An MPEG-2 to H.264 Intra Transcoding Method Using Adaptive Macroblock Pair Type Selection

Total Page:16

File Type:pdf, Size:1020Kb

An MPEG-2 to H.264 Intra Transcoding Method Using Adaptive Macroblock Pair Type Selection Paper An MPEG-2 to H.264 Intra Transcoding Method using Adaptive Macroblock Pair Type Selection Takeshi YOSHITOME (Member), Kazuto KAMIKURA NTT Cyber Space Laboratories, NTT Corporation 〈Summary〉 We propose an MPEG-2 to H.264 intra transcoding for interlace stream of frame and field macroblock intermingled to improve our previous work. This method uses an adaptive MB pair type selection method that keeps as many discrete cosine transform (DCT) coefficients of the original MPEG-2 bitstream as possible to avoid mixture of re- quantization noise. Experimental results show that the proposed method improves the peak signal-to-noise ratio (PSNR) values by about 0.33–1.55 dB over those of the conventional methods. Keywords: transcoding, MPEG-2, H.264/AVC, adaptive MB pair type selection ing the number of bits in I-pictures is important for 1. Introduction obtaining a smaller bitstream size because I-pictures High quality video transcoding will be one of the have a larger number of bits than P- or B-pictures. most important technologies of visual applications in Our proposed method is effective for both I-pictures the future. For example, a video service using ter- and for the intra MBs included in P- and B-pictures. restrial digital broadcating for Internet protocol (IP) This method will also improve P- and B-picture im- network users has started in Japan 1). In this service, age quality because these pictures refer to the high the MPEG-2 2) compressed digital broadcating sig- quality I-pictures that the method generates. nals sent to a network center, transcoded to H.264 3), 2. Noise Reduction Mechanism of Using and transfered to network users. The most impor- First Encoding Information tant factor in such transcoding services is reducing re-quantization noise during the transcoding proce- A data flow example of transcoding with first dure. It is well known that all decisions of the first MPEG-2 encoding information is shown in Fig. 1. encoding procedure are repeated during the transcod- For simplicity, the macro-block (MB) size is 2 × ing procedure to reduce re-quantization noise 4).This 2. A quantization parameter is represented using noise suppression mechanism is effective when the quantizer-scale-code (QSC) in MPEG-2, or using QP compression standards of the first and second encod- in H.264. Because this paper deals with MPEG-2 ing are identical, such as for MPEG-2/MPEG-2 or and H.264, we use the quantization step Δ which H.264/H.264 conversion. In our previous work 5),6), means the divisor of the DCT coefficient. For ex- we expanded this approach to apply it to MPEG- ample, Δ = 16 represents QSC = 12 in MPEG-2 2/H.264 transcoding for progressive bit-streams. In when q scale type = 1, and represents QP =28in this paper, we show how we used an adaptive mac- H.264. roblock (MB) pair type selection method to apply this In the first MPEG-2 encoding, an input MB that noise suppression mechanism to interlace intra bit- includes the pixel values (A, B, C, and D) is processed streams that consist of frame and field MBs. Reduc- by orthogonal transformation. Then, the transformed 33 The Journal of the IIEEJ vol. 40 no. 1(2011) Table 1 Major differences between MPEG-2 and H.264 MPEG-2 H.264 H.264 re-enact 4 × 4, 4 × 8, Block size 16 × 16 8 × 4, 8 × 8 OK 8 × 16, 16 × 8 16 × 16 Vector resolution 0.5pix 0.25pix OK Intra prediction no yes ? Orthogonal DCT integer ? Transformation DCT Size of orthogonal 8 × 8 8 × 8 (*1) OK Transformation 4 × 4 entropy coding VLC CAVLC OK CABAC Fig. 1 Second encoding with first MPEG-2 encod- Specification of yes yes (*1) OK ing information Quantization matrix Interval of linear log. ? Quantization step discrete cosine transform (DCT) coefficients (44, 33, Specifications of each pair ? 21, and 12) are quantized by a quantization step Δ = Field/FrameMB MB MBs 10. This first quantization process adds quantization (*1): only High-Profile noise to the input MB. In the second encoding, every type of encoding in- act the effect of this noise reduction mechanism, we formation, such as MB type, motion vector, DCT must control H.264 behavior to imitate MPEG-2 be- mode, and quantization step, is re-used. This re- havior as much as possible when the first encoder is use of encoding information does not produce any MPEG-2 and the second encoder is H.264. The two significant difference between motion compensation encoders are similar but are not upper compatible. errors of the first encoding and those of the second The differences between them are listed in Table 1. encoding, nor does it produce any notable difference These differences should be absorbed to recreate between the DCT coefficients of the two encodings. this noise reduction mechanism. The “ok” means This means that the re-quantization noise added in that H.264 can recreate the same MPEG-2 function the second encoding phase is almost zero. Unfortu- in the table. The “?” means that H.264 can process nately, there is no bit reduction because the output the function only in a similar but not identical way bitstream size of the first and second encodings is al- that MPEG-2 does. For example, certain MPEG-2 most the same when these encodings make use of the quantization steps cannot be expressed exactly using same compression tool. But transcoding using dif- H.264 steps because the former are defined by a linear ferent compression tools, such as those for MPEG-2 interval and the latter are defined by a logarithmic in- and H.264, may reduce the bitstream size because the terval. The following four functions are not exactly performance of H.264’s entropy coding (CABAC) is the same between MPEG-2 and H.264: (1) Internal higher than that of MPEG-2’s entropy coding (VLC). picture motion compensation, (2) Orthogonal trans- formation, (3) Available quantization step, and (4) 3. Differences between MPEG-2 and Frame/Field MB specification. The differences from H.264 (1) to (3) were analyzed in our previous work 5),6).In As depicted in Fig. 1, there is a close resemblance the second half of this section, we describe the dif- between the decoded images of the first and second ferences of (4) in detail and show a way to overcome decoders when the compression standards of the first them. and second encodings are exactly the same. To reen- The DCT type specifications for MPEG-2 and 34 Paper : An MPEG-2 to H.264 Intra Transcoding using Adaptive Macroblock Pair Type Selection H.264 MBs are shown in Fig. 2. Although a DCT between upper and lower MBs is about 86%. type can be specified for each MB independently in For the remaining 14%, single agreement is ob- MPEG-2, H.264 specifies the DCT type for each pair tained between MPEG-2 and H.264 for upper or lower of MBs that adjoin each other above and below. MBs, so the overall MB agreement obtained is 93%. When an upper MB is specified as the frame DCT In other words, the quantization noise reduction is anditslowerMBisspecifiedasthefieldDCTin not effective for only 7% of the MBs. MPEG-2, the DCT type of one MB is different from 4. Simple Transcoding Example its DCT type specified in H.264, either type frame or field DCT in H.264. In this section, we show an actual transcoding ex- The noise reduction in the second encoder, men- ample that indicates the re-quantization noise is re- tioned in Section 2, decreases when many disagree- duced when the MPEG-2 DCT type is equal to the ments of DCT type exist in an MB pair. We therefore H.264 DCT type. The MPEG-2 compressed image measure the disagreement quantity using the MPEG- using the quantization step Δ1 =20isshownatthe 2 bit-streams generated by five commercial encoders. right side of Fig. 3. We show the transcoding process These encoders are NEC’s VC-5310, Mitsubishi’s for a certain MB pair, shown at the left side of the 7) 9) MH2200E, and three NTT’s ~ . The percentage figure. The upper MB of this pair was transformed by for which the upper MB has the same DCT type as MPEG-2’s frame DCT, and the lower MB was trans- the lower MB is shown in Table 2. The input images formed by field DCT. Let us assume this MB pair is are 12 sequences included in the standard HDTV se- transcoded using H.264’s frame DCT. Then, Eq. (1) quences. The average of the DCT type agreement shows the 8 × 8pixelsvalue,Up, located at the top- left corner of the upper MB. The DCT coefficients of the upper MB, Ut, are shown in Eq. (2). This coeffi- cient are quantized by re-quantization step Δ2 = 20, which is equals to MPEG-2’s quantization step Δ1. The re-quantized DCT coefficients, Uq,areshownin Eq. (3). All the Uq coefficients are multiples of 20 because DCT coefficients of Ut are quantized by 20. This process adds re-quantization noise. The mean square error of the 8 × 8 coefficients, U!MSE ,isshown Fig. 2 DCT type specification of macroblock in in Eq. (4). The sum total of the coefficients is 127.0. MPEG-2 and H.264 The 8 × 8 pixel values Lp, located at the top-left Table 2 Percentage of the DCT type agreement be- corner of the lower MB, are also transcoded in the tween upper and lower MBs in MPEG-2 same manner.
Recommended publications
  • Kulkarni Uta 2502M 11649.Pdf
    IMPLEMENTATION OF A FAST INTER-PREDICTION MODE DECISION IN H.264/AVC VIDEO ENCODER by AMRUTA KIRAN KULKARNI Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN ELECTRICAL ENGINEERING THE UNIVERSITY OF TEXAS AT ARLINGTON May 2012 ACKNOWLEDGEMENTS First and foremost, I would like to take this opportunity to offer my gratitude to my supervisor, Dr. K.R. Rao, who invested his precious time in me and has been a constant support throughout my thesis with his patience and profound knowledge. His motivation and enthusiasm helped me in all the time of research and writing of this thesis. His advising and mentoring have helped me complete my thesis. Besides my advisor, I would like to thank the rest of my thesis committee. I am also very grateful to Dr. Dongil Han for his continuous technical advice and financial support. I would like to acknowledge my research group partner, Santosh Kumar Muniyappa, for all the valuable discussions that we had together. It helped me in building confidence and motivated towards completing the thesis. Also, I thank all other lab mates and friends who helped me get through two years of graduate school. Finally, my sincere gratitude and love go to my family. They have been my role model and have always showed me right way. Last but not the least; I would like to thank my husband Amey Mahajan for his emotional and moral support. April 20, 2012 ii ABSTRACT IMPLEMENTATION OF A FAST INTER-PREDICTION MODE DECISION IN H.264/AVC VIDEO ENCODER Amruta Kulkarni, M.S The University of Texas at Arlington, 2011 Supervising Professor: K.R.
    [Show full text]
  • 1. in the New Document Dialog Box, on the General Tab, for Type, Choose Flash Document, Then Click______
    1. In the New Document dialog box, on the General tab, for type, choose Flash Document, then click____________. 1. Tab 2. Ok 3. Delete 4. Save 2. Specify the export ________ for classes in the movie. 1. Frame 2. Class 3. Loading 4. Main 3. To help manage the files in a large application, flash MX professional 2004 supports the concept of _________. 1. Files 2. Projects 3. Flash 4. Player 4. In the AppName directory, create a subdirectory named_______. 1. Source 2. Flash documents 3. Source code 4. Classes 5. In Flash, most applications are _________ and include __________ user interfaces. 1. Visual, Graphical 2. Visual, Flash 3. Graphical, Flash 4. Visual, AppName 6. Test locally by opening ________ in your web browser. 1. AppName.fla 2. AppName.html 3. AppName.swf 4. AppName 7. The AppName directory will contain everything in our project, including _________ and _____________ . 1. Source code, Final input 2. Input, Output 3. Source code, Final output 4. Source code, everything 8. In the AppName directory, create a subdirectory named_______. 1. Compiled application 2. Deploy 3. Final output 4. Source code 9. Every Flash application must include at least one ______________. 1. Flash document 2. AppName 3. Deploy 4. Source 10. In the AppName/Source directory, create a subdirectory named __________. 1. Source 2. Com 3. Some domain 4. AppName 11. In the AppName/Source/Com directory, create a sub directory named ______ 1. Some domain 2. Com 3. AppName 4. Source 12. A project is group of related _________ that can be managed via the project panel in the flash.
    [Show full text]
  • Discrete Cosine Transform for 8X8 Blocks with CUDA
    Discrete Cosine Transform for 8x8 Blocks with CUDA Anton Obukhov [email protected] Alexander Kharlamov [email protected] October 2008 Document Change History Version Date Responsible Reason for Change 0.8 24.03.2008 Alexander Kharlamov Initial release 0.9 25.03.2008 Anton Obukhov Added algorithm-specific parts, fixed some issues 1.0 17.10.2008 Anton Obukhov Revised document structure October 2008 2 Abstract In this whitepaper the Discrete Cosine Transform (DCT) is discussed. The two-dimensional variation of the transform that operates on 8x8 blocks (DCT8x8) is widely used in image and video coding because it exhibits high signal decorrelation rates and can be easily implemented on the majority of contemporary computing architectures. The key feature of the DCT8x8 is that any pair of 8x8 blocks can be processed independently. This makes possible fully parallel implementation of DCT8x8 by definition. Most of CPU-based implementations of DCT8x8 are firmly adjusted for operating using fixed point arithmetic but still appear to be rather costly as soon as blocks are processed in the sequential order by the single ALU. Performing DCT8x8 computation on GPU using NVIDIA CUDA technology gives significant performance boost even compared to a modern CPU. The proposed approach is accompanied with the sample code “DCT8x8” in the NVIDIA CUDA SDK. October 2008 3 1. Introduction The Discrete Cosine Transform (DCT) is a Fourier-like transform, which was first proposed by Ahmed et al . (1974). While the Fourier Transform represents a signal as the mixture of sines and cosines, the Cosine Transform performs only the cosine-series expansion.
    [Show full text]
  • Analysis Application for H.264 Video Encoding
    IT 10 061 Examensarbete 30 hp November 2010 Analysis Application for H.264 Video Encoding Ying Wang Institutionen för informationsteknologi Department of Information Technology Abstract Analysis Application for H.264 Video Encoding Ying Wang Teknisk- naturvetenskaplig fakultet UTH-enheten A video analysis application ERANA264(Ericsson Research h.264 video Besöksadress: ANalysis Application) is developed in Ångströmlaboratoriet Lägerhyddsvägen 1 this project. Erana264 is a tool that Hus 4, Plan 0 analyzes H.264 encoded video bitstreams, extracts the encoding information and Postadress: parameters, analyzes them in different Box 536 751 21 Uppsala stages and displays the results in a user friendly way. The intention is that Telefon: such an application would be used during 018 – 471 30 03 development and testing of video codecs. Telefax: The work is implemented on top of 018 – 471 30 00 existing H.264 encoder/decoder source code (C/C++) developed at Ericsson Hemsida: Research. http://www.teknat.uu.se/student Erana264 consists of three layers. The first layer is the H.264 decoder previously developed in Ericsson Research. By using the decoder APIs, the information is extracted from the bitstream and is sent to the higher layers. The second layer visualizes the different decoding stages, uses overlay to display some macro block and picture level information and provides a set of play back functions. The third layer analyzes and presents the statistics of prominent parameters in video compression process, such as video quality measurements, motion vector distribution, picture bit distribution etc. Key words: H.264, Video compression, Bitstream analysis, Video encoding Handledare: Zhuangfei Wu and Clinton Priddle Ämnesgranskare: Cris Luengo Examinator: Anders Jansson IT10061 Tryckt av: Reprocentralen ITC Acknowledgements Fist of all, I am heartily thankful to my supervisors, Fred Wu and Clinton Priddle, whose encouragement, supervision and support from the preliminary to the concluding level enabled me to develop an understanding of the subject.
    [Show full text]
  • CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Optimized AV1 Inter
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Optimized AV1 Inter Prediction using Binary classification techniques A graduate project submitted in partial fulfillment of the requirements for the degree of Master of Science in Software Engineering by Alex Kit Romero May 2020 The graduate project of Alex Kit Romero is approved: ____________________________________ ____________ Dr. Katya Mkrtchyan Date ____________________________________ ____________ Dr. Kyle Dewey Date ____________________________________ ____________ Dr. John J. Noga, Chair Date California State University, Northridge ii Dedication This project is dedicated to all of the Computer Science professors that I have come in contact with other the years who have inspired and encouraged me to pursue a career in computer science. The words and wisdom of these professors are what pushed me to try harder and accomplish more than I ever thought possible. I would like to give a big thanks to the open source community and my fellow cohort of computer science co-workers for always being there with answers to my numerous questions and inquiries. Without their guidance and expertise, I could not have been successful. Lastly, I would like to thank my friends and family who have supported and uplifted me throughout the years. Thank you for believing in me and always telling me to never give up. iii Table of Contents Signature Page ................................................................................................................................ ii Dedication .....................................................................................................................................
    [Show full text]
  • Video Coding Standards
    Module 8 Video Coding Standards Version 2 ECE IIT, Kharagpur Lesson 23 MPEG-1 standards Version 2 ECE IIT, Kharagpur Lesson objectives At the end of this lesson, the students should be able to : 1. Enlist the major video coding standards 2. State the basic objectives of MPEG-1 standard. 3. Enlist the set of constrained parameters in MPEG-1 4. Define the I- P- and B-pictures 5. Present the hierarchical data structure of MPEG-1 6. Define the macroblock modes supported by MPEG-1 23.0 Introduction In lesson 21 and lesson 22, we studied how to perform motion estimation and thereby temporally predict the video frames to exploit significant temporal redundancies present in the video sequence. The error in temporal prediction is encoded by standard transform domain techniques like the DCT, followed by quantization and entropy coding to exploit the spatial and statistical redundancies and achieve significant video compression. The video codecs therefore follow a hybrid coding structure in which DPCM is adopted in temporal domain and DCT or other transform domain techniques in spatial domain. Efforts to standardize video data exchange via storage media or via communication networks are actively in progress since early 1980s. A number of international video and audio standardization activities started within the International Telephone Consultative Committee (CCITT), followed by the International Radio Consultative Committee (CCIR), and the International Standards Organization / International Electrotechnical Commission (ISO/IEC). An experts group, known as the Motion Pictures Expects Group (MPEG) was established in 1988 in the framework of the Joint ISO/IEC Technical Committee with an objective to develop standards for coded representation of moving pictures, associated audio, and their combination for storage and retrieval of digital media.
    [Show full text]
  • AVC to the Max: How to Configure Encoder
    Contents Company overview …. ………………………………………………………………… 3 Introduction…………………………………………………………………………… 4 What is AVC….………………………………………………………………………… 6 Making sense of profiles, levels, and bitrate………………………………………... 7 Group of pictures and its structure..………………………………………………… 11 Macroblocks: partitioning and prediction modes….………………………………. 14 Eliminating spatial redundancy……………………………………………………… 15 Eliminating temporal redundancy……...……………………………………………. 17 Adaptive quantization……...………………………………………………………… 24 Deblocking filtering….….…………………………………………………………….. 26 Entropy encoding…………………………………….……………………………….. 2 8 Conclusion…………………………………………………………………………….. 29 Contact details..………………………………………………………………………. 30 2 www.elecard.com Company overview Elecard company, founded in 1988, is a leading provider of software products for encoding, decoding, processing, monitoring and analysis of video and audio data in 9700 companies various formats. Elecard is a vendor of professional software products and software development kits (SDKs); products for in - depth high - quality analysis and monitoring of the media content; countries 1 50 solutions for IPTV and OTT projects, digital TV broadcasting and video streaming; transcoding servers. Elecard is based in the United States, Russia, and China with 20M users headquarters located in Tomsk, Russia. Elecard products are highly appreciated and widely used by the leaders of IT industry such as Intel, Cisco, Netflix, Huawei, Blackmagic Design, etc. For more information, please visit www.elecard.com. 3 www.elecard.com Introduction Video compression is the key step in video processing. Compression allows broadcasters and premium TV providers to deliver their content to their audience. Many video compression standards currently exist in TV broadcasting. Each standard has different properties, some of which are better suited to traditional live TV while others are more suited to video on demand (VoD). Two basic standards can be identified in the history of video compression: • MPEG-2, a legacy codec used for SD video and early digital broadcasting.
    [Show full text]
  • Nvidia Video Codec Sdk - Encoder
    NVIDIA VIDEO CODEC SDK - ENCODER Programming Guide vNVENCODEAPI_PG-06155-001_v11 | July 2021 Table of Contents Chapter 1. Introduction........................................................................................................ 1 Chapter 2. Basic Encoding Flow.......................................................................................... 2 Chapter 3. Setting Up Hardware for Encoding....................................................................3 3.1. Opening an Encode Session.....................................................................................................3 3.1.1. Initializing encode device................................................................................................... 3 3.1.1.1. DirectX 9.......................................................................................................................3 3.1.1.2. DirectX 10.....................................................................................................................3 3.1.1.3. DirectX 11.....................................................................................................................4 3.1.1.4. DirectX 12.....................................................................................................................4 3.1.1.5. CUDA............................................................................................................................ 4 3.1.1.6. OpenGL........................................................................................................................
    [Show full text]
  • An Analysis of VP8, a New Video Codec for the Web Sean Cassidy
    Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 11-1-2011 An Analysis of VP8, a new video codec for the web Sean Cassidy Follow this and additional works at: http://scholarworks.rit.edu/theses Recommended Citation Cassidy, Sean, "An Analysis of VP8, a new video codec for the web" (2011). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. An Analysis of VP8, a New Video Codec for the Web by Sean A. Cassidy A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Engineering Supervised by Professor Dr. Andres Kwasinski Department of Computer Engineering Rochester Institute of Technology Rochester, NY November, 2011 Approved by: Dr. Andres Kwasinski R.I.T. Dept. of Computer Engineering Dr. Marcin Łukowiak R.I.T. Dept. of Computer Engineering Dr. Muhammad Shaaban R.I.T. Dept. of Computer Engineering Thesis Release Permission Form Rochester Institute of Technology Kate Gleason College of Engineering Title: An Analysis of VP8, a New Video Codec for the Web I, Sean A. Cassidy, hereby grant permission to the Wallace Memorial Library to repro- duce my thesis in whole or part. Sean A. Cassidy Date i Acknowledgements I would like to thank my thesis advisors, Dr. Andres Kwasinski, Dr. Marcin Łukowiak, and Dr. Muhammad Shaaban for their suggestions, advice, and support.
    [Show full text]
  • University of Texas at Arlington Dissertation Template
    IMPLEMENTATION AND ANALYSIS OF DIRECTIONAL DISCRETE COSINE TRANSFORM IN H.264 FOR BASELINE PROFILE by SHREYANKA SUBBARAYAPPA Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN ELECTRICAL ENGINEERING THE UNIVERSITY OF TEXAS AT ARLINGTON May 2012 Copyright © by Shreyanka Subbarayappa 2012 All Rights Reserved ACKNOWLEDGEMENTS Firstly, I would thank my advisor Prof. K. R. Rao for his valuable guidance and support, and his tireless guidance, dedication to his students and maintaining new trend in the research areas has inspired me a lot without which this thesis would not have been possible. I also like to thank the other members of my advisory committee Prof. W. Alan Davis and Prof. Kambiz Alavi for reviewing the thesis document and offering insightful comments. I appreciate all members of Multimedia Processing Lab, Tejas Sathe, Priyadarshini and Darshan Alagud for their support during my research work. I would also like to thank my friends Adarsh Keshavamurthy, Babu Hemanth Kumar, Raksha, Kirthi, Spoorthi, Premalatha, Sadaf, Tanaya, Karthik, Pooja, and my Intel manager Sumeet Kaur who kept me going through the trying times of my Masters. Finally, I am grateful to my family; my father Prof. H Subbarayappa, my mother Ms. Anasuya Subbarayappa, my sister Dr. Priyanka Subbarayappa, my brother-in-law Dr. Manju Jayram and my sweet little nephew Dishanth for their support, patience, and encouragement during my graduate journey. April 16, 2012 iii ABSTRACT IMPLEMENTATION AND ANALYSIS OF DIRECTIONAL DISCRETE COSINE TRANSFORM IN H.264 FOR BASELINE PROFILE Shreyanka Subbarayappa, M.S The University of Texas at Arlington, 2012 Supervising Professor: K.R.Rao H.264/AVC [1] is a video coding standard that has a wide range of applications ranging from high-end professional camera and editing systems to low-end mobile applications.
    [Show full text]
  • The Basics of Video Compression
    The Basics of Video Compression Marko Slyz February 18, 2003 (Sourcecoders talk) 1/18 Outline 1. Non-technical Survey of Video Compressors 2. Basic Description of MPEG 1 3. Discussion of Other Compressors 4. Numerical Comparisons 2/18 Some Applications of Video Compressors MPEG-1 Video-CD MPEG-2 HDTV, DVD (usually), some camcorders, current digital cable, TiVo/ReplayTV MPEG-4 (a.k.a. divx) internet video, future digital cable, at least one camcorder, cell phones. H.261, H.263 video conferencing (e.g. Polycom) H.26L (a.k.a. MPEG-4 part 10, JVT H.264?) (Not yet done?) Intended for both low-delay and high-delay applications. 3/18 Another Classification of Video Compressors MPEG-1 (?) Corona (MS) requires MPEG-2 royalties RealVideo ISO/IEC Standard MPEG-4 Sorenson ITU-T Standard doesn’t H.261 vp3 (on2) require H.263 Tarkin (ogg) royalties H.26L (base) WaveVideo (?) formally not formally standardized standardized 4/18 Basic Idea of MPEG 1 or 2 (and :::) An uncompressed video file consists of a sequence of frames. MPEG (often) uses DPCM between frames, and uses a block-based DCT within a frame. MPEG has lots of forward-adaptive parts, lots of static parts, and no (?), except for the DPCM just mentioned, backward-adaptive parts. 5/18 MPEG 1 or 2 Beginnings To code a particular frame, start by 1. transforming its colors into Y,Cb,Cr space, 2. then partitioning it into macroblocks, each of which consists of a 16x16 block of pixels from Y, and 8x8 blocks of the subsampled versions of Cb and Cr (4:2:0).
    [Show full text]
  • Redalyc.Performance Evaluation of Macroblock-Level Parallelization Of
    Revista Avances en Sistemas e Informática ISSN: 1657-7663 [email protected] Universidad Nacional de Colombia Colombia Alvarez, Mauricio; Ramirez, Alex; Valero, Mateo; Azevedo, Arnaldo; Meenderinck, Cor; Juurlink, Ben Performance evaluation of macroblock-level parallelization of H.264 decoding on a cc-NUMA multiprocessor architecture Revista Avances en Sistemas e Informática, vol. 6, núm. 1, junio, 2009, pp. 219-228 Universidad Nacional de Colombia Medellín, Colombia Available in: http://www.redalyc.org/articulo.oa?id=133112608024 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Performance evaluation of macroblock­level parallelization of H.264 decoding on a cc­NUMA multiprocessor architecture Evaluación del rendimiento paralelo en el nivel macro bloque del decodificador H.264 en una arquitectura multiprocesador cc­NUMA Mauricio Alvarez, Ing. 1, Alex Ramirez, PhD. 1;2, Mateo Valero, PhD. 1;2 Arnaldo Azevedo, MSc. 3, Cor Meenderinck, MSc. 3, Ben Juurlink, PhD 3 1. Universitat Politècnica de Catalunya, Barcelona, Spain. 2. Barcelona Supercomputing Center, Barcelona, Spain. 3. Delft University of Technology, Delft, The Netherlands [email protected], [email protected], cor, [email protected], [email protected], [email protected] Recibido para revisión 5 de junio de 2009, aceptado 5 de junio de 2009, versión final 5 de junio de 2009 Abstract—This paper presents a study of the performance scalability mejor escalabilidad. Este artículo incluye una evaluación del impacto en of a macroblock­level parallelization of the H.264 decoder for High sincronización en bloque APIs como hilos POSIX y extensiones de Definition (HD) applications on a multiprocessor architecture.
    [Show full text]