Proquest Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

Proquest Dissertations Study of group II introns in Euglena chloroplast genomes: Structure, processing and evolution Item Type text; Dissertation-Reproduction (electronic) Authors Zhang, Liqun, 1969- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 14:23:33 Link to Item http://hdl.handle.net/10150/282618 INFORMATION TO USERS This manuscript has been reproduced from the microfihn master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter &ce, while others may be fi-om any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UME a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each ori^al is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Infomiation Company 300 North Zed> Road, Ann Aibor MI 48106-1346 USA 313/761-4700 800/521-0600 STUDY OF GROUP H INTRONS EST EUGLENA CHLOROPLAST GENOMES - STRUCTURE, PROCESSING AND EVOLUTION by Liqun Zhang A Dissertation Submitted to the Faculty of the DEPARTMENT OF BIOCHEMISTRY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1998 UMl Nunber: 9829355 UMI Microform 9829355 Copyright 1998, by UMI Company. Ail rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 2 THE UNIVERSITY OF ARIZONA ® GRADUATE COLLEGE As members of the Final Examination Committee, we certify that we have read the dissertation prepared by LIQUN ZHANG entitled Study of Group II Introns in Euglena Chloroplast Genomes — Structure, Processing and Evolution and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philogophy 2/// Date ^ Date ""Tc*- Date Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copy of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. Dissertation Director Date 3 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in The University Library to be made available to borrowers under rules of the Library Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: 4 ACKNOWLEDGMENTS I would like to thank my advisor, Richard Hallick, for providing me the opportunity and the strict training to become a scientist. His strong encouragement and wise guidance have helped me tremendously during my research and study. I would also like to thank my committee members: Hans Bohnert, Don Bourque, Mark Dodson, William Montfort and Roy Parker, for their support and advice which helped me through so many research low tides. Thanks to my past and present lab members Donald Coppertino, Rober Drager, Jennifer Stevenson, Angie Boyer, Cathy Hibbert, Ling Hong, Kristin Jenkins, Mike Thompson, Mitch Favreau, Jane Huff and Natalie Doestch for their assistance and companionship. I'd like to specially thank Kristin and Natalie for their great effort helping me improve my technique writing skill. There are many friends outside my lab that have also given me strong support and advise. I would like to thank Wei Chen, Hua Sue, Li Zhang, Chunghong Mao, Nicoleta Constantin, David Whitacre and David Ascue. Thanks for helping me solve so many technical problems, providing me valuable information, editing my writings and, simply, for being great friends. They have made my six years of graduate school much more enjoyable. I would like to thank my family my father, Dongpei Chen, my mother, shouyu Zhang and my lovely sister, Cindy yao Chen, for being a strong support throughout my academic years, in China and in the States. Thanks for keeping home the warmest place on earth, thanks for telling me thousands of times that I can do this, thanks for inspiring me with your own achievements and persistent spirits. Specially, I would like to thank my dearly beloved husband, Charles Xiaobing Fang, thanks for being there for me all the time, thanks for hearing those endless complains and whining, and returning with encouragement and smart ideas. Without him, I would never pull it off. 5 DEDICATION I Would like to dedicate this thesis to my grandfather, Shouyi Zhang, my most respected person in the world, who has taught me, with his own words and deeds, how to be strong, confident, always decent and never, ever, give up. 6 TABLE OF CONTENTS LIST OFnCURES I 3 LIST OF TABLES 1 7 ABSTRACT I 8 CHAPTER I 2 0 INTRODUCTION 2 0 L The RNA world 2 0 Ribozyme 2 1 Retroelements 2 3 Introns 2 5 (1) Intron types, structures and splicing mechanisms 2 7 (2) Trans protein factors for intron splicing 3 2 II. Group II introns 3 4 The splicing process: the five steps 3 6 Strcutrual elements and functionalities 3 7 (1) Major ribozyme motifs 3 8 (2) Other tertiary intereaction elements 3 9 (3) Internally encoded proteins 4 2 Hydrolysis and trans-splicing of group II introns 4 3 Evolutionary relationship of group II introns and nuclear 7 spliceosome 4 4 III. Genus Euglena 4 6 The classification and taxonomy of Euglena 4 8 Phylogeny of Euglena 5 I IV Euglena gracilis chloroplast genome and the intron content.... 5 4 V. Thesis objectives 6 0 CHAPTER 2 6 3 THE EUGLENA GRACILIS INTRON-ENCODED MAT 2 LOCUS IS INTERRUPTED BY THREE ADDITIONAL GROUP H INTRONS 6 3 Introduction 6 3 Results 6 6 Identification of partially spliced psbC intron 2 pre- mRNAs by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) analysis 6 6 Three group II introns are located in domain IV of psbC intron 2 6 9 Characterization of internal 5'- and -3' splice sites within psbC intron 2 7 0 Intron secondary models 7 5 psbC intron 2 splicing pathway is partially ordered 7 9 Internal introns of psbC interrupt an open reading frame encoding a putative maturase 8 4 Discussion 8 7 8 A new category of twintron 8 7 A partially ordered psbC intron 2 splicing pathway 8 7 mat 2 may be required for splicing 8 8 Possible functions of mat 2 8 9 Evolution of mat 2 9 I Materials and methods 9 2 RNA isolation 9 2 cDNA synthesis 9 2 PCR analysis, cloning and sequencing 9 3 Computer analysis of orf 758 9 4 CHAPTERS 9 5 PSBC INTRON 2 AND MAT 2 ARE DEEPLY ROOTED IN GENUS EUGLENA, WITH VARIOUS INTERNAL INTRON CONTENT 9 5 Introduction 9 5 Results 9 8 PCR amplification of ten Euglena species 9 8 Determination of processing sites of psbC intron 2 homologues in E. viridis, E. granulata, E. anabaena, and E. spirogyra 1 02 Complete sequencing and identification of the external intron and mat 2 gene of the psbC intron 2 homologues of E. viridis, E. granulata, E. anabaena, and E. spirogyra 105 9 RT-PCR analysis and identification of internal introns in mat 2 homologues of E. viridis, E. granulata, E. anabaena and E. spirogyra 105 Processing of the internal introns in E. granulata is partially ordered 112 Comparative analysis of mat 2 sequences, and identification of conserved domains 115 Discussion I 1 8 psbC intron 2 and mat 2 are deeply rooted in Euglena species 1 1 8 High local conservation of mat 2 suggests a conserved function as an intron maturase 119 psbC2 intron 2 as the Euglena group II introns founder1 2 1 Internal introns and their evolutionary implications ....12 2 Materials and methods 124 Euglena cultures 124 Nucleic acid isolation 125 PCR and RT-PCR primers 125 PCR amplification, cloning and sequencing 126 RT-PCR amplification, cloning and analysis 127 CHAPTER 4 130 COMPARATIVE ANALYSIS AND SECODNARY STRUCTURE MODEL STUDY OF PSBC INTRON 2 EXTERNAL AND INTERNAL INTRONS 13 0 10 Introduction 1 30 Results I 3 2 Primary sequence comparison of psbC intron 2a 132 Comparative analysis of external intron 2as, establishing the secondary structure models 137 Analysis of domains I and II of psbC intron 2a 140 Sequence analysis and secondary structure model establishment of the internal introns, characterization of a mini-group II intron and identification of homologous intron 2ds 142 Discussion 1 49 The idenfitication of psbC intron 2 as a group II intron has been confirmed 149 The Euglena group II intron "microcosm" 150 The internal introns seem to have a much higher mutation rate 15 1 CHAPTER 5 153 EXPRESSION OF PARTIAL MAT 2 GENE OF EUGLENA GRACILIS IN E.
Recommended publications
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • Macroevolution of Complex Cytoskeletal Systems in Euglenids Brian S
    Review articles Macroevolution of complex cytoskeletal systems in euglenids Brian S. Leander,* Heather J. Esson, and Susana A. Breglia Summary and are capable of photosynthesis. The origin of plastids in Euglenids comprise a group of single-celled eukaryotes eukaryotes involved phagotrophic cells that engulfed and with diverse modes of nutrition, including phagotrophy and photosynthesis. The level of morphological diversity retained cyanobacterial prey, a process called ‘‘primary’’ present in this group provides an excellent system for endosymbiosis. The subsequent evolutionary history of demonstrating evolutionary transformations in morpho- photosynthesis in eukaryotes is exceedingly convoluted and logical characters. This diversity also provides compel- involved at least three independent endosymbiotic events ling evidence for major events in eukaryote evolution, between phagotrophic eukaryotes and eukaryotic prey cells such as the punctuated effects of secondary endo- that already contained primary plastids (e.g. green algae and symbiosis and mutations in underlying developmental (2,3) mechanisms. In this essay, we synthesize evidence for red algae). Once photosynthesis was established in a the origin, adaptive significance and diversification of the previously phagotrophic cell, the evolutionary pressures on euglenid cytoskeleton, especially pellicle ultrastructure, the cytoskeletal systems involved in locomotion and feeding pellicle surface patterns, pellicle strip number and the changed. This gave rise to fundamental modifications
    [Show full text]
  • The Revised Classification of Eukaryotes
    Published in Journal of Eukaryotic Microbiology 59, issue 5, 429-514, 2012 which should be used for any reference to this work 1 The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D. MITCHELL,l SHARON E. MOZLEY-STANRIDGE,p LAURA W. PARFREY,q JAN PAWLOWSKI,r SONJA RUECKERT,s LAURA SHADWICK,t CONRAD L. SCHOCH,u ALEXEY SMIRNOVv and FREDERICK W. SPIEGELt aDepartment of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada, and bDepartment of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and cDepartment of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, 02881, USA, and dBiology Center and Faculty of Sciences, Institute of Parasitology, University of South Bohemia, Cˇeske´ Budeˇjovice, Czech Republic, and eZoology Department, Natural History Museum, London, SW7 5BD, United Kingdom, and fWadsworth Center, New York State Department of Health, Albany, New York, 12201, USA, and gDepartment of Biochemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and hDepartment of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada, and iDepartment of Ecology, University of Kaiserslautern, 67663, Kaiserslautern, Germany, and jDepartment of Parasitology, Charles University, Prague, 128 43, Praha 2, Czech
    [Show full text]
  • Adl S.M., Simpson A.G.B., Lane C.E., Lukeš J., Bass D., Bowser S.S
    The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D. MITCHELL,l SHARON E. MOZLEY-STANRIDGE,p LAURA W. PARFREY,q JAN PAWLOWSKI,r SONJA RUECKERT,s LAURA SHADWICK,t CONRAD L. SCHOCH,u ALEXEY SMIRNOVv and FREDERICK W. SPIEGELt aDepartment of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada, and bDepartment of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and cDepartment of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, 02881, USA, and dBiology Center and Faculty of Sciences, Institute of Parasitology, University of South Bohemia, Cˇeske´ Budeˇjovice, Czech Republic, and eZoology Department, Natural History Museum, London, SW7 5BD, United Kingdom, and fWadsworth Center, New York State Department of Health, Albany, New York, 12201, USA, and gDepartment of Biochemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and hDepartment of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada, and iDepartment
    [Show full text]
  • Reconstructing Euglenoid Evolutionary Relationships Using Three Genes: Nuclear SSU and LSU, and Chloroplast SSU Rdna Sequences and the Description of Euglenaria Gen
    Protist, Vol. 161, 603–619, October 2010 http://www.elsevier.de/protis Published online date 22 April 2010 ORIGINAL PAPER Reconstructing Euglenoid Evolutionary Relationships using Three Genes: Nuclear SSU and LSU, and Chloroplast SSU rDNA Sequences and the Description of Euglenaria gen. nov. (Euglenophyta) Eric W. Lintona,1, Anna Karnkowska-Ishikawac, Jong Im Kimd, Woongghi Shind, Mathew S. Bennettb, Jan Kwiatowskic,e, Boz˙ena Zakrys´ c, and Richard E. Triemerb aCentral Michigan University, Department of Biology, Mt. Pleasant, MI 48859, USA bMichigan State University, Department of Plant Biology, East Lansing, MI 48824, USA cUniversity of Warsaw, Department of Plant Systematics and Geography, Institute of Botany, Al. Ujazdowskie 4, 00-478 Warsaw, Poland dChungnam National University, Department of Biology, 220 Gung-Dong, Yuseong-Gu Daejeon 305-764, Republic of Korea eUniversity of California, Department of Ecology and Evolutionary Biology, 453 Steinhaus Hall, Irvine, CA 92697, USA Submitted September 24, 2009; Accepted February 28, 2010 Monitoring Editor: Michael Melkonian Using Maximum Likelihood and Bayesian analyses of three genes, nuclear SSU (nSSU) and LSU (nLSU) rDNA, and chloroplast SSU (cpSSU) rDNA, the relationships among 82 plastid-containing strains of euglenophytes were clarified. The resulting tree split into two major clades: clade one contained Euglena, Trachelomonas, Strombomonas, Colacium, Monomorphina, Cryptoglena and Euglenaria; clade two contained Lepocinclis, Phacus and Discoplastis. The majority of the members of Euglena were contained in clade A, but seven members were outside of this clade. Euglena limnophila grouped with, and was thus transferred to Phacus. Euglena proxima was a single taxon at the base of clade one and is unassociated with any subclade.
    [Show full text]
  • Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes
    PROF. SINA ADL (Orcid ID : 0000-0001-6324-6065) PROF. DAVID BASS (Orcid ID : 0000-0002-9883-7823) DR. CÉDRIC BERNEY (Orcid ID : 0000-0001-8689-9907) DR. PACO CÁRDENAS (Orcid ID : 0000-0003-4045-6718) DR. IVAN CEPICKA (Orcid ID : 0000-0002-4322-0754) DR. MICAH DUNTHORN (Orcid ID : 0000-0003-1376-4109) PROF. BENTE EDVARDSEN (Orcid ID : 0000-0002-6806-4807) DR. DENIS H. LYNN (Orcid ID : 0000-0002-1554-7792) DR. EDWARD A.D MITCHELL (Orcid ID : 0000-0003-0358-506X) PROF. JONG SOO PARK (Orcid ID : 0000-0001-6253-5199) DR. GUIFRÉ TORRUELLA (Orcid ID : 0000-0002-6534-4758) Article DR. VASILY V. ZLATOGURSKY (Orcid ID : 0000-0002-2688-3900) Article type : Original Article Corresponding author mail id: [email protected] Adl et al.---Classification of Eukaryotes Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Sina M. Adla, David Bassb,c, Christopher E. Laned, Julius Lukeše,f, Conrad L. Schochg, Alexey Smirnovh, Sabine Agathai, Cedric Berneyj, Matthew W. Brownk,l, Fabien Burkim, Paco Cárdenasn, Ivan Čepičkao, Ludmila Chistyakovap, Javier del Campoq, Micah Dunthornr,s, Bente Edvardsent, Yana Eglitu, Laure Guillouv, Vladimír Hamplw, Aaron A. Heissx, Mona Hoppenrathy, Timothy Y. Jamesz, Sergey Karpovh, Eunsoo Kimx, Martin Koliskoe, Alexander Kudryavtsevh,aa, Daniel J. G. Lahrab, Enrique Laraac,ad, Line Le Gallae, Denis H. Lynnaf,ag, David G. Mannah, Ramon Massana i Moleraq, Edward A. D. Mitchellac,ai , Christine Morrowaj, Jong Soo Parkak, Jan W. Pawlowskial, Martha J. Powellam, Daniel J. Richteran, Sonja Rueckertao, Lora Shadwickap, Satoshi Shimanoaq, Frederick W. Spiegelap, Guifré Torruella i Cortesar, Noha Youssefas, Vasily Zlatogurskyh,at, Qianqian Zhangau,av.
    [Show full text]
  • 1 FATTY ACIDS in PHOTOTROPHIC and MIXOTROPHIC GYRODINIUM GALATHE- ANUM (DINOPHYCEAE) Adolf, J. E.1, Place, A. R.2, Lund, E.2, St
    PSA ABSTRACTS 1 1 Texas south jetty was completed between April 1999 FATTY ACIDS IN PHOTOTROPHIC AND and February, 2000. Species composition, seasonal pe- MIXOTROPHIC GYRODINIUM GALATHE- riodicity, and fluctuations in temperature and salinity ANUM (DINOPHYCEAE) were determined. This is the first comprehensive 1 2 2 study of benthic macroalgae conducted in Corpus Adolf, J. E. , Place, A. R. , Lund, E. , Stoecker, Christi Bay, which is shallow, turbid, and lacks natural 1 1,3 D. K. , & Harding, L. W., Jr hard substrate. Man-made jetties are necessary for 1Horn Point Lab, University of Maryland Center for suitable floral attachment. Macroalgae are affected by Environmental Science, Cambridge, MD 21613 USA; changes in salinity as freshwater inflows are followed 2Center of Marine Biotechnology, Baltimore, MD 21202 by periods of drought, which increase salinity. These USA; 3Maryland Sea Grant, University of Maryland, effects are most notable where freshwater enters at College Park, MD 20742 USA the south end near Oso Bay and at the north end at Nueces Bay. Previous Texas algal collections de- Fatty acids were measured in G. galatheanum grown scribed species of Enteromorpha, Ulva, Gelidium, and either phototrophically, or mixotrophically with Gracilaria as the most dominant plants of the area. Storeatula major (Cryptophyceae) as prey. G. galatheanum, This supports the current study with the additions of like many photosynthetic dinoflagellates, contains Hypnea musciformis and Centroceras clavulatum. Domi- high amounts of n-3 long-chain-polyunsaturated fatty nant plants at the Port Aransas jetty include Ulva fasci- acids (LC-PUFA) such as docosahexaenoic acid ata, Padina gymnospora, and Hypnea musciformis. The (DHA, 22:6n-3) and the hemolytic toxic fatty acid Rhodophyta including Gracilaria, Gelidium, and Centro- 18:5n-3.
    [Show full text]
  • The Phycological Society of America Meeting Program
    The Phycological Society of America 60th Annual Meeting With the Northwest Algal Symposium University of Alaska Southeast Juneau, Alaska USA 6 - 12 July 2006 Meeting Program ` THE PHYCOLOGICAL SOCIETY OF AMERICA The Phycological Society of America was founded in 1946 to promote research and teaching in all fields of Phycology. The society publishes the Journal of Phycology and the Phycological Newsletter. Annual meetings are held, often jointly with other national or international societies of mutual member interest. Phycological Society of America awards include the Bold Award for best student paper at the annual meeting, the new Student Poster Award for the best student poster at the annual meeting, the Provasoli Award for outstanding papers published in the Journal of Phycology, and the Prescott Award for the best Phycology book published within the previous two years. The society provides financial aid to graduate student members through Croasdale Fellowships for enrollment in phycology courses at biological stations, Hoshaw Travel Awards for travel to the annual society meeting, and Grants-In-Aid for supporting research. To join the Phycological Society of America, contact the membership director. Society Webpage: http://www.psaalgae.org/ LOCAL ORGANIZER FOR 2006 PSA ANNUAL MEETING: Michael S. Stekoll, University of Alaska PSA EXECUTIVE COMMITTEE: President: Morgan L. Vis, Ohio University Vice President/President Elect: Richard E. Triemer, Michigan State University Past President: Curt M. Pueschel, State University of New York, Binghampton Secretary: J. Craig Bailey, University of North Carolina at Wilmington Treasurer: Michael R. Gretz, Michigan Tech University Program Director: Charles D. Amsler, University of Alabama at Birmingham Membership Director: John W.
    [Show full text]
  • Euglenozoa: Taxonomy, Diversity and Ecology, Symbioses and Viruses
    Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses † † † royalsocietypublishing.org/journal/rsob Alexei Y. Kostygov1,2, , Anna Karnkowska3, , Jan Votýpka4,5, , Daria Tashyreva4,†, Kacper Maciszewski3, Vyacheslav Yurchenko1,6 and Julius Lukeš4,7 1Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic Review 2Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia 3Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Cite this article: Kostygov AY, Karnkowska A, Warsaw, Warsaw, Poland 4 Votýpka J, Tashyreva D, Maciszewski K, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic 5Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic Yurchenko V, Lukeš J. 2021 Euglenozoa: 6Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, taxonomy, diversity and ecology, symbioses Moscow, Russia and viruses. Open Biol. 11: 200407. 7Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic https://doi.org/10.1098/rsob.200407 AYK, 0000-0002-1516-437X; AK, 0000-0003-3709-7873; KM, 0000-0001-8556-9500; VY, 0000-0003-4765-3263; JL, 0000-0002-0578-6618 Euglenozoa is a species-rich group of protists, which have extremely diverse Received: 19 December 2020 lifestyles and a range of features that distinguish them from other eukar- Accepted: 8 February 2021 yotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here.
    [Show full text]
  • Diversity of Philippine Photosynthetic Euglenophytes and Their Potential Biotechnological Uses: a Review Eldrin DLR
    et International Journal on Emerging Technologies 10 (4): 24-31(2019) ISSN No. (Print): 0975-8364 ISSN No. (Online): 2249-3255 Diversity of Philippine Photosynthetic Euglenophytes and their Potential Biotechnological Uses: A Review Eldrin DLR. Arguelles 1 and Milagrosa R. Martinez-Goss 2 1University Researcher II, Philippine National Collection of Microorganisms, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippine Los Baños,College, Laguna, 4031, Philippines. 2Professor Emeritus,Institute of Biological Sciences and Museum of Natural History, University of the Philippines Los Baños, College, Laguna 4031, Philippines. (Corresponding author: Eldrin DLR. Arguelles) (Received 27 September 2019, Revised 30 October 2019, Accepted 01 November 2019) (Published by Research Trend, Website: www.researchtrend.net) ABSTRACT: Photosynthetic euglenoids are group of distant protists along the long evolutionary lineage from prokaryotic organisms to complex multicellular eukaryotes. These photosynthetic protists are found in highly diverse environments and are regarded as a suitable model organism for biotechnological research such as synthesis and production of diverse biologically active compounds (polyunsaturated fatty acids, wax esters, biotin, tyrosine and α-tocopherol), heavy metal bioremediation, and ecotoxicological risk assessment. In the Philippines, limited studies on the biodiversity and practical importance of photosynthetic euglenoids are being conducted taking into account the latest taxonomic studies and potential use for biotechnology. This paper aims to generalize and analyze the available literature data emphasizing the need for deeper studies concentrating on these valuable protists in order to tap this important genetic resource. Keywords: Biotechnology, Diversity, Photosynthetic Euglenoids, Philippines, Taxonomy. Abbreviations: EtOH, ethyl alcohol; PUFAs polyunsaturated fatty acids; SAFAs, saturated fatty acids; mTOR, mechanistic target of rapamycin; MUFAs, monounsaturated fatty acids.
    [Show full text]
  • Higher Classification and Phylogeny of Euglenozoa
    Accepted Manuscript Title: Higher Classification and Phylogeny of Euglenozoa Author: Thomas Cavalier-Smith PII: S0932-4739(16)30083-9 DOI: http://dx.doi.org/doi:10.1016/j.ejop.2016.09.003 Reference: EJOP 25453 To appear in: Received date: 2-3-2016 Revised date: 5-9-2016 Accepted date: 8-9-2016 Please cite this article as: Cavalier-Smith, Thomas, Higher Classification and Phylogeny of Euglenozoa.European Journal of Protistology http://dx.doi.org/10.1016/j.ejop.2016.09.003 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Higher Classification and Phylogeny of Euglenozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK Corresponding author: e-mail [email protected] (T. Cavalier-Smith). Abstract Discoveries of numerous new taxa and advances in ultrastructure and sequence phylogeny (including here the first site-heterogeneous 18S rDNA trees) require major improvements to euglenozoan higher-level taxonomy. I therefore divide Euglenozoa into three subphyla of substantially different body plans: Euglenoida with pellicular strips; anaerobic Postgaardia (class Postgaardea) dependent on surface bacteria and with uniquely modified feeding apparatuses; and new subphylum Glycomonada characterised by glycosomes (Kinetoplastea, Diplonemea).
    [Show full text]
  • Phylogeny and Classification of Euglenophyceae
    REVIEW published: 16 March 2016 doi: 10.3389/fevo.2016.00017 Phylogeny and Classification of Euglenophyceae: A Brief Review Carlos E. de M. Bicudo 1* and Mariângela Menezes 2 1 Department of Ecology, Instituto de Botânica, São Paulo, Brazil, 2 Phycology Laboratory, Botany, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil Euglenophyceae (phototrophic euglenids) are an important lineage within the Euglenida, Euglenozoa. Most of the approximately 3000 described species are free-living, phototrophic, unicellular flagellates with one to several plastids of secondary origin, three bounding membranes and chlorophylls a and b; but, the lineage also includes colorless species that lost their photosynthesizing capability. They show a typical cell membrane consisting of parallel proteinaceous strips and microtubules located underneath the plasma membrane, and discoid mitochondrial cristae. Euglenozoa are a monophyletic group that includes, besides Euglenida, the Kinetoplastidea, Diplonemea, and Symbiontida. Since the class Euglenophyceae was proposed, its classification system has undergone several revisions, mainly after the adoption of molecular techniques. This article summarizes recent advances in the phylogeny and classification of the phototrophic euglenids, aiming at understanding the situation of the group within the phylum Euglenozoa, as well as its evolutionary relationships and the changes in its Edited by: taxonomic classification. The current status of the group, as well as the limitations derived Jan Maria Kwiatowski, from the lack of inclusion of tropical strains in phylogenetic studies is briefly discussed. University of Warsaw, Poland Keywords: Euglenophyceae, molecular biology, morphology, phylogeny, taxonomy Reviewed by: Alberto G. Sáez, Instituto de Salud Carlos III, Spain Anna Karnkowska, INTRODUCTION University of British Columbia, Canada *Correspondence: The class Euglenophyceae includes phototrophic members of the Euglenida, supergroup Excavata, Carlos E.
    [Show full text]