Arf9 Ar Isotopic Dating of the H Orserace Quartz Diorite and Its Bearing on Age Relationships in the Kaltlhdin Batholith-Travele
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Petrographic Study of a Quartz Diorite Stock Near Superior, Pinal County, Arizona
Petrographic study of a quartz diorite stock near Superior, Pinal County, Arizona Item Type text; Thesis-Reproduction (electronic); maps Authors Puckett, James Carl, 1940- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 23/09/2021 23:40:37 Link to Item http://hdl.handle.net/10150/554062 PETROGRAPHIC STUDY OF A QUARTZ DIORITE STOCK NEAR SUPERIOR, PINAL COUNTY, ARIZONA by James Carl Puckett, Jr. A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 0 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of re quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg ment the proposed use of the material is in the interests of scholar ship. In all other instances, however, permission must be obtained from the author. -
Lunar Silica-Bearing Diorite: a Lithology from the Moon with Implications for Igneous Differentiation
50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 2008.pdf LUNAR SILICA-BEARING DIORITE: A LITHOLOGY FROM THE MOON WITH IMPLICATIONS FOR IGNEOUS DIFFERENTIATION. T. J. Fagan1* and S. Ohkawa1, 1Dept. Earth Sci., Waseda Univ., 1-6-1 Nishi- waseda, Shinjuku, Tokyo, 169-8050, Japan (*[email protected]). Introduction: Silica-rich igneous (“granitic”) ratios and relatively high F concentrations indicate that rocks are rare on the Moon, but have been detected by the analyzed grains are apatite (not merrillite). remote sensing on the lunar surface [e.g., 1], and in Results: The silica-bearing diorite (Sil-Di) is dom- Apollo samples and lunar meteorites [e.g., 2-5]. To date, inated by pyroxene (55 mode%), plagioclase feldspar lunar granitic samples have been characterized by high (36%), silica (4.4%), ilmenite (3.9%) and K-feldspar concentrations of incompatible elements and/or mafic (0.3%) (Fig. 2). Apatite and troilite also occur. The Sil- silicates with high Fe# (atomic Fe/[Fe+Mg]x100) [2-5], Di exhibits interlocking, igneous textures with elongate both features consistent with origin from late-stage re- plagioclase feldspar (Fig. 2). Plagioclase feldspar has sidual liquids or very low degree partial melting. Fur- nearly constant composition of An88Ab11, but pyroxene thermore, silica-rich rocks detected by remote sensing has a wide range of zoning (Fig. 3). often combine the Christiansen feature in infra-red spec- The modal composition of the Sil-Di is plagioclase- tra with high incompatible element concentrations (e.g., rich compared to many silica-bearing igneous rocks Th detected by gamma-ray spectroscopy [1]), again re- from the Moon (Fig. -
Rocks and Geology: General Information
Rocks and Geology: General Information Rocks are the foundation of the earth. Rock provides the firmament beneath our oceans and seas and it covers 28% of the earth's surface that we all call home. When we travel any distance in any given direction, it is impossible not to see the tremendous variety in color, texture, and shape of the rocks around us. Rocks are composed of one or more minerals. Limestone, for example, is composed primarily of the mineral calcite. Granite can be made up of the minerals quartz, orthoclase and plagioclase feldspars, hornblende, and biotite mica. Rocks are classified by their mineral composition as well as the environment in which they were formed. There are three major classifications of rocks: igneous, sedimentary and metamorphic. A question: Which kind of rock came first? Think about it....... The following sections describe the conditions and processes that create the landscape we admire and live on here on "terra firma." IGNEOUS ROCKS The millions of tons of molten rock that poured out of the volcano Paracutin in Mexico, and from the eruption of Mount St. Helens in Washington State illustrate one of the methods of igneous rock formation. Igneous (from fire) rocks are formed when bodies of hot liquid rock called magma located beneath the earth's crust, find their way upward through the crust by way of fissures or faults. If the magma reaches the earth's surface, it forms extrusive igneous rocks or volcanic rocks. If the magma cools before it reaches the surface, it forms bodies of rock called intrusive igneous rocks or plutonic rocks. -
A) Diorite B) Gabbro C) Andesite D) Pumice 1. the Photograph Below
1. The photograph below shows an igneous rock with 4. The photograph below shows the intergrown crystals mineral crystals ranging in size from 2 to 6 of a pegmatite rock. millimeters. The rock is composed of 58% plagioclase feldspar, 26% amphibole, and 16% biotite. What is the name of this rock? A) diorite B) gabbro Which characteristic provides the best evidence that this pegmatite solidified deep underground? C) andesite D) pumice 2. Which igneous rock is dark colored, cooled rapidly on A) low density Earth's surface, and is composed mainly of B) light color plagioclase feldspar, olivine, and pyroxene? C) felsic composition D) very coarse texture A) obsidian B) rhyolite C) gabbro D) scoria 3. Which intrusive igneous rock could be composed of approximately 60% pyroxene, 25% plagioclase feldspar, 10% olivine, and 5% amphibole? A) granite B) rhyolite C) gabbro D) basalt 5. The graph below shows the relationship between the cooling time of magma and the size of the crystals produced. Which graph correctly shows the relative positions of the igneous rocks granite, rhyolite, and pumice? A) B) C) D) 6. The diagrams below show the crystals of four different rocks viewed through the same hand lens. Which crystals most likely formed from molten material that cooled and solidified most rapidly? A) B) C) D) 7. "Which granite sample most likely formed from magma that cooled and solidified at the slowest rate?" A) " " B) " " C) " " D) " " Base your answers to questions 8 and 9 on the diagram below and on your knowledge of Earth science. The diagram represents a portion of the scheme for igneous rock identification. -
Oregon Geologic Digital Compilation Rules for Lithology Merge Information Entry
State of Oregon Department of Geology and Mineral Industries Vicki S. McConnell, State Geologist OREGON GEOLOGIC DIGITAL COMPILATION RULES FOR LITHOLOGY MERGE INFORMATION ENTRY G E O L O G Y F A N O D T N M I E N M E T R R A A L P I E N D D U N S O T G R E I R E S O 1937 2006 Revisions: Feburary 2, 2005 January 1, 2006 NOTICE The Oregon Department of Geology and Mineral Industries is publishing this paper because the infor- mation furthers the mission of the Department. To facilitate timely distribution of the information, this report is published as received from the authors and has not been edited to our usual standards. Oregon Department of Geology and Mineral Industries Oregon Geologic Digital Compilation Published in conformance with ORS 516.030 For copies of this publication or other information about Oregon’s geology and natural resources, contact: Nature of the Northwest Information Center 800 NE Oregon Street #5 Portland, Oregon 97232 (971) 673-1555 http://www.naturenw.org Oregon Department of Geology and Mineral Industries - Oregon Geologic Digital Compilation i RULES FOR LITHOLOGY MERGE INFORMATION ENTRY The lithology merge unit contains 5 parts, separated by periods: Major characteristic.Lithology.Layering.Crystals/Grains.Engineering Lithology Merge Unit label (Lith_Mrg_U field in GIS polygon file): major_characteristic.LITHOLOGY.Layering.Crystals/Grains.Engineering major characteristic - lower case, places the unit into a general category .LITHOLOGY - in upper case, generally the compositional/common chemical lithologic name(s) -
The Boulder Creek Batholith, Front Range, Colorado
I u The Boulder Creek Batholith, Front Range, Colorado By DOLORES J. GABLE GEOLOGICAL SURVEY PROFESSIONAL PAPER 1101 A study of differentiation, assimilation, and origin of a granodiorite batholith showing interrelated differences in chemistry and mineralogy in the batholith and cogenetic rock types UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1980 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Cataloging in Publication Data Gable, Dolores J. 1922- The Boulder Creek batholith, Front Range, Colorado (Geological Survey Professional Paper 1101) Bibliography: p. 85 Supt. of Docs. No.: I 19.16:1101 1. Batholiths Colorado Boulder region. I. Title. II. Series: United States Geological Survey Professional Paper 1101. QE611.5.U6G3 551.8; 8 78-24482 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract................................................ 1 Origin of the Boulder Creek Granodiorite and the Twin Introduction ............................................ 1 Spruce Quartz Monzonite .......................... 62 Previous work........................................... 2 Mineralogy, petrology, and chemistry of minerals in the Techniques used in this study ............................ 2 batholith.......................................... 64 Geologic setting ......................................... 3 Biotite ...'........................................... 64 The batholith .......................................... -
Preliminary Geologic Map of the Mount Baker 30- by 60-Minute Quadrangle, Washington
U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Preliminary Geologic Map of the Mount Baker 30- by 60-Minute Quadrangle, Washington by R.W. Tabor1 , R.A. Haugerud2, D.B. Booth3, and E.H. Brown4 Prepared in cooperation with the Washington State Department of Natural Resources, Division of Geology and Earth Resources, Olympia, Washington, 98504 OPEN FILE REPORT 94-403 This report is preliminary and has not been reviewed for conformity with U.S.Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. iu.S.G.S., Menlo Park, California 94025 2U.S.G.S., University of Washington, AJ-20, Seattle, Washington 98195 3SWMD, King County Department of Public Works, Seattle, Washington, 98104 ^Department of Geology, Western Washington University, Bellingham, Washington 98225 INTRODUCTION The Mount Baker 30- by 60-minute quadrangle encompasses rocks and structures that represent the essence of North Cascade geology. The quadrangle is mostly rugged and remote and includes much of the North Cascade National Park and several dedicated Wilderness areas managed by the U.S. Forest Service. Geologic exploration has been slow and difficult. In 1858 George Gibbs (1874) ascended the Skagit River part way to begin the geographic and geologic exploration of the North Cascades. In 1901, Reginald Daly (1912) surveyed the 49th parallel along the Canadian side of the border, and George Smith and Frank Calkins (1904) surveyed the United States' side. Daly's exhaustive report was the first attempt to synthesize what has become an extremely complicated geologic story. -
Geologic Map of the North Cascade Range, Washington by Ralph A
Prepared in cooperation with Washington State Division of Geology and Earth Resources, U.S. National Park Service, and U.S. Forest Service Geologic Map of the North Cascade Range, Washington By Ralph A. Haugerud and Rowland W. Tabor Nontechnical pamphlet to accompany Scientific Investigations Map 2940 Looking south from the North Klawatti Glacier [Mbse]. In the right foreground, the glacier breaks into a heavily crevassed icefall where it descends steeply. Rock in the foreground knob is Eldorado Orthogneiss (unit TKgo), a 90 million-year-old stitching pluton, which here includes numerous dikes of light- colored pegmatite. Mount Buckner on the left skyline and Mount Forbidden hidden in clouds are also eroded from the Eldorado Orthogneiss (photographed in 1987). 2009 U.S. Department of the Interior U.S. Geological Survey CONTENTS Introduction.....................................................................................................................................................1 Using this report ....................................................................................................................................1 Map preparation ...................................................................................................................................1 Major sources of new data .................................................................................................................1 Acknowledgments ................................................................................................................................2 -
Chemical and Physical Controls for Base Met Al Deposition in the Cascade Range of Washington
State of Washington Department of Natural Resources BERT L. COLE, Commissioner of Public Lands DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, Supervisor Bulletin No. 58 CHEMICAL AND PHYSICAL CONTROLS FOR BASE MET AL DEPOSITION IN THE CASCADE RANGE OF WASHINGTON By ALAN ROBERT GRANT STATE PRINTING PLANT ~ OLYMPIA, WASHINCTON 1969 For safe by Department of Natural Resources, Olympia, Washington. Price $1.50 Errata sheet for Washington Division of Mines and Geology Bulletin 58, Chemical and Physical Controls for Base Metal Deeosition in the Cascade Range of Washington ( By Alan Robert Grant Errors noted in the p-inted text are listed below. The editors regret these and possibly other mistakes in editing. Page 12 Paragraph 5, line 2, "heliocpter" should read helicopter. 14 Paragraph 6, line 6, •programed" should read programmed. 15 Figure 2, 11 Ntesoic" in explanation should read Mesozoic. 19 Paragraph 4, line 7, "authochthonous" should read autochthonous. 22 Paragraph 6, line 4, "extension Ntesozoic 11 should read exten•ioo.o f 1l1e Mesozoic. 22 Paragraph 7, line 1, ''aforemention" should read aforementioned. 25 Paragraph 4, line 7, "Misch" should be changed to Vance. 25 Paragraph 7, line 7, "Totoosh, pluton" should read Totoosh pluton. 26 Paragraph 1, line 4, "classical" should read classic. 32 Paragraph 4, line 1, "alkaline" should be changed to acidic intrusive. 33 Paragraph 1, line 1, "alkaline" should be changed to acidic intrusive. 48 Une 3 of Figure 16 caption, "alkaline" should be changed to acidic intrusive~ 49 Paragraph 3, line 5, "Creasy" should read Creasey. 51 Paragraph 3, line 1, "Creasy II should read Creasey. -
Archean Rocks of the Diorite Window Block in the Southern Framing of the Monchegorsk (2.5 Ga) Layered Mafic-Ultramafic Complex (Kola Peninsula, Russia)
minerals Article Archean Rocks of the Diorite Window Block in the Southern Framing of the Monchegorsk (2.5 Ga) Layered Mafic-Ultramafic Complex (Kola Peninsula, Russia) Pavel Pripachkin *, Tatiana Rundkvist, Nikolay Groshev , Aiya Bazai and Pavel Serov Geological Institute—subdivision of the Federal Research Centre, Kola Science Centre of the Russian Academy of Sciences, Fersman St. 14, Apatity 184209, Russia; [email protected] (T.R.); [email protected] (N.G.); [email protected] (A.B.); [email protected] (P.S.) * Correspondence: [email protected] Received: 24 July 2020; Accepted: 24 September 2020; Published: 25 September 2020 Abstract: The intermediate rocks classified as diorite-gneisses occur within the southern part of the Monchegorsk (2.5 Ga) layered mafic-ultramafic complex (Kola Peninsula, Russia). These diorite-gneisses belong to a block historically known as the diorite window (DW) block. The same rocks occur in a framing of the Monchegorsk complex. The DW block is predominantly composed of diorite-gneisses and, to a lesser degree, of amphibolites. Multi-ordinal banding, complex folding, boudinage and metamorphic transformations, garnet porphyroblasts, and tourmaline veinlets are typical of the diorite-gneisses. In accordance with the U-Pb isotope data, the age of the diorite-gneisses in the DW block is 2736.0 4.6 Ma. The Sm-Nd mineral (garnet, biotite, ± and tourmaline) isochron for the DW rocks has yielded an age of 1806 23 Ma (related to the processes ± of the Svecofennian orogeny). The DW diorite-gneisses are compared with the metadiorites of the Gabbro-10 massif. The latter is a part of the Monchegorsk complex, with U-Pb crystallization age of 2498 6 Ma. -
Igneous Rocks
What is Igneous Rock? Earth’s crust is 4/5 igneous rock. Every igneous rock begins life as molten magma deep in the mantle. As magma migrates toward the surface, some of it chills and hardens Igneous underground into granite and other types of igneous rocks. Rocks Magma that makes it to the surface erupts in either flowing or explosive volcanoes, generating lava, geysers, and hot springs. http://www.soest.hawaii.edu/coasts/lecture/gg101/index.html Igneous rock crystallizes in Earth’s magma locations Extrusive igneous rock Intrusive igneous rock crystallizes within Earth’s crust. Intrusive igneous rock Extrusive igneous rock crystallizes upon Earth’s crust. 1 As magma crystallizes a network of interlocking Igneous Rocks minerals develops. The composition and • Igneous Rocks are named on the basis of texture of the resulting rock is determined by the ir tttexture and composition. these minerals. Composition of a rock is the assemblage of minerals it contains. Texture of a rock is the size and arrangement of the minerals it contains. Texture Texture Aphanitic texture - mineral grains too small to see with the unaided eye (Basalt) Phaneritic texture - with large minerals (Granite) Large crystals had a long time to crystallize. Small crystals had a short time to crystallize. Therefore, this is an intrusive rock Therefore, this is an extrusive rock 2 Texture Texture Glassy texture - without Vesicular texture – many pits obvious minerals (Obsidian) from gas escape (Basalt) No crystals. This is an extrusive rock. Extrusive rock. Composition Texture -
Glossary of Geological Terms
GLOSSARY OF GEOLOGICAL TERMS These terms relate to prospecting and exploration, to the regional geology of Newfoundland and Labrador, and to some of the geological environments and mineral occurrences preserved in the province. Some common rocks, textures and structural terms are also defined. You may come across some of these terms when reading company assessment files, government reports or papers from journals. Underlined words in definitions are explained elsewhere in the glossary. New material will be added as needed - check back often. - A - A-HORIZON SOIL: the uppermost layer of soil also referred to as topsoil. This is the layer of mineral soil with the most organic matter accumulation and soil life. This layer is not usually selected in soil surveys. ADIT: an opening that is driven horizontally (into the side of a mountain or hill) to access a mineral deposit. AIRBORNE SURVEY: a geophysical survey done from the air by systematically crossing an area or mineral property using aircraft outfitted with a variety of sensitive instruments designed to measure variations in the earth=s magnetic, gravitational, electro-magnetic fields, and/or the radiation (Radiometric Surveys) emitted by rocks at or near the surface. These surveys detect anomalies. AIRBORNE MAGNETIC (or AEROMAG) SURVEYS: regional or local magnetic surveys that measures deviations in the earth=s magnetic field and carried out by flying a magnetometer along flight lines on a pre-determined grid pattern. The lower the aircraft and the closer the flight lines, the more sensitive is the survey and the more detail in the resultant maps. Aeromag maps produced from these surveys are important exploration tools and have played a major role in many major discoveries (e.g., the Olympic Dam deposit in Australia).