. Automated production of small satellites, at the rate of 3-4 units per day… $ 0.5 billion already financed. Still looking for investors and bank loans. To be launched by Soyuz from Guyana and from Russia, by LauncherOne of Virgin Galactic. (full deployment for 2019, with first launches in 2018) O3b/up to 20 (O3b Networks/Jersey + Equatorial MEO Broadband system for 3G cellular networks and WiMAX towers. SES/ constellation (Ka-band) Development in progress with the strong support of SES for Luxembourg funding resources and control facilities. Contract with Thales Alenia Space for EliteBus spacecraft, with an initial order of 12 satellites in construction, with 12 launched by Soyuz from French Guyana. First 4 satellites launched in June 2013, but affected by power problems. Soyuz launches in July and December 2014. Further 8 satellites contracted in December 2015. (2018) QAEM (Defense Ministry/Iran) TBD (C- & Ku-bands) National project of comsat for governmental services in Iran, with C-band and Ku-band transponders. To be indigenously developed and launched (2020 ?) PALAPA-E1 (PT Indosat Tbk 150.5° E? (Ku-band) High-power communications satellite contracted in May 2013 to /Indonesia) Orbital Sciences, in order to replace Palapa-C2. Indosat looking for exploitation with an international partner. Preceded since June 2012 by PSN-V, the Chinasat-5B, in inclined orbit, sold by China Satcom (no launch announced). See BRIsat. PSN-6 (PT Pasifik Satelit 146°E (C- & Ku-bands) Medium-size 5-t comsat contracted to SSL. To be launched by Nusantara/Indonesia) SpaceX Falcon 9 FT.(2017). SAARC-SAT (ISRO/India) TBD (Ku-band) Medium-size 2-t satellite, based upon I-2K platform, for communications and meteorology. To be developed by ISRO and Indian industry for SAARC/South Asian Association for Regional Cooperation. To be launched by GSLV MkII. (2017?) SATMEX-9/EUTELSAT 117 WestB 116.8°W (C- & Ku-band) Regional operator acquired by Eutelsat. Contract with Boeing (Eutelsat Americas/Mexico) Satellite Systems for an all-electric medium-size comsat. To be launched by Falcon 9 FT of SpaceX (2016) SES-9 (SES/Luxembourg) 108.2 E (Ku-band) High-power SES-9 satellite of 5.3 t (BSS-702 HP), contracted with Boeing Satellite Systems, in order to cover Asia-Pacific regions. Also available for mobile links in Indian Ocean. Falcon 9 FT launch contract with SpaceX. (March 2016) SES-10 (SES/Luxembourg) 67° W for Latin America High-power SES-10 to cover Andean countries for DTH and (Ku- & Ka-band) broadband applications, within the Simon Bolivar satellite network. Contracts with Airbus D&S for powerful Eurostar-3000 and with SpaceX for Falcon 9 FT launch (2016 ) SES-11/ECHOSTAR-105 105°W (Ku- & Ka-bands) High-power satellite for broadband connections to extend (SES/Luxembourg) strategic partnership with EchoStar to cover North America. Contracts with Airbus D&S. To be launched by Falcon v.1.2. (2016) SES-12 (SES/Luxembourg) 95°E (Ku- & Ka-bands) 5.3-t DTH (Direct To Home) and HTS (High Throughput Satellite) comsat to cover Asia-Pacific. Airbus Defence & Space as prime contractor with all-electric Eurostar 3000EOR platform. To be launched by Ariane 5 (2017) SES-14 (SES/Luxembourg) 47.5-48° W (C- & Ku- All-electric “intelligent” comsat of 4.2 t, based on the E3000EOR bands) of Airbus Defence & Space, with DTH (Direct To Home) and HTS (High Throughput Satellite). Capacity for mobile, maritime and aeronautical services. Launch with Falcon 9 FT from SpaceX commercial center at Boca Chica, Texas (2017) SES-15 (SES/Luxembourg) 129°W (L-, Ku- & Ka- All-electric comsat using BSS 702SP of Boeing Satellite Systems. bands) Capable to offer entertainment and Wifi services onboard aircraft in flight over the America’s. With hosted payload for WAAS navsat purposes. To be launched by Ariane 5. (2017) SES-17 (SES/Luxembourg) TBD (Ku- & Ka-band) High-power satellite for broadcasts and broadband links. Evaluation of proposals in progress (2018)

WEI n°86 2016-03 - 63

WALLONIE ESPACE INFOS n°86 mai - juin 2016

SGDC-1/BRSAT-1 (AEB + Visiona 68°W & ? (X- & Ka-bands Satélite Geoestacionário de Defesa e Comunicações Estratégicas Technologia Espacial/Brazil) + meteo payload for SGDC- (SGDC) or Multi-purpose satellites to be used for governmental 3?) communications, broadband links, air traffic management. Joint venture Embraer+Telebras, with VisionaTechnologia Espacial company, to manufacture the satellites with foreign support. Possibility to include a meteorological payload on the 2nd spacecraft After international RFP, selection of Thales Alenia Space and Arianespace respectively for SGDC-1 satellite (Spacebus-4000C4 bus) and launch (2017-2020?) SICRAL-2/SYRACUSE-3C (Italian 37°East (UHF and SHF Italian-French military comsat to upgrade the Sicral and Syracuse MOD-ASI + DGA-CNES/Italy + bands) 3 systems. Thales Alenia Space Italia (with Telespazio) selected France) as prime contractor. Launched by Ariane 5. (April 2015) SPACEX CONSTELLATION (SpaceX Up to 4,000 cheap microsats Private project of megaconstellations for global internet +/ Google?) in various orbital planes at connectivity. Still to be approved by FCC. Specific factory with 625 km? (S- & Ku-bands) automated production of satellites, located at Seattle, Washington. No recent info about development. (first demonstrators to be launched in 2016; full deployment in 2019-2020?) STAR ONE-C5 (Star One/Brazil) 68° W (C- & Ku-bands) Civilian comsat to cover Latin America. RFP for selection of contractor in 2016 (2018?) STAR ONE-C6 (Star One/Brazil) 84°W (Ku-band) Civilian comsat for Latin America. RFP for selection of contractor in 2016? (2019?) STAR ONE-D1 (Star One/Brazil) 85° W (C-, Ku- & Ka-band) Civilian comsat to support the Olympic Games of Rio for broadcasts and broadband services in Latin America. SSL (ex- Space Systems Loral) as contractor with SSL-1300 comsat. To be launched by Ariane 5 (2016) SUPREMESAT-2 (Supremesat/Sri 50°E? (Ku-bands) Contracts with CGWIC (China Great Wall Industry Corp) for in- Lanka) orbit delivery of DFH-4 type comsat and with China Satellite Communications Corp. Supremesat-1 launched in November 2012 with leased capacity of Chinasat-12 (2015). To be launched by Long March 3B. (2018) TELESAT LEO HTS/‘KA-BAND‘ LEO (Ka-band) Project to deploy a constellation of Ka-band small satellites for CONSTELLATION (Telesat/Canada) broadband services. First two satellites as demonstrators, contracted with SSL and with SSTLseparetely. Launcher not yet selected.. (2018?) TELKOM-3S (PT Telekomunicasi 118°E (C- & Ku-bands) 3.5 t Spacebus 4000B2 spacecraft contract with Thales Alenia Indonesia) Space to cover Indonesia and South-East Asia. Arianespace as launch provider (2016) TELKOM-4 (PT Telekomunicasi 108°W (C-band) Contracted to SSL for high-power SSL-1300 comsat, to replace Indonesia) Telkom-1. Launch vehicle not yet selected. (2018) TELSTAR-12V/VANTAGE 15°W (Ku-band) High-power broadcasting satellite with beams on Europe, Larin (Telesat/Canada) America, Middle East, Africa, in order to replace Telstar-12. Spotbeams for maritime mobile services. Airbus D&S selected as contractor. To be launched by Japanese H-2A (November 2015) TELSTAR-18V/VANTAGE or 138° E (C- & Ku-bands) Replacement of Telstar 18 by a powerful HTS comsat. Contract APSTAR-5C (Telesat/Canada + APT with SSL. To be jointly used with APT Satellite Holdings. To be Satellite Holdings/Hong Kong) launched by Falcon Heavy? (2018). TELSTAR-19V/VANTAGE 63°W (Ku- & Ka-bands, New generation comsat with versatile HTS (High Throughpout (Telesat/Canada) with spotbeams) Satellite) payload. To be co-located with Telestar 14R for the coverage of the Americas. Contract with SSL for SSL-1300 comsat. To be launched by Falcon Heavy? (2018) THAICOM-6/AFRICOM-1 78.5° E (C- & Ku-bands) Medium-size comsat approved by government. Orbital Sciences (Thaicom/Thailand) as prime contractor. C-band coverage of Africa. Launched in January 2014 by Space X Falcon v1.1 and co-located with Thaicom-5. THAICOM-8 78.5°E (Ku- & Ka-band) High-power broadcasting satellite to be co-located with Thaicom- (Thaicom/Thailand) 5 and -6. Contracts to Orbital Sciences for satellite, to SpaceX for Falcon 9 FT launch (2016) THAICOM-9? 50.5°E (Ku-band) HTS satellite for expansion of the Thaicom system to the Middle (Thaicom/Thailand) East, Europe and Africa, as replacement of IPStar? Possibility of

WEI n°86 2016-03 - 64

WALLONIE ESPACE INFOS n°86 mai - juin 2016

acquiring a 2nd hand comsat already in orbit to keep the orbital slot. (2018?) THAICOM-IPSTAR-2? 119.5°E (Ku- & Ka-bands) High-power broadband satellite to be acquired through (Thaicom/Thailand) partnership with another operator. Enhancement of IPSTAR-1 capacity in South-East Asia and Oceania. Contracts not confirmed to SSL for satellite, to SpaceX for launch (2018) THAI-ICT SAT TBD (Ku- & Ka-band?) Governmental broadband satellite currently in preparation. RFP in (ICT Ministry/Thailand) preparation. (2018) -7 (Telenor Satellite 1° W (Ku- & Ka-bands Contracts to SSL (ex-Space Systems Loral) for high-power SSL- Broadcasting/Norway) 1300 satellite and Arianespace for Ariane 5 launch. Successfully launched on 26 April 2015, in order to enhance Telenor Satellite Broadcasting fleet and to offer mobile services. (2015) THURAYA-4/Thuraya/United Arab TBD (L- & S-bands) RFP not yet finalized, in order to achieve a global coverage for Emirates) ? personal communications. Go-ahead decision related to financial results. (2019?) TKSAT-2/TUPAC KATARI 87.2° W? (C-, Ku- and Ka- Project of second comsat for Bolivia, after the successful SATELLITE-2 (ABE or Agencia bands) operations with TKSat-1, developed by CGWIC (China Great Bolivia Espacial/Bolivia) Wall Industry Corp) and launched in December 2013. Delayed decision for contract (2018?) TURKMENALEM 520E 52° East (Ku-band) After international RFP, Thales Alenia Space selected as prime /MONACOSAT contractor with Spacebus-4000C2 spacecraft. Launched by Falcon (Turkmenian Space 9 v.1.1 (instead of ). Lease of a GEO position Agency?/Turkmenistan + Space owned by Monaco through Space Systems International. Systems International/Monaco) Monacosat-1 capacity marketed by SES. (April 2015) TÜRKSAT-5A/-5B 31°E & 42°E (C- & Ku- International RFP in preparation for medium-size comsats to be (Türksat/Turkey) bands) ordered in 2016. Development in Turkey with TAI through technology transfer. (2018-2019) TÜRKSAT-6A (Türksat/Turkey) 42°E (Ku-band) First medium-size comsat to be developed in Turkey by TAI with foreign assistance. (2020?) TÜRKSAT-7A (Türksat/Turkey) TBD (Ku- & Ka-bands) Comsat to be made in Turkey by TAI. (2022?) VIASAT-2 (Viasat/USA) 111.1°W (Ka-band) 6.7-t powerful HTS (High Throughput Satellite) for broadband services in North America and for air & maritime links over the Atlantic Ocean. Contract with Boeing Satellite Systems for BSS- 702HP spacecraft. To be launched by Ariane 5. (2016) VIASAT-3 AMERICAS, ASIA, EMEA TBD (Ka-band) Global HTS (High Throughput Satellite) with 3-geosynchronous (Viasat/USA) satellite system for transmissions of up to 1 Terabits per second, in order to compete with LEO constellations.. Contract with Boeing Satellite Systems for 6.4-t BSS-702HP spacecraft. To be launched by Ariane 5 or Falcon Heavy. (2019-2011?) VINASAT-3 & -4 (VNPT/Vietnam) 21.5° E? (X- and Ka-bands) Preparation of international RFP for contract in 2016? Possible partnership with another operator in Asia-Pacific. (2018?) YAMAL-601 (Gazprom Space 49°E (C-, Ku- and Ka- Replacement of Yamal-202. After international RFP, Thales Systems/Russia bands) Alenia Space selected in 2013 for the contract. Finally, under the pressure of the Russian government, ISS Reshetnev as prime contractor, with Thales Alenia Space as payload contractor. Proton as launch vehicle (2018) YAHSAT-3/AL YAH-3 (Yal Yah 20°W (Ka-band) Ka-band HTS (High Thoughput Satellite) for translantic Satellite Communications connections, with coverage of Latin America (especially Brazil) Company/UAE) and Africa. Selection of Orbital ATK for 4.7-t Geostar-3 spacecraft. To be launched by Ariane 5 (2017) © Space Information Center/Belgium – February 2016 In italics: project in study phase or with unclear status

Lecture – Dossiers/Livres concernant l’odyssée de l’espace

WEI n°86 2016-03 - 65

WALLONIE ESPACE INFOS n°86 mai - juin 2016

Cette rubrique fait le relevé, avec un bref descriptif, de dossiers et livres qui sont parus durant les six derniers mois pour présenter l’intérêt et l’impact des activités spatiales ? notamment en Europe.

Comment on fait pipi dans l’espace ? par Pierre-François Mouriaux, avec préface de l’astronaute Jean-François Clervoy, aux éditions Fleurus, mars 2016, 48 pages.

Ce que vous auriez voulu et n’auriez pas osé poser comme questions sur la vie quotidienne des hommes et femmes dans l’espace, sur les détails et dessous de leur vie, apprentissage, défis à relever... Vous trouverez les réponses dans ce livret cartonné, fort attrayant et bien intéressant, qu’on doit à Pierre-François Mouriaux, rédacteur Espace de l’hebdomadaire aérospatial Air & Cosmos. Il vient de paraître aux Ediitons Fleurus dans une collection « Petites et grandes questions » destinées aux très jeunes (dès le fondamental). Son auteur es Editions Fleurus viennent d’éditer un ouvrage cartonné de 50 pages.

Pierre-François Mouriaux, fan et connaisseur de l’odyssée spatiale - il est le rédacteur Espace de l’hebdomadaire Air & Cosmos -, réussit le pari de nous rendre familier dans un langage aisé et précis ce que chacun souhaite connaître sur les multiples aspects, même les plus insolites, du quotidien dans le monde « extra-terrestre ». Il décrit les risques à surmonter, prix à payer, épreuves à passer… Ce guide qui est illustré avec des dessins très explicites peut être un cadeau pour l’élève qui a bien travaillé. En tout cas, il est à recommander dans les bibliothèques communales et scolaires.

Apollo – les missions lunaires habitées, par Pierre-Emmanuel Paulis, avec préface de l’astronaute Claudie Haigneré, chez Ed2A (Editions Auteurs d’Aujourd’hui), avril 2016, 114 pages, avec une superbe iconographie.

Il s’agit d’un superbe album « au cœur des archives de la conquête spatiale », fruit des contacts d’un passionné de l’aventure de l’espace : Pierre-Emmanuel Paulis, enseignant à l’Euro Space Center de Transinne-Libin, a peu à peu « conquis » l’amitié des femmes et hommes qui ont vécu et travaillé autour de la Terre. Il a rencontré, au prix d’efforts patients, ces astronautes qui sont allés découvrir la Lune entre 1968 et 1972. Il y a déjà un demi-siècle, ces courageux pionniers faisaient triompher le programme Apollo d’exploration lunaire, lors d’un duel épique, qui a marqué les « golden sixties », entre l’Union Soviétique (Moscou) et les Etats-Unis (Washington).

L’originalité de ce document d’histoire contemporaine est émaillé de souvenirs de l’auteur sur ses rencontres avec ces hommes de l’espace qui avaient assurément de l’étoffe de héros. Sous un jour original, Pierre-Emmanuel Paulis fait redécouvrir, tant par l’anecdote que par l’image (plus de 100 photos, dont quelques-unes avec des autographes personnalisés), l’effort américain dans cette épopée qui a permis à douze hommes de laisser à la surface lunaire leurs empreintes pour les siècles à venir!

======

WEI n°86 2016-03 - 66