Space Based Astronomy Educator Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Magcon White Paper V3
Magnetospheric Constellation Tracing the flow of mass and energy from the solar wind through the magnetosphere Larry Kepko and Guan Le NASA Goddard Space Flight Center 1. Executive Summary The Magnetospheric Constellation (MagCon) mission is designed to understand the transport of mass and energy across the boundaries of and within Earth’s magnetosphere using a constellation of up to 36 small satellites. Energy is input into the geospace system at the dayside and flank magnetopause, yet we still do not understand the azimuthal extent of dayside reconnection sites, nor do we have a quantifiable understanding of how much energy enters the magnetosphere during different solar wind conditions. On the nightside, impulsive flows at various spatial and temporal scales occur frequently during storms and substorms and couple to the ionosphere through still unresolved physical mechanisms. A distributed array of small satellites is the required tool for unraveling the physics of magnetospheric mass and energy transport while providing definitive determinations of how major solar events lead to specific types of space weather. MagCon will map the global circulation of magnetic fields and plasma flows within a domain extending from just above the Earth’s surface to ~22 Earth radii (RE) radius, at all local times, on spatial scales from 1-5 RE and minimum time scales of 3-10 seconds. It will reveal simultaneously for the first time both the global spatial structures and temporal evolution of the magnetotail, the dayside and flank magnetopause, and the nightside transition region, leading to the physical understanding of system dynamics and energy transport across all scales. -
The Early Explorers by Andrew J
The Early Explorers by Andrew J. LePage August 8, 1999 Among these programs were the next generation of Introduction Explorer satellites the ABMA was planning. In the chaos that swept the United States after the launching of the first Soviet Sputniks, a variety of The First New Explorers satellite programs was sponsored by the Department The first of the new series of larger Explorer satellites of Defense (DoD) to supplement (and in some cases was the 39.7 kilogram (87.5 pound) satellite NASA supplant) the country's flagging "official" satellite designated as S-1. Built by JPL, the spin stabilized program, Vanguard. One of the stronger programs S-1 consisted of a pair of fiberglass cones joined at was sponsored by the ABMA (Army Ballistic Missile their bases with a diameter and height of 76 Agency) with its engineering team lead by the centimeters each. The scientific payload consisted of German rocket expert, Wernher von Braun. Using instruments to study cosmic rays, solar X-ray and the Juno I launch vehicle, the ABMA team launched ultraviolet emissions, micrometeorites, as well as the America's first satellite, Explorer 1, which was built globe's heat balance. This was all powered by a bank by Caltech's Jet Propulsion Laboratory (JPL) (see of 15 nickel-cadmium batteries recharged by 3,000 Explorer: America's First Satellite in the February solar cells mounted on the satellite's exterior. This 1998 issue of SpaceViews). advanced payload was equipped with a timer to turn itself off after a year in orbit. While these first satellites returned a wealth of new data, they were limited by the tiny 11 kilogram (25 Explorer S-1 was launched from Cape Canaveral on pound) payload capability of the Juno I. -
James A. Slavin
James A. Slavin Professor of Space Physics Department of Climate and Space Science & Engineering University of Michigan, College of Engineering Climate & Space Research Building Ann Arbor, MI, 48109 Phone: 240-476-8009 [email protected] EDUCATION: 1982 - Ph.D., Space Physics, University of California at Los Angeles Dissertation: Bow Shock Studies at Mercury, Venus, Earth and Mars with Applications ot the Solar – Planetary Interaction Problem; Advisor: Prof. Robert E. Holzer 1978 - M.S., Geophysics and Space Physics, University of California at Los Angeles 1976 - B.S., Physics, Case Western Reserve University APPOINTMENTS: 2011 - 2018 Chair, Department of Climate and Space Sciences & Engineering, University of Michigan 2005 - 2011 Director, Heliophysics Science Division 1990 - 2004 Head, Electrodynamics Branch 1987 - 1989 Staff Scientist, NASA/GSFC Laboratory for Extraterrestrial Physics 1986 - 1987 Discipline Scientist for Magnetospheric Physics, Space Physics Division, NASA Headquarters 1983 - 1986 Research Scientist, Astrophysics and Space Physics Section, Caltech/Jet Propulsion Laboratory HONORS: 2018 - Heliophysics Summer School Faculty, UCAR High Altitude Observatory 2017 - NASA Group Achievement Award, MESSENGER Project Team 2017 - Asia Oceania Geosciences Society 14th Annual Meeting Distinguished Lecturer in Planetary Sciences 2016 - NASA Group Achievement Award, MMS Instument Suite 2012 - International Academy of Astronautics Laurels for Team Achievement for MESSENGER 2012 - Fellow, American Geophysical Union 2009 - NASA Group -
University of Iowa Instruments in Space
University of Iowa Instruments in Space A-D13-089-5 Wind Van Allen Probes Cluster Mercury Earth Venus Mars Express HaloSat MMS Geotail Mars Voyager 2 Neptune Uranus Juno Pluto Jupiter Saturn Voyager 1 Spaceflight instruments designed and built at the University of Iowa in the Department of Physics & Astronomy (1958-2019) Explorer 1 1958 Feb. 1 OGO 4 1967 July 28 Juno * 2011 Aug. 5 Launch Date Launch Date Launch Date Spacecraft Spacecraft Spacecraft Explorer 3 (U1T9)58 Mar. 26 Injun 5 1(U9T68) Aug. 8 (UT) ExpEloxrpelro r1e r 4 1915985 8F eJbu.l y1 26 OEGxOpl o4rer 41 (IMP-5) 19697 Juunlye 2 281 Juno * 2011 Aug. 5 Explorer 2 (launch failure) 1958 Mar. 5 OGO 5 1968 Mar. 4 Van Allen Probe A * 2012 Aug. 30 ExpPloiorenre 3er 1 1915985 8M Oarc. t2. 611 InEjuxnp lo5rer 45 (SSS) 197618 NAouvg.. 186 Van Allen Probe B * 2012 Aug. 30 ExpPloiorenre 4er 2 1915985 8Ju Nlyo 2v.6 8 EUxpKlo 4r e(rA 4ri1el -(4IM) P-5) 197619 DJuenc.e 1 211 Magnetospheric Multiscale Mission / 1 * 2015 Mar. 12 ExpPloiorenre 5e r 3 (launch failure) 1915985 8A uDge.c 2. 46 EPxpiolonreeerr 4130 (IMP- 6) 19721 Maarr.. 313 HMEaRgCnIe CtousbpeShaetr i(cF oMxu-1ltDis scaatelell itMe)i ssion / 2 * 2021081 J5a nM. a1r2. 12 PionPeioenr e1er 4 1915985 9O cMt.a 1r.1 3 EExpxlpolorerer r4 457 ( S(IMSSP)-7) 19721 SNeopvt.. 1263 HMaalogSnaett oCsupbhee Sriact eMlluitlet i*scale Mission / 3 * 2021081 M5a My a2r1. 12 Pioneer 2 1958 Nov. 8 UK 4 (Ariel-4) 1971 Dec. 11 Magnetospheric Multiscale Mission / 4 * 2015 Mar. -
Information Summaries
TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical -
Soviet Steps Toward Permanent Human Presence in Space
SALYUT: Soviet Steps Toward Permanent Human Presence in Space December 1983 NTIS order #PB84-181437 Recommended Citation: SALYUT: Soviet Steps Toward Permanent Human Presence in Space–A Technical Mere- orandum (Washington, D. C.: U.S. Congress, Office of Technology Assessment, OTA- TM-STI-14, December 1983). Library of Congress Catalog Card Number 83-600624 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword As the other major spacefaring nation, the Soviet Union is a subject of interest to the American people and Congress in their deliberations concerning the future of U.S. space activities. In the course of an assessment of Civilian Space Stations, the Office of Technology Assessment (OTA) has undertaken a study of the presence of Soviets in space and their Salyut space stations, in order to provide Congress with an informed view of Soviet capabilities and intentions. The major element in this technical memorandum was a workshop held at OTA in December 1982: it was the first occasion when a significant number of experts in this area of Soviet space activities had met for extended unclassified discussion. As a result of the workshop, OTA prepared this technical memorandum, “Salyut: Soviet Steps Toward Permanent Human Presence in Space. ” It has been reviewed extensively by workshop participants and others familiar with Soviet space activities. Also in December 1982, OTA wrote to the U. S. S. R.’s Ambassador to the United States Anatoliy Dobrynin, requesting any information concerning present and future Soviet space activities that the Soviet Union judged could be of value to the OTA assess- ment of civilian space stations. -
Cluster-C1 Observations on the Geometrical Structure of Linear Magnetic Holes in the Solar Wind at 1 AU
Ann. Geophys., 28, 1695–1702, 2010 www.ann-geophys.net/28/1695/2010/ Annales doi:10.5194/angeo-28-1695-2010 Geophysicae © Author(s) 2010. CC Attribution 3.0 License. Cluster-C1 observations on the geometrical structure of linear magnetic holes in the solar wind at 1 AU T. Xiao1,2, Q. Q. Shi1,3, T. L. Zhang4, S. Y. Fu3, L. Li1, Q. G. Zong3, Z. Y. Pu3, L. Xie3, W. J. Sun1, Z. X. Liu2, E. Lucek5, and H. Reme6,7 1School of Space Science and Physics, Shandong University at Weihai, Weihai, China 2State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing, China 3Institute of Space Physics and Applied Technology, Peking University, Beijing, China 4Space Research Institute, Austrian Academy of Sciences, 8042 Graz, Austria 5Space and Atmospheric Physics Group, Blackett Laboratory, Imperial College, London, UK 6CESR, UPS, University of Toulouse, Toulouse, France 7UMR 5187, CNRS, Toulouse, France Received: 8 October 2009 – Revised: 1 June 2010 – Accepted: 16 July 2010 – Published: 20 September 2010 Abstract. Interplanetary linear magnetic holes (LMHs) are 1 Introduction structures in which the magnetic field magnitude decreases with little change in the field direction. They are a 10– Magnetic holes (MHs), also called magnetic decreases 30% subset of all interplanetary magnetic holes (MHs). Us- (MDs), are structures in interplanetary space with significant ing magnetic field and plasma measurements obtained by decreases in the magnetic field magnitude (e.g., Turner et Cluster-C1, we surveyed the LMHs in the solar wind at 1 AU. al., 1977; Winterhalter et al., 1994; Tsurutani and Ho, 1999; In total 567 interplanetary LMHs are identified from the Stevens and Kasper, 2007; Vasquez et al., 2007; Tsurutani magnetic field data when Cluster-C1 was in the solar wind et al., 2009). -
The Hot and Energetic Universe
The Hot And Energetic Universe The Universe was always the final frontier of the Human quest for knowledge Through all its history, humanity has observed the sky trying to understand the Cosmos outside the limits of our planet Today, this effort has yielded significant results. Now we know that our sun is a typical star, which does not differ significantly from the other stars of the starry sky. We have discovered the planets of our Solar System and we have studied the conditions prevailing in them. We studied asteroids and comets and found their important role in the formation of planets. We understand the basic principles of the formation, the life and the death of stars. We have also discovered thousands of exoplanets orbiting other stars. We studied giant star clusters. We have discovered dense clouds of interstellar dust and gas where new stars are born continuously. We have managed to describe the gigantic complex of stars to which we belong. Our Galaxy. We realized that our Galaxy is not alone in the universe and that there are hundreds of billions of galaxies. We discovered that the universe of galaxies is extremely violent and in constant motion. Finally we found that the whole universe is in accelerating expansion and we are searching urgently for its origin. This quest is an epic journey towards knowledge, which abolish superstitions and defines human existence. Vehicles for the journey of humanity in the universe are scientific instruments called telescopes, which are installed at various observatories. Telescopes collect light. Their performance depends on the diameter of the lens or mirror used. -
California State University, Northridge Low Earth Orbit
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE LOW EARTH ORBIT BUSINESS CENTER A Project submitted in partial satisfaction of the requirements for the degree of Master of Science in Engineering by Dallas Gene Bienhoff May 1985 The Proj'ectof Dallas Gene Bienhoff is approved: Dr. B. J. Bluth Professor T1mothy Wm. Fox - Chair California State University, Northridge ii iii ACKNOWLEDGEHENTS I wish to express my gratitude to those who have helped me over the years to complete this thesis by providing encouragement, prodding and understanding: my advisor, Tim Fox, Chair of Mechanical and Chemical Engineering; Dr. B. J. Bluth for her excellent comments on human factors; Dr. B. J. Campbell for improving the clarity; Richard Swaim, design engineer at Rocketdyne Division of Rockwell International for providing excellent engineering drawings of LEOBC; Mike Morrow, of the Advanced Engineering Department at Rockwell International who provided the Low Earth Orbit Business Center panel figures; Bob Bovill, a commercial artist, who did all the artistic drawings because of his interest in space commercialization; Linda Martin for her word processing skills; my wife, Yolanda, for egging me on without nagging; and finally Erik and Danielle for putting up with the excuse, "I have to v10rk on my paper," for too many years. iv 0 ' PREFACE The Low Earth Orbit Business Center (LEOBC) was initially conceived as a modular structure to be launched aboard the Space Shuttle, it evolved to its present configuration as a result of research, discussions and the desire to increase the efficiency of space utilization. Although the idea of placing space stations into Earth orbit is not new, as is discussed in the first chapter, and the configuration offers nothing new, LEOBC is unique in its application. -
FY06 PAR.Indb
National Aeronautics and Space Administration r a 6 e Y PPeerrffoormancermance aandnd 0 l Performance and a c 0 s i F Fiscal Year 2 2006 Fiscal Year 2006 AccountabilityAAccountabilityccountability ReportRRepoeporrtt Table of Contents PART 1: MANAGEMENT DISCUSSION & ANALYSIS . .1 Mission, Vision, Values, & Organization . .3 NASA’s Mission Is on Track . .3 Making Progress . .3 NASA’s Values . .4 NASA’s Organization . .4 NASA Headquarters . .4 Building Healthy NASA Centers . .5 Measuring NASA’s Performance . .7 Establishing Government Performance and Results Act (GPRA) Performance Measures . .7 Rating NASA’s Performance . .7 Program Assessment Rating Tool (PART) . .12 President’s Management Agenda (PMA) . .12 Major Program Annual Reports . .13 Performance Overview . .15 Progress Toward Achieving NASA’s Strategic Goals . .15 A Guide to Performance Overviews . .15 Strategic Goal 1: Fly the Shuttle as safely as possible until its retirement, not later than 2010. .16 Strategic Goal 2: Complete the International Space Station in a manner consistent with NASA’s International Partner commitments and the needs of human exploration. .18 Goal 3: Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of the human spacefl ight program to focus on exploration. .20 Sub-goal 3A: Study Earth from space to advance scientifi c understanding and meet societal needs. .22 Sub-goal 3B: Understand the Sun and its effects on Earth and the solar system. .25 Sub-goal 3C: Advance scientifi c knowledge of the origin and history of the solar system, the potential for life elsewhere, and the hazards and resources present as humans explore space. .28 Sub-goal 3D: Discover the origin, structure, evolution, and destiny of the universe, and search for Earth-like planets. -
Photographs Written Historical and Descriptive
CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District. -
John F. Kennedy Space Center
1 . :- /G .. .. '-1 ,.. 1- & 5 .\"T!-! LJ~,.", - -,-,c JOHN F. KENNEDY ', , .,,. ,- r-/ ;7 7,-,- ;\-, - [J'.?:? ,t:!, ;+$, , , , 1-1-,> .irI,,,,r I ! - ? /;i?(. ,7! ; ., -, -?-I ,:-. ... 8 -, , .. '',:I> !r,5, SPACE CENTER , , .>. r-, - -- Tp:c:,r, ,!- ' :u kc - - &te -- - 12rr!2L,D //I, ,Jp - - -- - - _ Lb:, N(, A St~mmaryof MAJOR NASA LAUNCHINGS Eastern Test Range Western Test Range (ETR) (WTR) October 1, 1958 - Septeniber 30, 1968 Historical and Library Services Branch John F. Kennedy Space Center "ational Aeronautics and Space Administration l<ennecly Space Center, Florida October 1968 GP 381 September 30, 1968 (Rev. January 27, 1969) SATCIEN S.I!STC)RY DCCCIivlENT University uf A!;b:,rno Rr=-?rrh Zn~tituta Histcry of Sciecce & Technc;oGy Group ERR4TA SHEET GP 381, "A Strmmary of Major MSA Zaunchings, Eastern Test Range and Western Test Range,'" dated September 30, 1968, was considered to be accurate ag of the date of publication. Hmever, additianal research has brought to light new informetion on the official mission designations for Project Apollo. Therefore, in the interest of accuracy it was believed necessary ta issue revfsed pages, rather than wait until the next complete revision of the publiatlion to correct the errors. Holders of copies of thia brochure ate requested to remove and destroy the existing pages 81, 82, 83, and 84, and insert the attached revised pages 81, 82, 83, 84, 8U, and 84B in theh place. William A. Lackyer, 3r. PROJECT MOLL0 (FLIGHTS AND TESTS) (continued) Launch NASA Name -Date Vehicle -Code Sitelpad Remarks/Results ORBITAL (lnaMANNED) 5 Jul 66 Uprated SA-203 ETR Unmanned flight to test launch vehicle Saturn 1 3 7B second (S-IVB) stage and instrment (IU) , which reflected Saturn V con- figuration.