Shift to Quantum Electrodynamics

Total Page:16

File Type:pdf, Size:1020Kb

Shift to Quantum Electrodynamics NEWS & VIEWS Shaji et al. explore electron transport requirement above, the authors call this mode far cry from the results obtained so far in for the opposite sign of bias voltage, where of transport lifetime-enhanced transport, or GaAs, but if theory and measurements of charge transport proceeds in the tunnelling LET, because it is made possible by the long spin coherence in Si/SiGe bulk systems are sequence (2,0)→(1,1)→(1,0)→(2,0), as triplet-state lifetime. Although they do not any indication, there is great potential for illustrated in Fig. 1c. In contrast with directly measure the triplet–singlet relaxation electron spin qubits in a nuclear-spin-free measurements in GaAs quantum dots, time, the analysis of the data using a rate- quantum world4. Shaji et al. find that their Si/SiGe double dot, equation model sets a lower bound on the when operated in this regime, unexpectedly relaxation time of 16 µs. References 1. Deutsch, D. Proc. Roy. Soc. Lond. A 400, 97–117 (1985). transfers electrons with almost no drop in Rapid progress in GaAs quantum dots 2. Loss, D. & DiVincenzo, D.P. Phys. Rev. A 57, 120–126 (1998). the measured conductance. The authors give has been made possible by decades of 3. Kouwenhoven, L. P. & Marcus, C. M. Phys. World two requirements for observing this effect: continual improvement of the GaAs/AlGaAs 11, 35–39 (1998). the probability of loading an electron into the materials system. The results presented in 4. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Rev. Mod. Phys. 79, 1217–1265 (2007). T(2,0) state must be much higher than the this issue demonstrate the future potential 5. Petta, J. R. et al. Science 309, 2180–2184 (2005). S(2,0) state, and the relaxation from T(2,0) to of carbon- and silicon-based quantum 6. Levy, J. Phys. Rev. Lett. 89, 147902 (2002). S(2,0) must be very slow. If either condition devices. Spin-relaxation times exceeding 7. Mason, N., Biercuk, M. J. & Marcus, C. M. Science is not met (as in previous studies), then the 100 milliseconds have been reported for 303, 655–658 (2004). 8. Jørgensen, H. I. et al. Nature Phys. 4, 536–539 (2008). 4 system will fall back into a S(2,0) state, and GaAs quantum dots . The 16-µs relaxation 9. Shaji, N. et al. Nature Phys. 4, 540–544 (2008). current will be blocked. Owing to the second time reported for the Si/SiGe system is a 10. Ono, K. & Tarucha, S. Phys. Rev. Lett. 92, 256803 (2004). WILLIS LAMB Shift to quantum electrodynamics of hydrogen were not quite what they were predicted by Dirac to be”. In 1947, he proved it. Exploiting the advances in microwave technology made during the war, Lamb devised, and conducted with Robert Retherford, microwave experiments of sufficient sensitivity to reveal at last the shift in energy between the S2 ½ and 2P½ levels. Such was the importance of his result that he was invited to present it on the opening day of the Shelter Island conference, on 2 June 1947. Shelter Island was a defining moment in the history of physics in the USA: for the first time in years, an elite group of theorists gathered, free from the restrictions of wartime, ready to kick-start a programme of research that would tackle some of the most fundamental aspects of physics. Oppenheimer, one of the delegates, AIP EMILIO SEGRE VISUAL ARCHIVES VISUAL SEGRE EMILIO AIP reportedly considered the conference to be the most successful he ever Willis Lamb was, until his death on 15 May of quantum mechanics, the greatest attended. Something of the intensity 2008 aged 94, the longest surviving Nobel milestone being arguably the Dirac of discussion, particularly among the laureate in physics. He received his prize equation, published by Paul Dirac in 1928. young turks, is captured in photographs in 1955 “for his discoveries concerning Although the broad quantum picture was of the time: pictured here, left to right, the fine structure of the hydrogen taking shape, many details were lacking. are Lamb, Abraham Pais, John Wheeler, spectrum” — specifically, the Lamb shift. One of these concerned the prediction Richard Feynman, Herman Feshbach and Born in Los Angeles in 1913, Lamb arising from Dirac’s theory that the 2S½ Julian Schwinger. Suitably inspired, it was studied at the University of California, and 2P½ energy levels in the spectrum of Hans Bethe, riding home on the train from Berkeley, under Robert Oppenheimer, hydrogen should be degenerate. In the the conference, who took the first step in before joining Columbia University in years before the outbreak of war, numerous recognizing the significance of the Lamb 1938. His wartime experience in the attempts to test this experimentally had shift in quantum electrodynamics — a Columbia Radiation Laboratory, working failed. However, Lamb “just knew” — as he theory that, in the hands of Feynman, on microwave radar, was to inspire his later recalled (J. Mehra & H. Rechenberg Schwinger and others, would become lasting contribution to physics. in The Quantum Theory of Planck, Einstein, the most robust and well tested in all Throughout the 1920s, great strides Bohr and Sommerfeld Vol. 6, p1037, of physics. had been taken in developing the theory Springer, 1982) — “that the energy levels Alison Wright 518 nature physics | VOL 4 | JULY 2008 | www.nature.com/naturephysics © 2008 Macmillan Publishers Limited. All rights reserved. .
Recommended publications
  • Charles Hard Townes (1915–2015)
    ARTICLE-IN-A-BOX Charles Hard Townes (1915–2015) C H Townes shared the Nobel Prize in 1964 for the concept of the laser and the earlier realization of the concept at microwave frequencies, called the maser. He passed away in January of this year, six months short of his hundredth birthday. A cursory look at the archives shows a paper as late as 2011 – ‘The Dust Distribution Immediately Surrounding V Hydrae’, a contribution to infrared astronomy. To get a feel for the range in time and field, his 1936 masters thesis was based on repairing a non-functional van de Graaf accelerator at Duke University in 1936! For his PhD at the California Institute of Technology, he measured the spin of the nucleus of carbon-13 using isotope separation and high resolution spectroscopy. Smythe, his thesis supervisor was writing a comprehensive text on electromagnetism, and Townes solved every problem in it – it must have stood him in good stead in what followed. In 1939, even a star student like him did not get an academic job. The industrial job he took set him on his lifetime course. This was at the legendary Bell Telephone Laboratories, the research wing of AT&T, the company which set up and ran the first – and then the best – telephone system in the world. He was initially given a lot of freedom to work with different research groups. During the Second World War, he worked in a group developing a radar based system for guiding bombs. But his goal was always physics research. After the War, Bell Labs, somewhat reluctantly, let him pursue microwave spectroscopy, on the basis of a technical report he wrote suggesting that molecules might serve as circuit elements at high frequencies which were important for communication.
    [Show full text]
  • The Physical Tourist Physics and New York City
    Phys. perspect. 5 (2003) 87–121 © Birkha¨user Verlag, Basel, 2003 1422–6944/05/010087–35 The Physical Tourist Physics and New York City Benjamin Bederson* I discuss the contributions of physicists who have lived and worked in New York City within the context of the high schools, colleges, universities, and other institutions with which they were and are associated. I close with a walking tour of major sites of interest in Manhattan. Key words: Thomas A. Edison; Nikola Tesla; Michael I. Pupin; Hall of Fame for GreatAmericans;AlbertEinstein;OttoStern;HenryGoldman;J.RobertOppenheimer; Richard P. Feynman; Julian Schwinger; Isidor I. Rabi; Bronx High School of Science; StuyvesantHighSchool;TownsendHarrisHighSchool;NewYorkAcademyofSciences; Andrei Sakharov; Fordham University; Victor F. Hess; Cooper Union; Peter Cooper; City University of New York; City College; Brooklyn College; Melba Phillips; Hunter College; Rosalyn Yalow; Queens College; Lehman College; New York University; Courant Institute of Mathematical Sciences; Samuel F.B. Morse; John W. Draper; Columbia University; Polytechnic University; Manhattan Project; American Museum of Natural History; Rockefeller University; New York Public Library. Introduction When I was approached by the editors of Physics in Perspecti6e to prepare an article on New York City for The Physical Tourist section, I was happy to do so. I have been a New Yorker all my life, except for short-term stays elsewhere on sabbatical leaves and other visits. My professional life developed in New York, and I married and raised my family in New York and its environs. Accordingly, writing such an article seemed a natural thing to do. About halfway through its preparation, however, the attack on the World Trade Center took place.
    [Show full text]
  • Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman
    Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman Louis de Broglie Norman Ramsey Willis Lamb Otto Stern Werner Heisenberg Walther Gerlach Ernest Rutherford Satyendranath Bose Max Born Erwin Schrödinger Eugene Wigner Arnold Sommerfeld Julian Schwinger David Bohm Enrico Fermi Albert Einstein Where discovery meets practice Center for Integrated Quantum Science and Technology IQ ST in Baden-Württemberg . Introduction “But I do not wish to be forced into abandoning strict These two quotes by Albert Einstein not only express his well­ more securely, develop new types of computer or construct highly causality without having defended it quite differently known aversion to quantum theory, they also come from two quite accurate measuring equipment. than I have so far. The idea that an electron exposed to a different periods of his life. The first is from a letter dated 19 April Thus quantum theory extends beyond the field of physics into other 1924 to Max Born regarding the latter’s statistical interpretation of areas, e.g. mathematics, engineering, chemistry, and even biology. beam freely chooses the moment and direction in which quantum mechanics. The second is from Einstein’s last lecture as Let us look at a few examples which illustrate this. The field of crypt­ it wants to move is unbearable to me. If that is the case, part of a series of classes by the American physicist John Archibald ography uses number theory, which constitutes a subdiscipline of then I would rather be a cobbler or a casino employee Wheeler in 1954 at Princeton. pure mathematics. Producing a quantum computer with new types than a physicist.” The realization that, in the quantum world, objects only exist when of gates on the basis of the superposition principle from quantum they are measured – and this is what is behind the moon/mouse mechanics requires the involvement of engineering.
    [Show full text]
  • Turning Point in the Development of Quantum Mechanics and the Early Years of the Mossbauer Effect*
    Fermi National Accelerator Laboratory FERMILAB-Conf-76/87-THY October 1976 A TURNING POINT IN THE DEVELOPMENT OF QUANTUM MECHANICS AND THE EARLY YEARS OF THE MOSSBAUER EFFECT* Harry J. Lipkin' Weizmann Institute of Science, Rehovot, Israel Argonne National Laboratory, Argonne, Illinois 60^39 Fermi National Accelerator Laboratory"; Batavia, Illinois 60S10 It is interesting to hear about the exciting early days recalled by Professors Wigner and Wick. I learned quantum theory at a later period, which might be called a turning point in its development, when the general attitude toward quantum mechanics and the study of physics was very different from what it is today. As an undergraduate student in electrical engineering in 19^0 in the United States I found a certain disagreement between the faculty and the students about the "relevance'- of the curriculum. Students thought a k-year course in electrical engineering should include more electronics than a one-semester 3-hour course. But the establishment emphasized the study of power machinery and power transmission because 95'/° of their graduates would eventually get jobs in power. Electronics, they said, was fun for students who were radio hams but useless on the job market. Students at that time did not have today's attitudes and did not stage massive demonstrations and protests against the curriculum. Instead a few of us who wished to learn more interesting things satisfied all the requirements of the engineering school and spent as much extra time as possible listening to fascinating courses in the physics building. There we had the opportunity to listen to two recently-arrived Europeans, Bruno Rossi and Hans Bethe.
    [Show full text]
  • Laser Spectroscopy to Resolve Hyperfine Structure of Rubidium
    Laser spectroscopy to resolve hyperfine structure of rubidium Hannah Saddler, Adam Egbert, and Will Weigand (Dated: 12 November 2015) This experiment had two main goals: to create an absorption spectrum for rubidium using the technique of absorption spectroscopy and to resolve the hyperfine structures for the two rubidium isotopes using saturation absorption spectroscopy. The absorption spectrum was used to determine the frequency difference between the ground state and first excited state for both isotopes. The calculated frequency difference was 6950 MHz ± 90 MHz for rubidium 87 and 3060 MHz ± 60 MHz for rubidium 85. Both values agree with the literature values. The hyperfine structure for rubidium 87 was able to be resolved using this experimental setup. The energy differences were determined to be 260 MHz ± 10 MHz and 150 MHz ± 10 Mhz MHz. The hyperfine structure for rubidium 85 was unable to be resolved using this experimental setup. Additionally the theory of doppler broadening was used to make measurements of the full width half maximum. These values were used to calculate a temperature of 310K ± 40 K which makes sense because the experiments were performed at room temperature. I. INTRODUCTION in the theory section and how they were manipulated and used to derive the results from the recorded data. Addi- tionally there is an explanation of experimental error and The era of modern spectroscopy began with the in- uncertainty associated the results. Section V is a conclu- vention of the laser. The word laser was originally an sion that ties the results of the experiment we performed acronym that stood for light amplification by stimulated to the usefulness of the technique of laser spectroscopy.
    [Show full text]
  • SHELDON LEE GLASHOW Lyman Laboratory of Physics Harvard University Cambridge, Mass., USA
    TOWARDS A UNIFIED THEORY - THREADS IN A TAPESTRY Nobel Lecture, 8 December, 1979 by SHELDON LEE GLASHOW Lyman Laboratory of Physics Harvard University Cambridge, Mass., USA INTRODUCTION In 1956, when I began doing theoretical physics, the study of elementary particles was like a patchwork quilt. Electrodynamics, weak interactions, and strong interactions were clearly separate disciplines, separately taught and separately studied. There was no coherent theory that described them all. Developments such as the observation of parity violation, the successes of quantum electrodynamics, the discovery of hadron resonances and the appearance of strangeness were well-defined parts of the picture, but they could not be easily fitted together. Things have changed. Today we have what has been called a “standard theory” of elementary particle physics in which strong, weak, and electro- magnetic interactions all arise from a local symmetry principle. It is, in a sense, a complete and apparently correct theory, offering a qualitative description of all particle phenomena and precise quantitative predictions in many instances. There is no experimental data that contradicts the theory. In principle, if not yet in practice, all experimental data can be expressed in terms of a small number of “fundamental” masses and cou- pling constants. The theory we now have is an integral work of art: the patchwork quilt has become a tapestry. Tapestries are made by many artisans working together. The contribu- tions of separate workers cannot be discerned in the completed work, and the loose and false threads have been covered over. So it is in our picture of particle physics. Part of the picture is the unification of weak and electromagnetic interactions and the prediction of neutral currents, now being celebrated by the award of the Nobel Prize.
    [Show full text]
  • Laser Spectroscopy Experiments
    Hyperfine Spectrum of Rubidium: laser spectroscopy experiments Physics 480W (Dated: Sp19 Paper #4) I. OBJECTIVES FOR THESE EXPERIMENTS We wish to use the technique of absorption spec- troscopy to probe and detect the energy level structure of atomic Rubidium, Rb I, whose ground state is split by a tiny amount on account of nuclear magnetism. In effect, the spectroscopy we do today tells us about nuclear prop- erties and so combines atomic and nuclear physics. The main result of this experiment, the 4th of the semester, is to 1. measure the hyperfine splitting for each isotope, and compare with accepted values, with the fol- lowing details in mind: (a) what is the hyperfine splitting of the ground 2 state, S1=2 term? Do we need saturation- absorption techniques for this? (b) what are the hyperfine splittings of the ex- 2 cited state, P3=2 term, that can be reached with a nominal wavelength of 780nm from the ground state? Here we need saturation- absorption techniques to perform sub-Doppler FIG. 1. Note the four 'blobs'. Why are there four? Which spectroscopy, certainly. Help the reader un- 85 are associated with Rb37, and so on. If all goes swimm- derstand what is entailed in the technique, ingly, we'll get an absorption spectrum that looks much line both experimentally and theoretically. You the figure below the setup. The etalon data will be needed to will need to explain what `saturation' means. make the abscissa something proportional to frequency. The The saturation intensity is an important fig- accepted value of the gap between the 2 outermost dips is ure of merit.
    [Show full text]
  • Scientific and Related Works of Chen Ning Yang
    Scientific and Related Works of Chen Ning Yang [42a] C. N. Yang. Group Theory and the Vibration of Polyatomic Molecules. B.Sc. thesis, National Southwest Associated University (1942). [44a] C. N. Yang. On the Uniqueness of Young's Differentials. Bull. Amer. Math. Soc. 50, 373 (1944). [44b] C. N. Yang. Variation of Interaction Energy with Change of Lattice Constants and Change of Degree of Order. Chinese J. of Phys. 5, 138 (1944). [44c] C. N. Yang. Investigations in the Statistical Theory of Superlattices. M.Sc. thesis, National Tsing Hua University (1944). [45a] C. N. Yang. A Generalization of the Quasi-Chemical Method in the Statistical Theory of Superlattices. J. Chem. Phys. 13, 66 (1945). [45b] C. N. Yang. The Critical Temperature and Discontinuity of Specific Heat of a Superlattice. Chinese J. Phys. 6, 59 (1945). [46a] James Alexander, Geoffrey Chew, Walter Salove, Chen Yang. Translation of the 1933 Pauli article in Handbuch der Physik, volume 14, Part II; Chapter 2, Section B. [47a] C. N. Yang. On Quantized Space-Time. Phys. Rev. 72, 874 (1947). [47b] C. N. Yang and Y. Y. Li. General Theory of the Quasi-Chemical Method in the Statistical Theory of Superlattices. Chinese J. Phys. 7, 59 (1947). [48a] C. N. Yang. On the Angular Distribution in Nuclear Reactions and Coincidence Measurements. Phys. Rev. 74, 764 (1948). 2 [48b] S. K. Allison, H. V. Argo, W. R. Arnold, L. del Rosario, H. A. Wilcox and C. N. Yang. Measurement of Short Range Nuclear Recoils from Disintegrations of the Light Elements. Phys. Rev. 74, 1233 (1948). [48c] C.
    [Show full text]
  • Dr. Abraham Pais Dr. Pais Was Born in Amsterdam on May 19, 1918. He
    Director's Office: Faculty Files: Box 25: Pais, Abraham, Permanent Member From the Shelby White and Leon Levy Archives Center, Institute for Advanced Study, Princeton, NJ, USA Dr. Abraham Pais Dr. Pais was born i n Amsterdam on May 19, 1918. He obtained his Doctor's Degree at the University of Utrecht in 1941. During the years of the occupation, he continued to work under conditions of great difficulty, and the year after the war he was an assistant at the Insti- tute of Theoretical Physics in Copenhagen, In the fall of 1946, Dr. Pais came to the Institute for Advanced Study. ~he record of Dr. Pais' work in the last decade is almost a history of the efforts to clar ify our understanding of basic atomic theory and of the nature of elementary particles. Pais first proposed the compensa- tion theories of elenientary particles, and much of his work tas been devoted. to exploring the success and limitations of these theories, and indicating the radical character of the revisions which will be needed before they can successfully describe the sub-atomic world. Pais has made important contri- butions to nuclear theory and to electrodynamics . He is one of the few young theoretical physicists who within the last decade have enriched our understanding of physics. Statement prepared by J . R. Oppenheim.er Enclosure: Bibliography of papers by Dr. Pais Director's Office: Faculty Files: Box 25: Pais, Abraham, Permanent Member From the Shelby White and Leon Levy Archives Center, Institute for Advanced Study, Princeton, NJ, USA PUBLICATIONS OF ABRAHllJ~ PAIS The ener gy moment um tensor in projective r elativity theor y, Physi ca 8 (1941), 1137-116o .
    [Show full text]
  • Julian Seymour Schwinger Papers, 1920-1994
    http://oac.cdlib.org/findaid/ark:/13030/tf5870062x No online items Finding Aid for the Julian Seymour Schwinger Papers, 1920-1994 Processed by Russell Johnson and Charlotte B. Brown; machine-readable finding aid created by Caroline Cubé UCLA Library, Department of Special Collections Manuscripts Division Room A1713, Charles E. Young Research Library Box 951575 Los Angeles, CA 90095-1575 Email: [email protected] URL: http://www.library.ucla.edu/libraries/special/scweb/ © 1999 The Regents of the University of California. All rights reserved. Finding Aid for the Julian 371 1 Seymour Schwinger Papers, 1920-1994 Finding Aid for the Julian Seymour Schwinger Papers, 1920-1994 Collection number: 371 UCLA Library, Department of Special Collections Manuscripts Division Los Angeles, CA Contact Information Manuscripts Division UCLA Library, Department of Special Collections Room A1713, Charles E. Young Research Library Box 951575 Los Angeles, CA 90095-1575 Telephone: 310/825-4988 (10:00 a.m. - 4:45 p.m., Pacific Time) Email: [email protected] URL: http://www.library.ucla.edu/libraries/special/scweb/ Processed by: Charlotte B. Brown, 13 October 1995 and Russell A. Johnson, 12 February 1997 Encoded by: Caroline Cubé Online finding aid edited by: Josh Fiala, November 2002 © 1999 The Regents of the University of California. All rights reserved. Descriptive Summary Title: Julian Seymour Schwinger Papers, Date (inclusive): 1920-1994 Collection number: 371 Creator: Schwinger, Julian Seymour, 1918- Extent: 28 cartons (28 linear ft.) 1 oversize box Repository: University of California, Los Angeles. Library. Department of Special Collections. Los Angeles, California 90095-1575 Abstract: Julian Seymour Schwinger (1918-1994) worked with J.
    [Show full text]
  • The Concept of the Photon—Revisited
    The concept of the photon—revisited Ashok Muthukrishnan,1 Marlan O. Scully,1,2 and M. Suhail Zubairy1,3 1Institute for Quantum Studies and Department of Physics, Texas A&M University, College Station, TX 77843 2Departments of Chemistry and Aerospace and Mechanical Engineering, Princeton University, Princeton, NJ 08544 3Department of Electronics, Quaid-i-Azam University, Islamabad, Pakistan The photon concept is one of the most debated issues in the history of physical science. Some thirty years ago, we published an article in Physics Today entitled “The Concept of the Photon,”1 in which we described the “photon” as a classical electromagnetic field plus the fluctuations associated with the vacuum. However, subsequent developments required us to envision the photon as an intrinsically quantum mechanical entity, whose basic physics is much deeper than can be explained by the simple ‘classical wave plus vacuum fluctuations’ picture. These ideas and the extensions of our conceptual understanding are discussed in detail in our recent quantum optics book.2 In this article we revisit the photon concept based on examples from these sources and more. © 2003 Optical Society of America OCIS codes: 270.0270, 260.0260. he “photon” is a quintessentially twentieth-century con- on are vacuum fluctuations (as in our earlier article1), and as- Tcept, intimately tied to the birth of quantum mechanics pects of many-particle correlations (as in our recent book2). and quantum electrodynamics. However, the root of the idea Examples of the first are spontaneous emission, Lamb shift, may be said to be much older, as old as the historical debate and the scattering of atoms off the vacuum field at the en- on the nature of light itself – whether it is a wave or a particle trance to a micromaser.
    [Show full text]
  • Joaquin M. Luttinger 1923–1997
    Joaquin M. Luttinger 1923–1997 A Biographical Memoir by Walter Kohn ©2014 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. JOAQUIN MAZDAK LUTTINGER December 2, 1923–April 6, 1997 Elected to the NAS, 1976 The brilliant mathematical and theoretical physicist Joaquin M. Luttinger died at the age of 73 years in the city of his birth, New York, which he deeply loved throughout his life. He had been in good spirits a few days earlier when he said to Walter Kohn (WK), his longtime collaborator and friend, that he was dying a happy man thanks to the loving care during his last illness by his former wife, Abigail Thomas, and by his stepdaughter, Jennifer Waddell. Luttinger’s work was marked by his exceptional ability to illuminate physical properties and phenomena through Visual Archives. Emilio Segrè Photograph courtesy the use of appropriate and beautiful mathematics. His writings and lectures were widely appreciated for their clarity and fine literary quality. With Luttinger’s death, an By Walter Kohn influential voice that helped shape the scientific discourse of his time, especially in condensed-matter physics, was stilled, but many of his ideas live on. For example, his famous 1963 paper on condensed one-dimensional fermion systems, now known as Tomonaga-Luttinger liquids,1, 2 or simply Luttinger liquids, continues to have a strong influence on research on 1-D electronic dynamics. In the 1950s and ’60s, Luttinger also was one of the great figures who helped construct the present canon of classic many-body theory while at the same time laying founda- tions for present-day revisions.
    [Show full text]