Francisella Tularensis At-Risk Populations

Total Page:16

File Type:pdf, Size:1020Kb

Francisella Tularensis At-Risk Populations APPENDIX 2 Francisella tularensis At-Risk Populations: • Taxidermists, landscape workers, hunters Disease Agent: • A threat as a bioterrorist weapon for susceptible • Francisella tularensis populations Disease Agent Characteristics: Vector and Reservoir Involved: • Gram-negative coccobacillus, aerobic, nonmotile, • Ixodid ticks (Dermacentor variabilis, D. andersoni, nonspore-forming bacterium Amblyomma americanum) • Order: Thiotrichales; Family: Francisellaceae • Biting flies, specifically the deer fly (Chrysops discalis) • Size: 0.2-0.7 mm ¥ 0.2 mm • Mosquitoes in Sweden, Finland, and the former • Nucleic acid: The genome of Franciscella tularensis is Soviet Union 1892 kb of DNA. • Infected mammals are the reservoir. • While the organism grows in appropriate cell-free bacteriologic media, it is widely regarded to be an Blood Phase: intracellular pathogen. • Bacteremia can persist for weeks in symptomatic • The organism survives long-term freezing (i.e., up to 3 infections; asymptomatic bacteremia has not been years in frozen rabbit meat). demonstrated. • 10% bleach can be used for surface decontamination. • Agent found in monocytes Disease Name: Survival/Persistence in Blood Products: • Tularemia • Unknown • Rabbit fever Transmission by Blood Transfusion: Priority Level: • Theoretical • Scientific/Epidemiologic evidence regarding blood safety: Theoretical Cases/Frequency in Population: • Public perception and/or regulatory concern regard- ing blood safety: Absent • Approximately 100-125 cases reported in the US each • Public concern regarding disease agent: Very low, but year low in regions where outbreaks have occurred • In recent years, a seasonal increase in incidence has occurred (late spring and summer), when arthropod Background: bites are most common. • Outbreaks of tularemia in the US have been associ- • Occurs naturally in several areas of the US, usually in ated with muskrat handling, tick bites, deerfly bites, rural areas. Historically, most cases of tularemia and lawn mowing or cutting brush. occurred in the summer (arthropod bites) and winter • Sporadic cases in the US have been associated with (hunters coming into contact with infected rabbit contaminated drinking water and various laboratory carcasses). exposures. • First described in the US in 1911 and has been reported from all states except Hawaii Incubation Period: • Removed from the list of nationally notifiable dis- eases in 1994, but it was reinstated in 2000 because of • Usually 3-5 days, but can take weeks increased concern about potential use of F.tularensis Likelihood of Clinical Disease: as a biologic weapon • Classified among the highest priority for bioterrorism • Disease likelihood will vary based on exposure rate agents by the CDC (Category A) and immune status of host. Immunocompromised persons are more likely to have complications. Common Human Exposure Routes: Primary Disease Symptoms: • Inhalation: Bacterium aerosolized when animals skinned or shredded by lawnmowers • Skin ulcers, swollen and painful lymph nodes, sudden • Tick or fly bites by infected vectors fever, chills, headaches, diarrhea, muscle aches, joint pain, dry cough, and progressive weakness Likelihood of Secondary Transmission: • Pneumonia-like symptoms also are possible, particu- • Highly unlikely larly when the agent is inhaled. 204S TRANSFUSION Volume 49, August 2009 Supplement APPENDIX 2 Severity of Clinical Disease: Leukoreduction Efficacy: • More severe infections can be and are fatal, particu- • Unknown larly if left untreated. Mortality: Pathogen Reduction Efficacy for Plasma Derivatives: • Varies by exposure route and subspecies but • Specific data indicate that the multiple steps in the untreated inhalation tularemia may have a mortality fractionation process are robust and capable of inac- rate of from 30 to 60%. tivating and/or removing bacteria at concentrations Chronic Carriage: that may be present in plasma. • Unknown in humans Other Prevention Measures: Treatment Available/Efficacious • A vaccine is presently under review but is not • Once diagnosed, infection is treatable with anti- approved for use in the US. biotics (tetracyclines and fluoroquinolones). Antibi- • Vector avoidance otic treatment is efficacious. Agent-Specific Screening Question(s): Other Comments: • No specific question is in use. • Outbreaks of pneumonic tularemia, particularly in • Not indicated because of the low incidence of infec- low-incidence areas, should prompt consideration of tion and lack of evidence of transfusion transmission. bioterrorism. • No sensitive or specific question is feasible. • Under circumstances of a bioterrorism threat, the Suggested Reading: need for and potential effectiveness of specific donor- screening questions would need to be addressed. 1. Centers for Disease Control and Prevention. Tularemia—United States, 1990-2000. Morb Mortal Laboratory Test(s) Available: Wkly Rep MMWR 2002;51:182-4. • No FDA-licensed blood donor screening test exists. 2. Dennis DT, Inglesby TV, Henderson DA, Bartlett JG, • Culture, microagglutination based on fourfold rise in Ascher MS, Eitzen E, Fine AD, Friedlander AM, Hauer titers, EIA, and PCR available J, Layton M, Lillibridge SR, McDade JE, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Tonat K; Currently Recommended Donor Deferral Period: Working Group on Civilian Biodefense. Tularemia as a • No FDA Guidance or AABB Standard exists. biological weapon: medical and public health man- • Prudent practice would be to defer donor until signs agement. JAMA 2001;285:2763-73. and symptoms are gone and any course of treatment 3. Farlow J, Wagner DM, Dukerish M, Stanley M, Chu M, is complete. Kubota K, Petersen J, Keim P. Francisella tularensis in the United States. Emgerg Infect Dis 2005;11:1835- Impact on Blood Availability: 41. • Agent-specific screening question(s): Not applicable; 4. Feldman KA, Enscore R, Lathrop S, Matyas BT, in response to a bioterrorism threat, impact of a local McGuill M, Schriefer ME, Stiles-Enos D, Dennis DT, deferral would be significant. Petersen LR, Hayes EB. An outbreak of primary pneu- • Laboratory test(s) available: Not applicable monic tularemia on Martha’s Vineyard. N Engl J Med 2001;345:1601-6. Impact on Blood Safety: 5. Schmid GP, Kornball AN, Connors CA, Patton C, • Agent-specific screening question(s): Not applicable; Carney J, Hobbs J, Kaufmann AF. Clinically mild tula- unknown impact in response to a bioterrorism threat remia associated with tick-borne Francisella tularen- • Laboratory test(s) available: Not applicable sis. J Infect Dis 1983;148:63-7. Volume 49, August 2009 Supplement TRANSFUSION 205S.
Recommended publications
  • Francisella Spp. Infections in Farmed and Wild Fish. ICES CM 2008/D:07
    ICES CM 2008/D:07 Francisella spp. infections in farmed and wild fish Duncan J. Colquhoun1, Adam Zerihun2 and Jarle Mikalsen3 National Veterinary Institute, Section for Fish Health, Ullevaalsveien 68, 0454 Oslo, Norway 1 tel: +47 23 21 61 41; fax: +47 23 21 61 01; e-mail: [email protected] 2 tel: +47 23 21 61 08; fax: +47 23 21 61 01; e-mail: [email protected] 3 tel: +47 23 21 61 55; fax: +47 23 21 61 01; e-mail: [email protected] Abstract Bacteria within the genus Francisella are non-motile, Gram-negative, strictly aerobic, facultatively intracellular cocco-bacilli. While the genus includes pathogens of warm-blooded animals including humans, and potential bioterror agents, there is also increasing evidence of a number of as yet unrecognised environmental species. Due to their nutritionally fastidious nature, bacteria of the genus Francisella are generally difficult to culture, and growth is also commonly inhibited by the presence of other bacteria within sample material. For these reasons, Francisella-related fish disease may be under-diagnosed. Following the discovery in 2004/2005 that a granulomatous disease in farmed and wild Atlantic cod (Gadus morhua) is caused by a previously undescribed member of this genus (Francisella philomiragia subsp. noatunensis), similar diseases have been identified in fish in at least seven countries around the world. These infections affect both freshwater and marine fish species and involve bacteria more or less closely related to F. philomiragia subsp. philomiragia, an opportunistic human pathogen. Recent work relating to characterisation of the disease/s, classification of fish pathogenic Francisella spp.
    [Show full text]
  • Francisella Tularensis 6/06 Tularemia Is a Commonly Acquired Laboratory Colony Morphology Infection; All Work on Suspect F
    Francisella tularensis 6/06 Tularemia is a commonly acquired laboratory Colony Morphology infection; all work on suspect F. tularensis cultures .Aerobic, fastidious, requires cysteine for growth should be performed at minimum under BSL2 .Grows poorly on Blood Agar (BA) conditions with BSL3 practices. .Chocolate Agar (CA): tiny, grey-white, opaque A colonies, 1-2 mm ≥48hr B .Cysteine Heart Agar (CHA): greenish-blue colonies, 2-4 mm ≥48h .Colonies are butyrous and smooth Gram Stain .Tiny, 0.2–0.7 μm pleomorphic, poorly stained gram-negative coccobacilli .Mostly single cells Growth on BA (A) 48 h, (B) 72 h Biochemical/Test Reactions .Oxidase: Negative A B .Catalase: Weak positive .Urease: Negative Additional Information .Can be misidentified as: Haemophilus influenzae, Actinobacillus spp. by automated ID systems .Infective Dose: 10 colony forming units Biosafety Level 3 agent (once Francisella tularensis is . Growth on CA (A) 48 h, (B) 72 h suspected, work should only be done in a certified Class II Biosafety Cabinet) .Transmission: Inhalation, insect bite, contact with tissues or bodily fluids of infected animals .Contagious: No Acceptable Specimen Types .Tissue biopsy .Whole blood: 5-10 ml blood in EDTA, and/or Inoculated blood culture bottle Swab of lesion in transport media . Gram stain Sentinel Laboratory Rule-Out of Francisella tularensis Oxidase Little to no growth on BA >48 h Small, grey-white opaque colonies on CA after ≥48 h at 35/37ºC Positive Weak Negative Positive Catalase Tiny, pleomorphic, faintly stained, gram-negative coccobacilli (red, round, and random) Perform all additional work in a certified Class II Positive Biosafety Cabinet Weak Negative Positive *Oxidase: Negative Urease *Catalase: Weak positive *Urease: Negative *Oxidase, Catalase, and Urease: Appearances of test results are not agent-specific.
    [Show full text]
  • Burkholderia Cenocepacia Intracellular Activation of the Pyrin
    Activation of the Pyrin Inflammasome by Intracellular Burkholderia cenocepacia Mikhail A. Gavrilin, Dalia H. A. Abdelaziz, Mahmoud Mostafa, Basant A. Abdulrahman, Jaykumar Grandhi, This information is current as Anwari Akhter, Arwa Abu Khweek, Daniel F. Aubert, of September 29, 2021. Miguel A. Valvano, Mark D. Wewers and Amal O. Amer J Immunol 2012; 188:3469-3477; Prepublished online 24 February 2012; doi: 10.4049/jimmunol.1102272 Downloaded from http://www.jimmunol.org/content/188/7/3469 Supplementary http://www.jimmunol.org/content/suppl/2012/02/24/jimmunol.110227 Material 2.DC1 http://www.jimmunol.org/ References This article cites 71 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/188/7/3469.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 29, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Activation of the Pyrin Inflammasome by Intracellular Burkholderia cenocepacia Mikhail A.
    [Show full text]
  • Bioinformatics Resource Centers Systems Biology (Brcs) Centers
    Fondation Merieux – J Craig Venter Institute Bioinformatics Workshop December 5 – 8, 2017 Module 3: Genomic Data & Sequence Annotations in Public Databases NIH/NIAID Genomics and Bioinformatics Program SlideSource:A.S.Fauci SlideSource:A.S.Fauci Conducts and supports basic and applied research to better understand, treat, and ultimately prevent infectious, immunologic, and allergic diseases. NIAIDGenomicsProgram Proteomics Systems Sequencing Functional Structural Biology Genomics Genomics Genomic Clinical Functional Systems Sequencing Proteomics Structural Genomic Biology Centers Centers Genomics Research Centers Centers Centers Bioinformatics BioinformaticsResource Centers GenomicResearchResources Genomic/OmicsDataSets,Databases,BioinformaticsTools,Biomarkers,3DStructures,ProteinClones,PredictiveModels Toaddresskeyquestionsin microbiologyandinfectious disease NIAID Genome Sequencing Center Influenza Genome Sequencing Project at JCVI • 2004: 80 influenza genomes in GenBank • 3OCT2017: ~20,000 influenza genomes sequenced at JCVI • 75% complete influenza genomes in GenBank by JCVI Slide source: Maria Giovanni * Genome Sequencing Centers Bioinformatics Resource Centers Systems Biology (BRCs) Centers Structure Genomics Centers Clinical Proteomics Centers Courtesy of Alison Yao, DMID *Bioinformatics Resource Centers (BRCs) Goal: Provide integrated bioinformatics resources in support of basic and applied infectious diseases research • Data and metadata management and integration solutions • Computational analysis and visualization tools • Work
    [Show full text]
  • Original Article COMPARISON of MAST BURKHOLDERIA CEPACIA, ASHDOWN + GENTAMICIN, and BURKHOLDERIA PSEUDOMALLEI SELECTIVE AGAR
    European Journal of Microbiology and Immunology 7 (2017) 1, pp. 15–36 Original article DOI: 10.1556/1886.2016.00037 COMPARISON OF MAST BURKHOLDERIA CEPACIA, ASHDOWN + GENTAMICIN, AND BURKHOLDERIA PSEUDOMALLEI SELECTIVE AGAR FOR THE SELECTIVE GROWTH OF BURKHOLDERIA SPP. Carola Edler1, Henri Derschum2, Mirko Köhler3, Heinrich Neubauer4, Hagen Frickmann5,6,*, Ralf Matthias Hagen7 1 Department of Dermatology, German Armed Forces Hospital of Hamburg, Hamburg, Germany 2 CBRN Defence, Safety and Environmental Protection School, Science Division 3 Bundeswehr Medical Academy, Munich, Germany 4 Friedrich Loeffler Institute, Federal Research Institute for Animal Health, Jena, Germany 5 Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg, Hamburg, Germany 6 Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany 7 Department of Preventive Medicine, Bundeswehr Medical Academy, Munich, Germany Received: November 18, 2016; Accepted: December 5, 2016 Reliable identification of pathogenic Burkholderia spp. like Burkholderia mallei and Burkholderia pseudomallei in clinical samples is desirable. Three different selective media were assessed for reliability and selectivity with various Burkholderia spp. and non- target organisms. Mast Burkholderia cepacia agar, Ashdown + gentamicin agar, and B. pseudomallei selective agar were compared. A panel of 116 reference strains and well-characterized clinical isolates, comprising 30 B. pseudomallei, 20 B. mallei, 18 other Burkholderia spp., and 48 nontarget organisms, was used for this assessment. While all B. pseudomallei strains grew on all three tested selective agars, the other Burkholderia spp. showed a diverse growth pattern. Nontarget organisms, i.e., nonfermentative rod-shaped bacteria, other species, and yeasts, grew on all selective agars.
    [Show full text]
  • Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes Ricinus Ticks in Pomerania (Poland)
    pathogens Article Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes ricinus Ticks in Pomerania (Poland) Lucyna Kirczuk 1 , Mariusz Piotrowski 2 and Anna Rymaszewska 2,* 1 Department of Hydrobiology, Faculty of Biology, Institute of Biology, University of Szczecin, Felczaka 3c Street, 71-412 Szczecin, Poland; [email protected] 2 Department of Genetics and Genomics, Faculty of Biology, Institute of Biology, University of Szczecin, Felczaka 3c Street, 71-412 Szczecin, Poland; [email protected] * Correspondence: [email protected] Abstract: Tick-borne pathogens are an important medical and veterinary issue worldwide. Environ- mental monitoring in relation to not only climate change but also globalization is currently essential. The present study aimed to detect tick-borne pathogens of the genera Anaplasma, Rickettsia and Francisella in Ixodes ricinus ticks collected from the natural environment, i.e., recreational areas and pastures used for livestock grazing. A total of 1619 specimens of I. ricinus were collected, including ticks of all life stages (adults, nymphs and larvae). The study was performed using the PCR technique. Diagnostic gene fragments msp2 for Anaplasma, gltA for Rickettsia and tul4 for Francisella were ampli- fied. No Francisella spp. DNA was detected in I. ricinus. DNA of A. phagocytophilum was detected in 0.54% of ticks and Rickettsia spp. in 3.69%. Nucleotide sequence analysis revealed that only one species of Rickettsia, R. helvetica, was present in the studied tick population. The present results are a Citation: Kirczuk, L.; Piotrowski, M.; part of a large-scale analysis aimed at monitoring the level of tick infestation in Northwest Poland.
    [Show full text]
  • Francisella Tularensis Subspecies Holarctica and Tularemia in Germany
    microorganisms Review Francisella tularensis Subspecies holarctica and Tularemia in Germany 1, 2, 3 1 1 Sandra Appelt y, Mirko Faber y , Kristin Köppen , Daniela Jacob , Roland Grunow and Klaus Heuner 3,* 1 Centre for Biological Threats and Special Pathogens (ZBS 2), Robert Koch Institute, 13353 Berlin, Germany; [email protected] (S.A.); [email protected] (D.J.); [email protected] (R.G.) 2 Gastrointestinal Infections, Zoonoses and Tropical Infections (Division 35), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353 Berlin, Germany; [email protected] 3 Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, 13353 Berlin, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-301-8754-2226 These authors contributed equally to this work. y Received: 27 August 2020; Accepted: 18 September 2020; Published: 22 September 2020 Abstract: Tularemia is a zoonotic disease caused by Francisella tularensis a small, pleomorphic, facultative intracellular bacterium. In Europe, infections in animals and humans are caused mainly by Francisella tularensis subspecies holarctica. Humans can be exposed to the pathogen directly and indirectly through contact with sick animals, carcasses, mosquitoes and ticks, environmental sources such as contaminated water or soil, and food. So far, F. tularensis subsp. holarctica is the only Francisella species known to cause tularemia in Germany. On the basis of surveillance data, outbreak investigations, and literature, we review herein the epidemiological situation—noteworthy clinical cases next to genetic diversity of F. tularensis subsp. holarctica strains isolated from patients. In the last 15 years, the yearly number of notified cases of tularemia has increased steadily in Germany, suggesting that the disease is re-emerging.
    [Show full text]
  • Isolation of Francisella Tularensis from Skin Ulcer After a Tick Bite, Austria, 2020
    microorganisms Case Report Isolation of Francisella tularensis from Skin Ulcer after a Tick Bite, Austria, 2020 Mateusz Markowicz 1,*, Anna-Margarita Schötta 1 , Freya Penatzer 2, Christoph Matscheko 2, Gerold Stanek 1, Hannes Stockinger 1 and Josef Riedler 2 1 Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria; [email protected] (A.-M.S.); [email protected] (G.S.); [email protected] (H.S.) 2 Kardinal Schwarzenberg Klinikum, Kardinal Schwarzenbergplatz 1, A-5620 Schwarzach, Austria; [email protected] (F.P.); [email protected] (C.M.); [email protected] (J.R.) * Correspondence: [email protected]; Tel.: +43-1-40160-33023 Abstract: Ulceroglandular tularemia is caused by the transmission of Francisella tularensis by arthro- pods to a human host. We report a case of tick-borne tularemia in Austria which was followed by an abscess formation in a lymph node, making drainage necessary. F. tularensis subsp. holarctica was identified by PCR and multilocus sequence typing. Keywords: tularemia; Francisella tularensis; tick; multi locus sequence typing Depending on the transmission route of Francisella tularensis, tularemia can present Citation: Markowicz, M.; Schötta, as a local infection or a systemic disease [1]. Transmission of the pathogen takes place A.-M.; Penatzer, F.; Matscheko, C.; by contact with infected animals, by bites of arthropods or through contaminated water Stanek, G.; Stockinger, H.; Riedler, J. and soil. Hares and wild rabbits are the main reservoirs of the pathogen in Austria [2].
    [Show full text]
  • Francisella Tularensis
    The Genetic Composition and Diversity of Francisella tularensis Pär Larsson Akademisk avhandling som med vederbörligt tillstånd av rektorsämbetet vid Umeå Universitet för avläggande av medicine doktorsexamen i klinisk mikrobiologi med inriktning mot bakteriologi vid Medicinska fakulteten, framlägges till offentligt försvar vid Institutionen för Klinisk Mikrobiologi, sal E04 byggnad 6, torsdagen den 31 maj 2007, klockan 09.00. Avhandlingen kommer att försvaras på engelska. Fakultetsopponent: Dr. Andrew K Benson Department of Food Science & Technology University of Nebraska–Lincoln Lincoln, Nebraska USA Department of Clinical Microbiology, Clinical Bacteriology Umeå University Umeå 2007 Organization Document type UMEÅ UNIVERSITY DOCTORAL DISSERTATION Department of Clinical Microbiology Date of publication SE-901 87 Umeå, Sweden May 2007 Author Pär Larsson Title The Genetic Composition and Diversity of Francisella tularensis Abstract Francisella tularensis is the causative agent of the debilitating, sometimes fatal zoonotic disease tularemia. Despite all F. tularensis bacteria having very similar genotypes and phenotypes, the disease varies significantly in severity depending on the subspecies of the infectious strain. To date, little information has been available on the genetic makeup of this pathogen, its evolution, and the genetic differences which characterize subspecific lineages. These are the main areas addressed in this thesis. Using the F. tularensis subsp. tularensis SCHU S4 strain as a genetic reference, microarray-based comparative genomic hybridisations were used to investigate the differences in genomic composition of F. tularensis isolates. Overall, the strains analysed were very similar, matching the high degree of conservation previously observed at the sequence level. One striking finding was that subsp. mediasiatica was most similar to subsp. tularensis, despite their natural confinement to Central Asia and North America, respectively.
    [Show full text]
  • Francisella Tularensis Blue-Grey Phase Variation Involves Structural
    Francisella tularensis blue-grey phase variation involves structural modifications of lipopolysaccharide O-antigen, core and lipid A and affects intramacrophage survival and vaccine efficacy THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Shilpa Soni Graduate Program in Microbiology The Ohio State University 2010 Master's Examination Committee: John Gunn, Ph.D. Advisor Mark Wewers, M.D. Robert Munson, Ph.D. Copyright by Shilpa Soni 2010 Abstract Francisella tularensis is a CDC Category A biological agent and a potential bioterrorist threat. There is no licensed vaccine against tularemia in the United States. A long- standing issue with potential Francisella vaccines is strain phase variation to a grey form that lacks protective capability in animal models. Comparisons of the parental strain (LVS) and a grey variant (LVSG) have identified lipopolysaccharide (LPS) alterations as a primary change. The LPS of the F. tularensis variant strain gains reactivity to F. novicida anti-LPS antibodies, suggesting structural alterations to the O-antigen. However, biochemical and structural analysis of the F. tularensis LVSG and LVS LPS demonstrated that LVSG has less O-antigen but no major O-antigen structural alterations. Additionally, LVSG possesses structural differences in both the core and lipid A regions, the latter being decreased galactosamine modification. Recent work has identified two genes important in adding galactosamine (flmF2 and flmK) to the lipid A. Quantitative real-time PCR showed reduced transcripts of both of these genes in the grey variant when compared to LVS. Loss of flmF2 or flmK caused less frequent phase conversion but did not alter intramacrophage survival or colony morphology.
    [Show full text]
  • Tularemia (CFSPH)
    Tularemia Importance Tularemia is a zoonotic bacterial disease with a wide host range. Infections are most prevalent among wild mammals and marsupials, with periodic epizootics in Rabbit Fever, lagomorphs and rodents, but clinical cases also occur in sheep, cats and other Deerfly Fever, domesticated species. A variety of syndromes can be seen, but fatal septicemia is Meat-Cutter’s Disease common in some species. In humans, tularemia varies from a localized infection to Ohara Disease, fulminant, life-threatening pneumonia or septicemia. Francis Disease Tularemia is mainly seen in the Northern Hemisphere, where it has recently emerged or re-emerged in some areas, including parts of Europe and the Middle East. A few endemic clinical cases have also been recognized in regions where this disease Last Updated: June 2017 was not thought to exist, such as Australia, South Korea and southern Sudan. In some cases, emergence may be due to increased awareness, surveillance and/or reporting requirements; in others, it has been associated with population explosions of animal reservoir hosts, or with social upheavals such as wars, where sanitation is difficult and infected rodents may contaminate food and water supplies. Occasionally, this disease may even be imported into a country in animals. In 2002, tularemia entered the Czech Republic in a shipment of sick pet prairie dogs from the U.S. Etiology Tularemia is caused by Francisella tularensis (formerly known as Pasteurella tularensis), a Gram negative coccobacillus in the family Francisellaceae and class γ- Proteobacteria. Depending on the author, either three or four subspecies are currently recognized. F. tularensis subsp. tularensis (also known as type A) and F.
    [Show full text]
  • Mechanisms Affecting the Acquisition, Persistence and Transmission Of
    microorganisms Review Mechanisms Affecting the Acquisition, Persistence and Transmission of Francisella tularensis in Ticks Brenden G. Tully and Jason F. Huntley * Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; [email protected] * Correspondence: [email protected] Received: 29 September 2020; Accepted: 21 October 2020; Published: 23 October 2020 Abstract: Over 600,000 vector-borne disease cases were reported in the United States (U.S.) in the past 13 years, of which more than three-quarters were tick-borne diseases. Although Lyme disease accounts for the majority of tick-borne disease cases in the U.S., tularemia cases have been increasing over the past decade, with >220 cases reported yearly. However, when comparing Borrelia burgdorferi (causative agent of Lyme disease) and Francisella tularensis (causative agent of tularemia), the low infectious dose (<10 bacteria), high morbidity and mortality rates, and potential transmission of tularemia by multiple tick vectors have raised national concerns about future tularemia outbreaks. Despite these concerns, little is known about how F. tularensis is acquired by, persists in, or is transmitted by ticks. Moreover, the role of one or more tick vectors in transmitting F. tularensis to humans remains a major question. Finally, virtually no studies have examined how F. tularensis adapts to life in the tick (vs. the mammalian host), how tick endosymbionts affect F. tularensis infections, or whether other factors (e.g., tick immunity) impact the ability of F. tularensis to infect ticks. This review will assess our current understanding of each of these issues and will offer a framework for future studies, which could help us better understand tularemia and other tick-borne diseases.
    [Show full text]