Conifers ID Practice

Total Page:16

File Type:pdf, Size:1020Kb

Conifers ID Practice conifers ID practice order Pinales: Families • Cupressaceae (cypress, junipers, false cedars and redwoods) • Pinaceae (pines, cedars, firs, hemlock, larch & spruces) • Taxaceae • Cephalotaxaceae • Sciadopityaceae • Podocarpaceae • Araucariaceae Tree ID exercise #1 Eastern hemlock Tsuga canadensis 1 Needles or scale like 2 Needles less than 1 inch long or scale-like, 10 Most needles not scale-like, and at least ⅓ inch long, 11 Needles flat, extending only to the sides of the branch, 12 Needles not deciduous, with 2 parallel white lines on the underside of the needles. Found in western Piedmont and mountains Tree ID exercise #2 Eastern Red Cedar Juniperus virginiana L. 1 Needles or scale like 2 Needles less than 1 inch long or scale-like, 10 Most needles scale-like and less than ⅓ inch long,, 13 Young needles prickly, up to ⅜ inch long, older needles scale-like, 1/16 inch long, bark tan to reddish brown and shreddy. Bluish fruit ⅛ inch in diameter Tree ID exercise #3 Virginia Pine Pinus virginiana Mill. 1 Needles or scale like 2 Needles at least 1 inch long 3 Needles in groups of 2 or 3, 4 Needles mostly in groups of 2 8 Needles less than 3 inches 9 Needles 1½ to 3 inches, yellow-green and twisted, cones 1½ to 3 inches long. Scaly bark on older trees, may be orange-brown on upper trunk and large limbs Tree ID exercise #4 Loblolly Pine Pinus taeda 1 Needles or scale like 2 Needles at least 1 inch long 3 Needles in groups of 2 or 3, 4 Needles mostly in groups of 3 5 Needles generally longer than 6 inches, 6 Needles 6 to 9 inches, cones 3 to 6 inches long Our common pines Needle Resin Needles in Cone Length Species Length in Pockets Clusters of: in Inches Inches Present? White 5 3 to 5 4 to 8 No Virginia 2, rarely 3 1.5 to 3 < 3 No Loblolly 3, rarely 2 5 to 9 2 to 6 No Shortleaf 2 rarely 3 3 to 5 < 3 Yes Longleaf 3 rarely 2 > 9 6 to 10 No Pitch 3 < 5 1 to 3.5 No Conifer groups Tree ID exercise #5 Norway spruce Picea abies.
Recommended publications
  • Department of Planning and Zoning
    Department of Planning and Zoning Subject: Howard County Landscape Manual Updates: Recommended Street Tree List (Appendix B) and Recommended Plant List (Appendix C) - Effective July 1, 2010 To: DLD Review Staff Homebuilders Committee From: Kent Sheubrooks, Acting Chief Division of Land Development Date: July 1, 2010 Purpose: The purpose of this policy memorandum is to update the Recommended Plant Lists presently contained in the Landscape Manual. The plant lists were created for the first edition of the Manual in 1993 before information was available about invasive qualities of certain recommended plants contained in those lists (Norway Maple, Bradford Pear, etc.). Additionally, diseases and pests have made some other plants undesirable (Ash, Austrian Pine, etc.). The Howard County General Plan 2000 and subsequent environmental and community planning publications such as the Route 1 and Route 40 Manuals and the Green Neighborhood Design Guidelines have promoted the desirability of using native plants in landscape plantings. Therefore, this policy seeks to update the Recommended Plant Lists by identifying invasive plant species and disease or pest ridden plants for their removal and prohibition from further planting in Howard County and to add other available native plants which have desirable characteristics for street tree or general landscape use for inclusion on the Recommended Plant Lists. Please note that a comprehensive review of the street tree and landscape tree lists were conducted for the purpose of this update, however, only
    [Show full text]
  • Estimating Numbers of Embryonic Lethals in Conifers
    Heredity 69(1992)308—314 Received 26 November 1991 OThe Genetical Society of Great Britain Estimating numbers of embryonic lethals in conifers OUTI SAVOLAINEN, KATRI KARKKAINEN & HELMI KUITTINEN* Department of Genetics, University of Oulu, Oulu, Fin/and and *Department of Genetics, University of Helsinki, He/sink,, Fin/and Conifershave recessive lethal genes that eliminate most selfed embryos during seed development. It has been estimated that Scots pine has, on average, nine recessive lethals which act during seed development. Such high numbers are not consistent with the level of outcrossing, about 0.9—0.95, which has been observed in natural populations. Correcting for environmental mortality or using partial selfings provides significantly lower estimates of lethals. A similar discordance with numbers of lethals and observed outcrossing rates is true for other species. Keywords:embryoniclethals, inbreeding depression, outcrossing, Pinus sylvestris, Picea omorika. Introduction Reproduction system of conifers Conifershave no self-incompatibility mechanisms but Theproportion of self-pollination in conifers is early-acting inbreeding depression eliminates selfed variable. Sarvas (1962) suggested an average of 26 per embryos before seed maturation (Sarvas, 1962; cent for Pinus sylvestris, while Koski (1970) estimated Hagman & Mikkola, 1963). A genetic model for this values of self-fertilization around 10 per cent. The inbreeding depression has been developed by Koski genera Pinus and Picea have polyzygotic poly- (1971) and Bramlett & Popham (1971). Koski (1971, embryony, i.e. the ovules contain several archegonia. In 1973) has estimated that Pinus sylvestris and Picea Pinus sylvestris, the most common number of arche- abies have on average nine and 10 recessive lethals, gonia is two but it can range from one to five.
    [Show full text]
  • Hwd”Rni -I I Southern Rest SO-296 Experimen?” Station July, 1963
    c=.. United States I &=*$ Departmenlt of ‘$!j’!&’ Argriculture Forest Service hWD”rnI -I I Southern rest SO-296 Experimen?” Station July, 1963 Lightning Strike Simulation for Studying Southern Pine Bark and Engraver Beetle Attacks Mitchel C. Miller SUMMARY Endemic populations of the southern pine beetle is probably conservative; actual values could be (Dendroctonus frontalis Zimm.) and Ips spp. at- considerably higher. tacked loblolly pilnes (Pinus taeda L.) on which light- Lightning struck trees may attract SPB with a re- ning strikes were simulated with detonating cord lease of volatile oleoresin fractions from the shower in the field. Southern pine beetles were reared in of finely divided bark and needle particles (Taylor successive generations in these trees from fall 1981 1973, Lorio and Yandle 1978); struck trees offer a through spring 1982; only Ips spp. attacked treated favorable attack and brood development site for trees through December 1982. Lightning strike SPB and Ips spp. as a result of reduced oleoresin simulation provides an alternative means of studying exudation pressure, reduced oleoresin flow, re- bark beetle attack and opens the way for com- duced relative water content and increased reduc- parisons with nat;ural lightning strikes. ing-sugar content of inner bark (Hodges and Pickard Keywords: Lightning strike simulation, southern 1971). Anderson and Anderson (1968) associated pine beetle, Ips, Dendroctonus frontalis. successful attack by three Ips species on a light- ning struck loblolly pine with reduced oleoresin
    [Show full text]
  • Overcoming Dormancy in Loblolly Pine (Pinus Taeda L.)
    Reprinted from: Edwards, D.G.W., compiler and editor. 1993. "Dormancy and barriers to germination." Proc. Internal. Sympos. IUFRO Project Group P2.04-00 (Seed Problems). Victoria, British Columbia Canada ' April 23-26, 1991. Forestry Canada, Pacific Forestry Centre, Victoria, B.C. Overcoming dormancy in loblolly pine (Pinus taeda L.) F.T. BONNER AND C.A. HARRINGTON u.s. Department of Agriculture, Forest Service Southern Forest Experiment Station, Starkville, MS 39759, U.S.A. and Pacific Northwest Research Station, Olympia, WA 98502, U.S.A. Abstract Dormancy patterns in loblolly pine (Pinus taeda L.) were examined by comparing various parameters of germination rate. Both linear and polynomial models showed that mean germination time (MGT) was the most sensitive to chilling period. MGT was then used in a test of a new chilling technique that employed 24-h warm interruptions of chilling. This procedure produced faster rates of germination (lower MGT) in one group of 9 lots, but a second test with 15 lots yielded negative responses to any type of stratification. Resume Chez Ie pin a encens (Pinus taeda L.), les caracteristiques de la dormance ont ete examinees par comparaison de differents parametres du taux de germination. Des modeles lineaires comme polynomiaux ont montre que Ie temps moyen de germination etait Ie plus sensible a la periode d'entreposage en chambre froide. Cette duree moyenne a ensuite ete mise a profit dans l'essai d'une nouvelle technique d'entreposage en chambre froide qui comporte des interruptions de 24 h de rechauffement. Cette technique a accelere les taux de germination (temps moyen de germination raccourci) dans un groupe de 9 lots, mais lors d'un second essai sur 15 lots, a conduit a des resultats negatifs, peu importe Ie type de stratification.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Pines in the Arboretum
    UNIVERSITY OF MINNESOTA MtJ ARBORETUM REVIEW No. 32-198 PETER C. MOE Pines in the Arboretum Pines are probably the best known of the conifers native to The genus Pinus is divided into hard and soft pines based on the northern hemisphere. They occur naturally from the up­ the hardness of wood, fundamental leaf anatomy, and other lands in the tropics to the limits of tree growth near the Arctic characteristics. The soft or white pines usually have needles in Circle and are widely grown throughout the world for timber clusters of five with one vascular bundle visible in cross sec­ and as ornamentals. In Minnesota we are limited by our cli­ tions. Most hard pines have needles in clusters of two or three mate to the more cold hardy species. This review will be with two vascular bundles visible in cross sections. For the limited to these hardy species, their cultivars, and a few hy­ discussion here, however, this natural division will be ignored brids that are being evaluated at the Arboretum. and an alphabetical listing of species will be used. Where neces­ Pines are readily distinguished from other common conifers sary for clarity, reference will be made to the proper groups by their needle-like leaves borne in clusters of two to five, of particular species. spirally arranged on the stem. Spruce (Picea) and fir (Abies), Of the more than 90 species of pine, the following 31 are or for example, bear single leaves spirally arranged. Larch (Larix) have been grown at the Arboretum. It should be noted that and true cedar (Cedrus) bear their leaves in a dense cluster of many of the following comments and recommendations are indefinite number, whereas juniper (Juniperus) and arborvitae based primarily on observations made at the University of (Thuja) and their related genera usually bear scalelikie or nee­ Minnesota Landscape Arboretum, and plant performance dlelike leaves that are opposite or borne in groups of three.
    [Show full text]
  • Holiday Tree Selection and Care John J
    Holiday Tree Selection and Care John J. Pipoly III, Ph.D., FLS UF-IFAS/Broward County Extension Education Parks and Recreation Division [email protected] Abies concolor Violacea Pseudotsuga menziesii Pinus sylvestris Violacea White Fir Douglas Fir Scotts or Scotch Pine Types of Holiday Trees- Common Name Scientific Name Plant Family Name Violacea White Fir Abies concolor 'Violacea' Pinaceae White Fir Abies concolor Pinaceae Japanese Fir Abies firma Pinaceae Southern Red Cedar Juniperus silicola Cupressaceae Eastern Red Cedar Juniperus virginiana Cupressaceae Eastern White Pine Pinus strobus Pinaceae Glauca Eastern White Pine Pinus strobus 'Glauca' Pinaceae Scotch Pine Pinus sylvestris Pinaceae Virginia Pine Pinus virginiana Pinaceae Douglas Fir Pseudotsgua menziesii Pinaceae Rocky Mountain Douglas Fir Pseudotsgua menziesii var. glauca Pinaceae http://www.flchristmastrees.com/treefacts/TypesofTrees.htm MORE TYPES OF HOLIDAY TREES SOLD IN SOUTH FLORIDA Southern Red Cedar Eastern Red Cedar Virginia pine Juniperus silicicola Juniperus virginiana Pinus virginiana Selecting and Purchasing Your Tree 1. Measure the area in your home where you will display your tree. Trees on display will appear much smaller than they really are so you should have the maximum width and height calculated before going to the tree sales area. Bring the measuring tape with you so you can verify dimensions before buying. 2. Once you decide on the species and its dimensions, you should conduct the PULL test by grasping a branch ca. 6 inches below the branch tip, and while pressing your thumb to the inside of your first two fingers, gently pull away to see if needles fall or if the tree is fresh.
    [Show full text]
  • Identification of Conifer Trees in Iowa This Publication Is Designed to Help Identify the Most Common Trees Found in Iowa
    Identification of Conifer Trees in Iowa This publication is designed to help identify the most common trees found in Iowa. It is based on vegetative characteristics including leaves, fruit, and bark. It is neither complete nor without possible oversights. Separate species are grouped by similar characteristics, mainly based on type and arrangement of leaves. These groups are; awl- or scale- like needles; single needles, flattened with rounded tips; single needles, square in cross section, with pointed tips; and needles in bundles or fasticles of two or more. Remember, vegetative character- istics are quite variable; use more than one specimen for comparison. Awl- or scale-like needles Juniperus Virginiana Eastern Red Cedar Leaves are dark green; leaves are both awl- and scale-like; cone is dark blue and berry-like. Thuja occidentalis Northern White Cedar Leaves are flattened and only of the scale type; cones have 4-6 scales; foliage is light green. Juniperus communis Common Juniper Leaves are awl shaped; cone is dark blue and berry-like. Pm-1383 | May 1996 Single needles, flattened with rounded tips Pseudotsuga menziesii Douglas Fir Needles occur on raised pegs; 3/4-11/4 inches in length; cones have 3-pointed bracts between the cone scales. Abies balsamea Abies concolor Balsam Fir White (Concolor) Fir Needles are blunt and notched at Needles are somewhat pointed, the tip; 3/4-11/2 inches in length. curved towards the branch top and 11/2-3 inches in length; silver green in color. Single needles, Picea abies Norway Spruce square in cross Needles are 1/2-1 inch long; section, with needles are dark green; foliage appears to droop or weep; cone pointed tips is 4-7 inches long.
    [Show full text]
  • Introgression Between Pinus Taeda L. and Pinus Echinata Mill
    Introgression between Pinus taeda L. and Pinus echinata Mill. Jiwang Chen 1, C. G. Tauer l , Guihua Bai1, and Yinghua Huang1 Key words: cpDNA; introgression; microsatellite; nuclear ribosomal DNA; loblolly pine; shortleaf pine INTRODUCTION Loblolly pine (Pinus taeda L.) and shortleaf pine (Pinus echinata Mill.) have widely overlapping geographic ranges. Hybridization between the two species has interested tree breeders for a long time. Morphologically, the two pine species are different. The needles of loblolly pine are 6 to 9 inches long, usually with three yellow-green needles per fascicle; but shortleaf pine needles are 3 to 5 inches long, with two or three dark yellow- green slender and flexible needles per fascicle. Loblolly pine also has larger cones than shortleaf, as well as other differences, however, these characters offer limited help when the genotypes of the parents and their probable hybrids are compounded by environmental factors The limitations of morphological characters resulted in the identification of the allozyme marker IDH (isocitrate dehydrogenase) to identify hybrids (Huneycutt and Askew, 1989). The high frequency of IDH variation seen in natural shortleaf pine populations outside the natural range of loblolly pine (Rajiv et al., 1997) suggests either profuse hybridization between the two species or that IDH is an unreliable marker. These data required us to look for new markers to confirm the identity of putative hybrids. A more extensive study (relative to the study of Rajiv et al., 1997), sampling a larger portion of shortleaf-loblolly pine sympatric population, was conducted to further explore the nature and extent of these hybrids in the native populations.
    [Show full text]
  • Tfsbbstudy.Pdf
    Introduction Results Pine bark beetles, including the mountain pine beetle (MPB), Table 1. Effects of abamectin (Aba) injection treatments on the success of Ips engraver beetle adult Trial 1: Evaluation of bolts collected from treated and untreated Dendroctonus ponderosae Hopkins, and southern pine beetle (SPB), D. attack, brood development, and success of cerambycid larvae in loblolly pine logs in Texas: 2008 - loblolly pine trees in 2008 - 2011 indicated that a similar number frontalis Zimmermann, are some of the more important forest pests in 2011. of Ips engraver beetles attacked the bolts regardless of treatment the United States (Billings et al. 2004) with local and regional outbreaks (Table 1). However, the success of the Ips in constructing galleries causing severe economic losses on a nearly annual basis. Other species (> 2.5 cm) or producing brood was significantly less for both of pine bark beetles, including the secondary pests Ips avulsus (Eichoff), injection treatments, regardless of season, compared to the I. grandicollis (Eichoff), and I. calligraphus (Germar), also are known to checks (Fig. 3). Similarly, the number of cerambycid egg niches cause significant tree mortality particularly during severe drought periods was similar for all treatments, but there were significantly less in the southeastern U.S (Wilkinson & Foltz 1982). The current abundance phloem consumed by larvae in the injected logs. of susceptible trees and forests underlines the need to develop new methods to protect individual trees from bark beetle attacks. Trial 2: Nearly all baited trees were heavily attacked by MPB within 3 weeks. A final assessment for the 2010 season was Protection of individual trees with conducted in September 2011 and showed heavy mortality (60%, insecticides has historically 18 of 30) of untreated lodgepole pine trees (Fig.
    [Show full text]
  • Rhizopogon Togasawariana Sp. Nov., the First Report of Rhizopogon Associated with an Asian Species of Pseudotsuga
    Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga Mujic, A. B., Hosaka, K., & Spatafora, J. W. (2014). Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga. Mycologia, 106(1), 105-112. doi:10.3852/13-055 10.3852/13-055 Allen Press Inc. Version of Record http://hdl.handle.net/1957/47245 http://cdss.library.oregonstate.edu/sa-termsofuse Mycologia, 106(1), 2014, pp. 105–112. DOI: 10.3852/13-055 # 2014 by The Mycological Society of America, Lawrence, KS 66044-8897 Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga Alija B. Mujic1 the natural and anthropogenic range of the family Department of Botany and Plant Pathology, Oregon and plays an important ecological role in the State University, Corvallis, Oregon 97331-2902 establishment and maintenance of forests (Tweig et Kentaro Hosaka al. 2007, Simard 2009). The foundational species Department of Botany, National Museum of Nature concepts for genus Rhizopogon were established in the and Science, Tsukuba-shi, Ibaraki, 305-0005, Japan North American monograph of Smith and Zeller (1966), and a detailed monograph also has been Joseph W. Spatafora produced for European Rhizopogon species (Martı´n Department of Botany and Plant Pathology, Oregon 1996). However, few data on Asian species of State University, Corvallis, Oregon 97331-2902 Rhizopogon have been incorporated into phylogenetic and taxonomic studies and only a limited account of Asian Rhizopogon species has been published for EM Abstract: Rhizopogon subgenus Villosuli are the only associates of Pinus (Hosford and Trappe 1988).
    [Show full text]
  • Toumeyella Parvicornis Plant Pest Factsheet
    Plant Pest Factsheet Pine tortoise scale Toumeyella parvicornis Figure 1. Pine tortoise scale Toumeyella parvicornis adult females on Virginia pine Pinus virginiana, U.S.A. © Lacy Hyche, Auburn University, Bugwood.org Background Pine tortoise scale Toumeyella parvicornis (Cockerell) (Hemiptera: Coccidae) is a Nearctic pest of pine reported from Europe in Italy for the first time in 2015. It is contributing to the decline and mortality of stone pine (Pinus pinea) in and around Naples, Campania region, particularly in urban areas. In North America it is a sporadic pest of pine around the Great Lakes and as far north as Canada. It is a highly invasive pest in the Caribbean, where in the last decade it has decimated the native Caicos pine (Pinus caribaea var. bahamensis) forests in the Turks and Caicos Islands (a UK Overseas Territory), causing 95% tree mortality and changing the ecology in large areas of the islands. Figure 2. Toumeyella parvicornis immatures on Figure 3. Toumeyella parvicornis teneral adult Pinus pinea needles, Italy © C. Malumphy females, U.S.A. © Albert Mayfield, USDA Forest Service, Bugwood.org Figure 4. Toumeyella parvicornis teneral adult Figure 5. Toumeyella parvicornis male wax tests female covered in a dry powdery wax, Italy © C. (protective covers), Italy © C. Malumphy Malumphy Figure 6. Bark-feeding adult female Toumeyella Figure 7. Needle-feeding adult female Toumeyella parvicornis are globular, the small orange dots parvicornis are elongate-oval and moderately are first instars; on Pinus sylvestris, U.S.A. © Jill convex; on Pinus caribaea, Turks and Caicos Islands O'Donnell, MSU Extension, Bugwood.org © C. Malumphy Figure 8.
    [Show full text]