Multijunction Solar Cells from Monolithic Integration of Dilute Nitrides on Gallium Arsenide (Gaas) and Silicon (Si) Wafers : Defect Studies Artem Baranov

Total Page:16

File Type:pdf, Size:1020Kb

Multijunction Solar Cells from Monolithic Integration of Dilute Nitrides on Gallium Arsenide (Gaas) and Silicon (Si) Wafers : Defect Studies Artem Baranov Multijunction Solar Cells from Monolithic Integration of Dilute Nitrides on Gallium Arsenide (GaAs) and Silicon (Si) Wafers : defect studies Artem Baranov To cite this version: Artem Baranov. Multijunction Solar Cells from Monolithic Integration of Dilute Nitrides on Gallium Arsenide (GaAs) and Silicon (Si) Wafers : defect studies. Micro and nanotechnolo- gies/Microelectronics. Université Paris Saclay (COmUE); Saint Petersburg Academic University (Saint Petersburg), 2018. English. NNT : 2018SACLS137. tel-01881959 HAL Id: tel-01881959 https://tel.archives-ouvertes.fr/tel-01881959 Submitted on 26 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 7 Cellules solaires à multijonctions 3 1 LS par intégration monolithique de C A S 8 nitrures dilués sur substrats : 201 d’arséniure de gallium (GaAs) et NNT de silicium (Si): études des défauts Thèse de doctorat de St Petersburg Academic University et de l'Université Paris-Saclay, préparée à l’Université Paris-Sud École doctorale n°575 : electrical, optical, bio : physics and engineering (EOBE) Spécialité de doctorat: Electronique et Optoélectronique, Nano- et Microtechnologies Thèse présentée et soutenue à Gif-sur-Yvette, le 26 juin 2018, par M. Artem Baranov Composition du Jury : Mme. Chantal Fontaine Directeur de Recherche, CNRS-LAAS Rapporteur M. Jean-Pierre Vilcot Directeur de Recherche, CNRS-IEMN Rapporteur M. Georges Brémond Professeur des Universités, INSA-Lyon Examinateur M. Père Roca i Cabarrocas Directeur de Recherche, Ecole polytechnique-LPICM Président M. Jean-Paul Kleider Directeur de Recherche, l'Université Paris-Saclay-GeePs Directeur de thèse M. Alexander Gudovskikh Directeur de Recherche, St Petersburg Academic University Co-Directeur de thèse M. Arouna Darga Maître de Conférences, UPCM-GeePs Invité i Titre : Cellules solaires à multijonctions par intégration monolithique de nitrures dilués sur substrats d’arséniure de gallium (GaAs) et de silicium (Si): études des défauts. Mots clés : cellules, hétérostructures, composés III-V Résumé : Les cellules solaires à multi-jonctions plus faibles que celles avec un absorbeur obtenu de type III-V possèdent des rendements de à partir de super-réseaux InP / GaPN. Plusieurs conversion de l'énergie très élevés (46%). niveaux de défauts ont été détectés dans la bande Cependant, les méthodes de fabrication interdite de ces matériaux et leurs paramètres ont généralement utilisées sont complexes et été décrits en détail. Nous avons montré qu'un coûteuses, notamment pour les cellules solaires traitement de post-croissance approprié pouvait non monolithiques associées par des techniques améliorer la qualité électronique des couches et de collage et à structure inversée. Cette thèse vise des cellules solaires. Une cellule solaire à triple à augmenter les rendements de conversion des jonction a été fabriquée avec des couches actives cellules solaires monolithiques à l'aide de d'absorbeurs de GaPAsN et de GaPN non méthodes prospectives. Le travail est focalisé sur dopées. La valeur élevée de la tension de circuit l'étude des défauts électroniquement actifs dans ouvert (>2,2V) atteste du fonctionnement des 3 les matériaux constituant les cellules solaires au sous-cellules, mais la performance globale est moyen de techniques photoélectriques et limitée par les faibles épaisseurs de couches capacitives, et il peut être scindé en trois parties. d'absorbeurs. La première partie traite des cellules solaires à Enfin, la troisième partie du travail est consacrée simple jonction avec des couches absorbantes à l'étude de couches de GaP obtenues sur des non dopées d'alliages InGaAsN de 1 eV de bande substrats de Si à des températures inférieures à interdite de différentes épaisseurs obtenues sous 400 ° C par une méthode originale de dépôt de forme de super-réseaux (InAs / GaAsN) par couches atomiques assistée par plasma (PE- épitaxie à jets moléculaires (MBE) sur des ALD). En effet, celle-ci utilise un équipement de substrats de GaAs. Pour des épaisseurs dépôt chimique en phase vapeur assisté par inférieures à 1200 nm, la concentration de plasma et elle repose sur l'interaction de la défauts est négligeable et n'affecte pas fortement surface avec les atomes de Ga et P provenant les propriétés photoélectriques, tandis que que respectivement du triméthylgallium et de la pour une épaisseur de 1600 nm, la forte phosphine qui sont injectés alternativement. concentration de défauts détectés réduit la durée Nous avons également fait croître des couches en de vie des porteurs photogénérés, et conduit à utilisant un processus continu (fournissant une baisse significative du rendement quantique simultanément les atomes P et Ga) et observé que externe et des performances de la cellule. leurs propriétés électriques et structurelles La deuxième partie du travail est consacrée à étaient moins bonnes que celles obtenues par la l'étude de cellules solaires à une et plusieurs méthode PE-ALD proposée. Nous avons exploré jonctions avec des couches actives de l'influence des conditions de croissance sur les (In)GaP(As)N obtenues par MBE sur des hétérostructures GaP / Si. Nous avons constaté substrats respectifs de GaP et de Si. Nous avons qu'une faible puissance de plasma RF conduit à trouvé que les cellules solaires de type p-i-n avec de meilleures propriétés photoélectriques, des couches actives de GaPAsN non dopé structurelles et à moins de défauts, grâce à une présentaient de meilleures performances que les meilleure passivation du substrat de silicium. En cellules solaires de type p-n avec des couches outre, nous avons démontré que, contrairement à actives de GaPAsN dopé n. De plus, les cellules des résultats de la littérature utilisant des solaires avec une couche d'absorbeur en GaPAsN procédés MBE, la technique PE-ALD n'affecte non dopé présentent de meilleures propriétés pas ou très peu les propriétés électroniques des photoélectriques et des concentrations de défauts substrats de silicium et aucune désactivation des dopants n'a été observée. Université Paris-Saclay Espace Technologique / Immeuble Discovery Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France ii Title : Multijunction solar cells from monolithic integration of dilute nitrides on gallium arsenide (GaAs) and silicon (Si) wafers: defect studies Keywords : solar cells, heterostructures, III-V compounds Abstract : Multi-junction solar cells based on concentrations, than those with an SDA III-V compounds have reached very high power InP/GaPN absorber layer. Different defect conversion efficiencies (46%). However, the levels were detected by capacitance methods in fabrication methods that are generally used are these materials and their parameters were complex and expensive for non-monolithic described in detail. We showed that a suitable bonded and inverted solar cells. This thesis is post-growth treatment could improve the devoted to the study of prospective methods to electronic quality of the GaPAsN layer and the increase the efficiency of monolithic solar cells. solar cell properties. Also, a triple-junction solar The work is focused on the study of cell was fabricated with active layers of i- electronically active defects in the materials GaPAsN and i-GaPN. All subcells were found constituting the solar cells by means of to be operating, leading to a large open circuit photoelectric and capacitance techniques voltage (>2.2 V), but the overall performance is (admittance spectroscopy, DLTS,…) and it can limited by the low value of the quantum be divided into three parts. efficiency due to low thicknesses of i-layers that The first part deals with single-junction solar should be increased for better absorption. cells wherein the absorber is made of i-layers of Finally, the third part is devoted to the study of 1 eV bandgap InGaAsN compounds with GaP layers grown on Si wafers at temperatures various thicknesses grown as sub-monolayer below 400 °C using an original method called digital alloys (SDA) of InAs/GaAsN by plasma-enhanced atomic-layer deposition (PE- molecular-beam epitaxy (MBE) on GaAs ALD). Indeed, it uses a plasma-enhanced wafers. The cell with 900 nm thick InGaAsN chemical vapor deposition equipment and it is exhibits the best photovoltaic performance and based on the alternate interaction of the wafer no defects could be evidenced from capacitance surface with Ga and P atoms coming from techniques. When the thickness is increased to injected trimethylgallium and phosphine, 1200 nm, defects were detected, but their respectively. We also grew layers using a concentration is low so it did not strongly affect continuous process (providing simultaneously the photoelectric properties. Further increase to the P and Ga atoms) and observed that their 1600 nm of the layer thickness was shown to electric and structural properties were poorer lead to a higher defect concentration causing a than that grown by the proposed PE-ALD change in the band diagram of the structure and method. The influence of growth conditions on lowering the lifetime of photogenerated carriers. the GaP/Si heterostructures was explored. We This could explain the drastic drop of the found that low RF-plasma power leads to better external quantum efficiency, and the overall photoelectric, structural and defect-related poor performance of the solar cell. properties, due to a better passivation of the The second part is devoted to the study of single- silicon wafer. In addition, we demonstrated that, and multi-junction solar cells with active layers contrary to results reported in the literature using of (In)GaP(As)N grown by molecular beam MBE processes, our growth process does not epitaxy (MBE) on GaP and Si wafers, affect the electronic properties of phosphorous respectively.
Recommended publications
  • Neutron Transmutation Doping of Silicon at Research Reactors
    Silicon at Research Silicon Reactors Neutron Transmutation Doping of Doping Neutron Transmutation IAEA-TECDOC-1681 IAEA-TECDOC-1681 n NEUTRON TRANSMUTATION DOPING OF SILICON AT RESEARCH REACTORS 130010–2 VIENNA ISSN 1011–4289 ISBN 978–92–0– INTERNATIONAL ATOMIC AGENCY ENERGY ATOMIC INTERNATIONAL Neutron Transmutation Doping of Silicon at Research Reactors The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GHANA NIGERIA ALBANIA GREECE NORWAY ALGERIA GUATEMALA OMAN ANGOLA HAITI PAKISTAN ARGENTINA HOLY SEE PALAU ARMENIA HONDURAS PANAMA AUSTRALIA HUNGARY PAPUA NEW GUINEA AUSTRIA ICELAND PARAGUAY AZERBAIJAN INDIA PERU BAHRAIN INDONESIA PHILIPPINES BANGLADESH IRAN, ISLAMIC REPUBLIC OF POLAND BELARUS IRAQ PORTUGAL IRELAND BELGIUM QATAR ISRAEL BELIZE REPUBLIC OF MOLDOVA BENIN ITALY ROMANIA BOLIVIA JAMAICA RUSSIAN FEDERATION BOSNIA AND HERZEGOVINA JAPAN SAUDI ARABIA BOTSWANA JORDAN SENEGAL BRAZIL KAZAKHSTAN SERBIA BULGARIA KENYA SEYCHELLES BURKINA FASO KOREA, REPUBLIC OF SIERRA LEONE BURUNDI KUWAIT SINGAPORE CAMBODIA KYRGYZSTAN CAMEROON LAO PEOPLES DEMOCRATIC SLOVAKIA CANADA REPUBLIC SLOVENIA CENTRAL AFRICAN LATVIA SOUTH AFRICA REPUBLIC LEBANON SPAIN CHAD LESOTHO SRI LANKA CHILE LIBERIA SUDAN CHINA LIBYA SWEDEN COLOMBIA LIECHTENSTEIN SWITZERLAND CONGO LITHUANIA SYRIAN ARAB REPUBLIC COSTA RICA LUXEMBOURG TAJIKISTAN CÔTE DIVOIRE MADAGASCAR THAILAND CROATIA MALAWI THE FORMER YUGOSLAV CUBA MALAYSIA REPUBLIC OF MACEDONIA CYPRUS MALI TUNISIA CZECH REPUBLIC MALTA TURKEY DEMOCRATIC REPUBLIC MARSHALL ISLANDS UGANDA
    [Show full text]
  • Modeling Techniques for Multijunction Solar Cells Meghan N
    NUSOD 2018 Modeling Techniques for Multijunction Solar Cells Meghan N. Beattie Karin Hinzer Matthew M. Wilkins SUNLAB, Centre for Research in SUNLAB, Centre for Research in SUNLAB, Centre for Research in Photonics Photonics Photonics University of Ottawa University of Ottawa University of Ottawa Ottawa, Canada Ottawa, Canada Ottawa, Canada [email protected] Christopher E. Valdivia SUNLAB, Centre for Research in Photonics University of Ottawa Ottawa, Canada Abstract—Multi-junction solar cell efficiencies far exceed density of defects at the interface [4]. Many of these defects those attainable with silicon photovoltaics. Recently, this propagate towards the surface, resulting in threading technology has been applied to photonic power converters with dislocations that inhibit minority carrier collection [3] In this conversion efficiencies higher than 65%. These devices operate research, we are investigating the use of a voided germanium well in part because of luminescent coupling that occurs in the interface layer to intercept dislocations before they reach the multijunction device. We present modeling results to explain surface, enabling epitaxial growth of high quality Ge, IV how this boosts device efficiencies by approximately 70 mV per (e.g. SiGeSn), and III-V (e.g. InGaAs, InGaP) junction in GaAs devices. Luminescent coupling also increases semiconductors on Si substrates. efficiency in devices with four more junctions, however, the high cost of materials remains a barrier to their widespread By modelling multijunction solar cell designs on Si use. Substantial cost reduction could be achieved by replacing substrates, we investigate the impact of threading the germanium substrate with a less expensive alternative: dislocations on device performance. With highly doped Si, silicon.
    [Show full text]
  • The Photoelectric Effect in Photocells Suggested Level: High School Physics Or Chemistry Classes
    The Photoelectric Effect in Photocells Suggested Level: High School Physics or Chemistry Classes LEARNING OUTCOME After engaging in background reading on electromagnetic energy and exploring the frequencies of various colors of light, students realize that it is useful to think of light waves as streams of particles called quanta, and understand that the energy of each quantum depends on its frequency. LESSON OVERVIEW This lesson introduces students to the photoelectric effect (the basic physical phenomenon underlying the operation of photovoltaic cells) and the role of quanta of various frequencies of electromagnetic energy in producing it. The inadequacy of the wave theory of light in explaining photovoltaic effects is explored, as is the ionization energies for elements in the third row of the periodic table. MATERIALS • Student handout • Roll of masking tape • Ball of yarn • Scrap paper SAFETY • There are no safety precautions for this lesson. TEACHING THE LESSON Begin by explaining the structure and operation of photovoltaic cells, covering the information in the student handout and drawing from the background information below. Stake off an area of the classroom in which about two-thirds of your students can stand. It could, for example, be bounded by tape on the floor. This area is to represent a photovoltaic cell. Have half of your students form a line dividing the area in half. They represent the electrons lined up on the p-side of the p-n junction. Stretch yarn from the n-type semiconductor to one student chosen to represent a light bulb and from that student to the p-type semiconductor.
    [Show full text]
  • Efficient Er/O Doped Silicon Light-Emitting Diodes at Communication Wavelength by Deep Cooling
    Efficient Er/O Doped Silicon Light-Emitting Diodes at Communication Wavelength by Deep Cooling Huimin Wen1,#, Jiajing He1,#, Jin Hong2,#, Fangyu Yue2* & Yaping Dan1* 1University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, China. 2Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai, 200241, China. #These authors contributed equally * To whom correspondence should be addressed: [email protected], [email protected] Abstract A silicon light source at communication wavelength is the bottleneck for developing monolithically integrated silicon photonics. Doping silicon with erbium ions was believed to be one of the most promising approaches but suffers from the aggregation of erbium ions that are efficient non-radiative centers, formed during the standard rapid thermal treatment. Here, we apply a deep cooling process following the high- temperature annealing to suppress the aggregation of erbium ions by flushing with Helium gas cooled in liquid nitrogen. The resultant light emitting efficiency is increased to a record 14% at room temperature, two orders of magnitude higher than the sample treated by the standard rapid thermal annealing. The deep-cooling-processed Si samples were further made into light-emitting diodes. Bright electroluminescence with a spectral peak at 1.54 µm from the silicon-based diodes was also observed at room temperature. With these results, it is promising to develop efficient silicon lasers at communication wavelength for the monolithically integrated silicon photonics. The monolithic integration of fiber optics with complementary metal-oxide- semiconductor (CMOS) integrated circuits will significantly speed up the computing and data transmission of current communication networks.1-3 This technology requires efficient silicon-based lasers at communication wavelengths.4, 5 Unfortunately, silicon is an indirect bandgap semiconductor and cannot emit light at communication wavelengths.
    [Show full text]
  • A New Strategy of Bi-Alkali Metal Doping to Design Boron Phosphide Nanocages of High Nonlinear Optical Response with Better Thermodynamic Stability
    A New Strategy of bi-Alkali Metal Doping to Design Boron Phosphide Nanocages of High Nonlinear Optical Response with Better Thermodynamic Stability Rimsha Baloach University of Education Khurshid Ayub University of Education Tariq Mahmood University of Education Anila Asif University of Education Sobia Tabassum University of Education Mazhar Amjad Gilani ( [email protected] ) University of Education Original Research Full Papers Keywords: Boron phosphide (B12P12), Bi-alkali metal doping, Nonlinear optical response (NLO), Density functional theory Posted Date: February 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-207373/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Journal of Inorganic and Organometallic Polymers and Materials on April 16th, 2021. See the published version at https://doi.org/10.1007/s10904-021-02000-6. A New Strategy of bi-Alkali Metal Doping to Design Boron Phosphide Nanocages of High Nonlinear Optical Response with Better Thermodynamic Stability ABSTRACT: Nonlinear optical materials possess high rank in fields of optics owing to their impacts, utilization and extended applications in industrial sector. Therefore, design of molecular systems with high nonlinear optical response along with high thermodynamic stability is a dire need of this era. Hence, the present study involves investigation of bi-alkali metal doped boron phosphide nanocages M2@B12P12 (M=Li, Na, K) in search of stable nonlinear optical materials. The investigation includes execution of geometrical and opto-electronic properties of complexes by means of density functional theory (DFT) computations. Bi-doped alkali metal atoms introduce excess of electrons in the host B12P12 nanocage.
    [Show full text]
  • Recent Advances in Electrical Doping of 2D Semiconductor Materials: Methods, Analyses, and Applications
    nanomaterials Review Recent Advances in Electrical Doping of 2D Semiconductor Materials: Methods, Analyses, and Applications Hocheon Yoo 1,2,† , Keun Heo 3,† , Md. Hasan Raza Ansari 1,2 and Seongjae Cho 1,2,* 1 Department of Electronic Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea; [email protected] (H.Y.); [email protected] (M.H.R.A.) 2 Graduate School of IT Convergence Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea 3 Department of Semiconductor Science & Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Korea; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Two-dimensional materials have garnered interest from the perspectives of physics, materi- als, and applied electronics owing to their outstanding physical and chemical properties. Advances in exfoliation and synthesis technologies have enabled preparation and electrical characterization of various atomically thin films of semiconductor transition metal dichalcogenides (TMDs). Their two-dimensional structures and electromagnetic spectra coupled to bandgaps in the visible region indicate their suitability for digital electronics and optoelectronics. To further expand the potential applications of these two-dimensional semiconductor materials, technologies capable of precisely controlling the electrical properties of the material are essential. Doping has been traditionally used to effectively change the electrical and electronic properties of materials through relatively simple processes. To change the electrical properties, substances that can donate or remove electrons are Citation: Yoo, H.; Heo, K.; added. Doping of atomically thin two-dimensional semiconductor materials is similar to that used Ansari, M..H.R.; Cho, S.
    [Show full text]
  • Designing Band Gap of Graphene by B and N Dopant Atoms
    Designing band gap of graphene by B and N dopant atoms Pooja Rani and V.K. Jindal1 Department of Physics, Panjab University, Chandigarh-160014, India Ab-initio calculations have been performed to study the geometry and electronic structure of boron (B) and nitrogen (N) doped graphene sheet. The effect of doping has been investigated by varying the concentrations of dopants from 2 % (one atom of the dopant in 50 host atoms) to 12 % (six dopant atoms in 50 atoms host atoms) and also by considering different doping sites for the same concentration of substitutional doping. All the calculations have been performed by using VASP (Vienna Ab-initio Simulation Package) based on density functional theory. By B and N doping p-type and n-type doping is induced respectively in the graphene sheet. While the planar structure of the graphene sheet remains unaffected on doping, the electronic properties change from semimetal to semiconductor with increasing number of dopants. It has been observed that isomers formed differ significantly in the stability, bond length and band gap introduced. The band gap is maximum when dopants are placed at same sublattice points of graphene due to combined effect of symmetry breaking of sub lattices and the band gap is closed when dopants are placed at adjacent positions (alternate sublattice positions). These interesting results provide the possibility of tuning the band gap of graphene as required and its application in electronic devices such as replacements to Pt based catalysts in Polymer Electrolytic Fuel Cell (PEFC). INTRODUCTION Graphene is the name given to a single layer of graphite, made up of sp2 hybridized carbon atoms arranged in a honeycomb lattice, consisting of two interpenetrating triangular sub-lattices A and B (Fig.
    [Show full text]
  • Introduction to Photovoltaic Technology WGJHM Van Sark, Utrecht University, Utrecht, the Netherlands
    1.02 Introduction to Photovoltaic Technology WGJHM van Sark, Utrecht University, Utrecht, The Netherlands © 2012 Elsevier Ltd. 1.02.1 Introduction 5 1.02.2 Guide to the Reader 6 1.02.2.1 Quick Guide 6 1.02.2.2 Detailed Guide 7 1.02.2.2.1 Part 1: Introduction 7 1.02.2.2.2 Part 2: Economics and environment 7 1.02.2.2.3 Part 3: Resource and potential 8 1.02.2.2.4 Part 4: Basics of PV 8 1.02.2.2.5 Part 5: Technology 8 1.02.2.2.6 Part 6: Applications 10 1.02.3 Conclusion 11 References 11 Glossary Photovoltaic system A number of PV modules combined Balance of system All components of a PV energy system in a system in arrays, ranging from a few watts capacity to except the photovoltaics (PV) modules. multimegawatts capacity. Grid parity The situation when the electricity generation Photovoltaic technology generations PV technologies cost of solar PV in dollar or Euro per kilowatt-hour equals can be classified as first-, second-, and third-generation the price a consumer is charged by the utility for power technologies. First-generation technologies are from the grid. Note, grid parity for retail markets is commercially available silicon wafer-based technologies, different from wholesale electricity markets. second-generation technologies are commercially Inverter Electronic device that converts direct electricity to available thin-film technologies, and third-generation alternating current electricity. technologies are those based on new concepts and Photovoltaic energy system A combination of a PV materials that are not (yet) commercialized.
    [Show full text]
  • The History of Solar
    Solar technology isn’t new. Its history spans from the 7th Century B.C. to today. We started out concentrating the sun’s heat with glass and mirrors to light fires. Today, we have everything from solar-powered buildings to solar- powered vehicles. Here you can learn more about the milestones in the Byron Stafford, historical development of solar technology, century by NREL / PIX10730 Byron Stafford, century, and year by year. You can also glimpse the future. NREL / PIX05370 This timeline lists the milestones in the historical development of solar technology from the 7th Century B.C. to the 1200s A.D. 7th Century B.C. Magnifying glass used to concentrate sun’s rays to make fire and to burn ants. 3rd Century B.C. Courtesy of Greeks and Romans use burning mirrors to light torches for religious purposes. New Vision Technologies, Inc./ Images ©2000 NVTech.com 2nd Century B.C. As early as 212 BC, the Greek scientist, Archimedes, used the reflective properties of bronze shields to focus sunlight and to set fire to wooden ships from the Roman Empire which were besieging Syracuse. (Although no proof of such a feat exists, the Greek navy recreated the experiment in 1973 and successfully set fire to a wooden boat at a distance of 50 meters.) 20 A.D. Chinese document use of burning mirrors to light torches for religious purposes. 1st to 4th Century A.D. The famous Roman bathhouses in the first to fourth centuries A.D. had large south facing windows to let in the sun’s warmth.
    [Show full text]
  • Polymeric Materials for Conversion of Electromagnetic Waves from the Sun to Electric Power
    polymers Review Polymeric Materials for Conversion of Electromagnetic Waves from the Sun to Electric Power SK Manirul Haque 1, Jorge Alfredo Ardila-Rey 2, Yunusa Umar 1 ID , Habibur Rahman 3, Abdullahi Abubakar Mas’ud 4,*, Firdaus Muhammad-Sukki 5 ID and Ricardo Albarracín 6 ID 1 Department of Chemical and Process Engineering Technology, Jubail Industrial College, P.O. Box 10099, Jubail 31961, Saudi Arabia; [email protected] (S.M.H.); [email protected] (Y.U.) 2 Department of Electrical Engineering, Universidad Técnica Federico Santa María, Santiago de Chile 8940000, Chile; [email protected] 3 Department of General Studies, Jubail Industrial College, P.O. Box 10099, Jubail 31961, Saudi Arabia; [email protected] 4 Department of Electrical and Electronics Engineering, Jubail Industrial College, P.O. Box 10099, Jubail 319261, Saudi Arabia 5 School of Engineering, Robert Gordon University, Garthdee Road, Aberdeen AB10 7QB, Scotland, UK; [email protected] 6 Departamento de Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada, Escuela Técnica Superior de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +966-53-813-8814 Received: 10 February 2018; Accepted: 6 March 2018; Published: 12 March 2018 Abstract: Solar photoelectric energy converted into electricity requires large surface areas with incident light and flexible materials to capture these light emissions. Currently, sunlight rays are converted to electrical energy using silicon polymeric material with efficiency up to 22%. The majority of the energy is lost during conversion due to an energy gap between sunlight photons and polymer energy transformation.
    [Show full text]
  • Doping of Semiconductors N Doping This Involves Substituting Si by Neighboring Elements That Contribute Excess Electrons
    Materials 100A, Class 12, Electrical Properties etc Ram Seshadri MRL 2031, x6129 [email protected]; http://www.mrl.ucsb.edu/∼seshadri/teach.html Doping of semiconductors n doping This involves substituting Si by neighboring elements that contribute excess electrons. For example, small amounts of P or As can substitute Si. Since P/As have 5 valence electrons, they behave like Si plus an extra electron. This extra electron contributes to electrical conductivity, and with a sufficiently large number of such dopant atoms, the material can displays metallic conductivity. With smaller amounts, one has extrinsic n-type semiconduction. Rather than n and p being equal, the n electrons from the donor usually totally outweigh the intrinsic n and p type carriers so that: σ ∼ n|e|µe The donor levels created by substituting Si by P or As lie just below the bottom of the conduction band. Thermal energy is usually sufficient to promote the donor electrons into the conduction band. electron from P Energy CB electron pair Donor levels VB p doping This involves substituting Si by neighboring atom that has one less electron than Si, for example, by B or Al. The substituent atom then creates a “hole” around it, that can hop from one site to another. The hopping of a hole in one direction corresponds to the hopping of an electron in the opposite direction. Once again, the dominant conduction process is because of the dopant. σ ∼ p|e|µh hole from Al Energy CB electron pair Acceptor levels VB T dependence of the carrier concentration The expression: 1 Materials 100A, Class 12, Electrical Properties etc Eg ρ = ρ0 exp( ) 2kBT can inverted and written in terms of the conductivity −Eg σ = σ0 exp( ) 2kBT Now σ = n|e|µe or σ = p|e|µh.
    [Show full text]
  • Determination of the Main Parameters of the Photovoltaic Solar Module
    E3S Web of Conferences 191, 01004 (2020) https://doi.org/10.1051/e3sconf/202019101004 REEE 2020 Determination of the main parameters of the photovoltaic solar module Baydaulet A.Urmashev1, Murat Kunelbayev2*, Almas N.Temirbekov3, Syrym Kassenov4, Zhadra Zhaksylykova5, Farida Amenova6 1,3Department of Computer Science, Kazakh National University named after al-Farabi, Almaty, Republic of Kazakhstan 2Institute Information and Computational Technologies CS MES RK, Almaty, Republic of Kazakhstan 4Faculty of Mechanical Mathematics, al-Farabi Kazakh National University, Almaty, Kazakhstan 5Abay Kazakh National Pedagogical University, Almaty, Republic of Kazakhstan 6S. Amanzholov East Kazakhstan State University, Department of Mathematics, Faculty of Science and Technology Ust-Kamenogorsk, Republic of Kazakhstan Abstract. This article deals with the determination of the main operating parameters of a photovoltaic solar module. In laboratory tests, the study of the dependence of current, voltage and power on time and density of solar radiation, as well as monitoring of environmental parameters: temperature and humidity of the outside air. Analysis of the test results shows that a photoelectric module with an installed capacity of 800 W and a total battery capacity of 800 Ah provides the electric power industry with a daily consumption of 2.0 ... 2.2 kWh. The discharge time of the battery varies from 11.7 to 3.5 hours when the average electric load of the consumer changes from 300 to 1000 watts. homogeneous structure. The basis for the formation of cells that are suitable silicon-sized blocks. 1 Introduction They are cut into plates whose thickness is Solar cells in the production of electricity from about 0.3 mm.
    [Show full text]