Texasstar2019-11Bees
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Orb Weavers, Neoscona Crucifera (Lucas 1839) and Neoscona Domiciliorun (Hentz) (Arachnidae: Araneae: Araneidae)1 G
EENY316 Orb Weavers, Neoscona crucifera (Lucas 1839) and Neoscona domiciliorun (Hentz) (Arachnidae: Araneae: Araneidae)1 G. B. Edwards2 Introduction Neoscona crucifera (Lucas 1839) and N. domiciliorum (Hentz 1847) are common and conspicuous members of the moist woodland communities in much of Florida. These spiders are beneficial, consuming a variety of insects. Although typically nocturnal throughout most of their life spans, adult females can be found sitting head down in the hubs of their webs during daylight hours of the fall season. Bites from these spiders are not known to cause serious effects to humans. Distribution These spiders have a wide geographic range: N. crucifera is found from Lake Okeechobee in southern Florida north to New England, west to Minnesota, and southwest to Arizona and central Mexico, whereas N. domiciliorum occurs southeast of a line drawn from Massachusetts to Indiana southwest to Texas. In the more northern states, males may mature as early as late June and females in July Figure 1. Dorsal view of female Neoscona crucifera (Lucas), an orb (Berman and Levi 1971), but in Florida, adults usually are weaver. not apparent until late August. Credits: G.B. Edwards, FDACS–DPI Systematics These two species have been confused with each other, mostly due to the interpretations by various authors of the descriptions by Walckenaer (1841) of two forms of Epeira 1. This document is EENY316 (originally published as DPI Entomology Circular 266), one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. Original publication date March 2004. Reviewed February 2021. Visit the EDIS website at https://edis.ifas.ufl.edu for the currently supported version of this publication. -
Spider Biodiversity Patterns and Their Conservation in the Azorean
Systematics and Biodiversity 6 (2): 249–282 Issued 6 June 2008 doi:10.1017/S1477200008002648 Printed in the United Kingdom C The Natural History Museum ∗ Paulo A.V. Borges1 & Joerg Wunderlich2 Spider biodiversity patterns and their 1Azorean Biodiversity Group, Departamento de Ciˆencias conservation in the Azorean archipelago, Agr´arias, CITA-A, Universidade dos Ac¸ores. Campus de Angra, with descriptions of new species Terra-Ch˜a; Angra do Hero´ısmo – 9700-851 – Terceira (Ac¸ores); Portugal. Email: [email protected] 2Oberer H¨auselbergweg 24, Abstract In this contribution, we report on patterns of spider species diversity of 69493 Hirschberg, Germany. the Azores, based on recently standardised sampling protocols in different hab- Email: joergwunderlich@ t-online.de itats of this geologically young and isolated volcanic archipelago. A total of 122 species is investigated, including eight new species, eight new records for the submitted December 2005 Azorean islands and 61 previously known species, with 131 new records for indi- accepted November 2006 vidual islands. Biodiversity patterns are investigated, namely patterns of range size distribution for endemics and non-endemics, habitat distribution patterns, island similarity in species composition and the estimation of species richness for the Azores. Newly described species are: Oonopidae – Orchestina furcillata Wunderlich; Linyphiidae: Linyphiinae – Porrhomma borgesi Wunderlich; Turinyphia cavernicola Wunderlich; Linyphiidae: Micronetinae – Agyneta depigmentata Wunderlich; Linyph- iidae: -
Biodiversity and Community Structure of Spiders in Saran, Part of Indo-Gangetic Plain, India
Asian Journal of Conservation Biology, December 2015. Vol. 4 No. 2, pp. 121-129 AJCB: FP0062 ISSN 2278-7666 ©TCRP 2015 Biodiversity and Community structure of spiders in Saran, part of Indo-Gangetic Plain, India N Priyadarshini1*, R Kumari1, R N Pathak1, A K Pandey2 1Department of Zoology, D. A. V. College, J. P. University, Chhapra, India 2School of Environmental Studies, Jawaharlal Nehru University, New Delhi, India (Accepted November 21, 2015) ABSTRACT Present study was conducted to reveals the community structure and diversity of spider species in different habitat types (gardens, crop fields and houses) of Saran; a part of Indo – Gangetic Plain, India. This area has very rich diversity of flora and fauna due to its climatic conditions, high soil fer- tility and plenty of water availability. The spiders were sampled using two semi-quantitative methods and pitfall traps. A total of 1400 individual adult spiders belonging to 50 species, 29 genera and 15 families were recorded during 1st December 2013 to 28th February 2014. Spider species of houses were distinctive from other habitats it showed low spider species richness. The dominant spider fami- lies were also differs with habitat types. Araneidae, Pholcidae and Salticidae were the dominant spi- der families in gardens, houses and crop fields respectively. Comparison of beta diversity showed higher dissimilarity in spider communities of gardens and houses and higher similarity between spi- der communities of crop fields and gardens. We find that spiders are likely to be more abundant and species rich in gardens than in other habitat types. Habitat structural component had great impact on spider species richness and abundance in studied habitats. -
Common Kansas Spiders
A Pocket Guide to Common Kansas Spiders By Hank Guarisco Photos by Hank Guarisco Funded by Westar Energy Green Team, American Arachnological Society and the Chickadee Checkoff Published by the Friends of the Great Plains Nature Center i Table of Contents Introduction • 2 Arachnophobia • 3 Spider Anatomy • 4 House Spiders • 5 Hunting Spiders • 5 Venomous Spiders • 6-7 Spider Webs • 8-9 Other Arachnids • 9-12 Species accounts • 13 Texas Brown Tarantula • 14 Brown Recluse • 15 Northern Black Widow • 16 Southern & Western Black Widows • 17-18 Woodlouse Spider • 19 Truncated Cellar Spider • 20 Elongated Cellar Spider • 21 Common Cellar Spider • 22 Checkered Cobweb Weaver • 23 Quasi-social Cobweb Spider • 24 Carolina Wolf Spider • 25 Striped Wolf Spider • 26 Dotted Wolf Spider • 27 Western Lance Spider • 28 Common Nurseryweb Spider • 29 Tufted Nurseryweb Spider • 30 Giant Fishing Spider • 31 Six-spotted Fishing Spider • 32 Garden Ghost Spider Cover Photo: Cherokee Star-bellied Orbweaver ii Eastern Funnelweb Spider • 33 Eastern and Western Parson Spiders • 34 Garden Ghost Spider • 35 Bark Crab Spider • 36 Prairie Crab Spider • 37 Texas Crab Spider • 38 Black-banded Crab Spider • 39 Ridge-faced Flower Spider • 40 Striped Lynx Spider • 41 Black-banded Common and Convict Zebra Spiders • 42 Crab Spider Dimorphic Jumping Spider • 43 Bold Jumping Spider • 44 Apache Jumping Spider • 45 Prairie Jumping Spider • 46 Emerald Jumping Spider • 47 Bark Jumping Spider • 48 Puritan Pirate Spider • 49 Eastern and Four-lined Pirate Spiders • 50 Orchard Spider • 51 Castleback Orbweaver • 52 Triangulate Orbweaver • 53 Common & Cherokee Star-bellied Orbweavers • 54 Black & Yellow Garden Spider • 55 Banded Garden Spider • 56 Marbled Orbweaver • 57 Eastern Arboreal Orbweaver • 58 Western Arboreal Orbweaver • 59 Furrow Orbweaver • 60 Eastern Labyrinth Orbweaver • 61 Giant Long-jawed Orbweaver • 62 Silver Long-jawed Orbweaver • 63 Bowl and Doily Spider • 64 Filmy Dome Spider • 66 References • 67 Pocket Guides • 68-69 1 Introduction This is a guide to the most common spiders found in Kansas. -
Australasian Arachnology 76 Features a Comprehensive Update on the Taxonomy Change of Address and Systematics of Jumping Spiders of Australia by Marek Zabka
AAususttrraalaassiianan AArracachhnnoollogyogy Price$3 Number7376 ISSN0811-3696 January200607 Newsletterof NewsletteroftheAustralasianArachnologicalSociety Australasian Arachnology No. 76 Page 2 THE AUSTRALASIAN ARTICLES ARACHNOLOGICAL The newsletter depends on your SOCIETY contributions! We encourage articles on a We aim to promote interest in the range of topics including current research ecology, behaviour and taxonomy of activities, student projects, upcoming arachnids of the Australasian region. events or behavioural observations. MEMBERSHIP Please send articles to the editor: Membership is open to amateurs, Volker Framenau students and professionals and is managed Department of Terrestrial Invertebrates by our administrator: Western Australian Museum Locked Bag 49 Richard J. Faulder Welshpool, W.A. 6986, Australia. Agricultural Institute [email protected] Yanco, New South Wales 2703. Australia Format: i) typed or legibly printed on A4 [email protected] paper or ii) as text or MS Word file on CD, Membership fees in Australian dollars 3½ floppy disk, or via email. (per 4 issues): LIBRARY *discount personal institutional Australia $8 $10 $12 The AAS has a large number of NZ / Asia $10 $12 $14 reference books, scientific journals and elsewhere $12 $14 $16 papers available for loan or as photocopies, for those members who do There is no agency discount. not have access to a scientific library. All postage is by airmail. Professional members are encouraged to *Discount rates apply to unemployed, pensioners and students (please provide proof of status). send in their arachnological reprints. Cheques are payable in Australian Contact our librarian: dollars to “Australasian Arachnological Society”. Any number of issues can be paid Jean-Claude Herremans PO Box 291 for in advance. -
Diversidad De Arañas (Arachnida: Araneae) Asociadas Con Viviendas De La Ciudad De México (Zona Metropolitana)
Revista Mexicana de Biodiversidad 80: 55-69, 2009 Diversidad de arañas (Arachnida: Araneae) asociadas con viviendas de la ciudad de México (Zona Metropolitana) Spider diversity (Arachnida: Araneae) associated with houses in México city (Metropolitan area) César Gabriel Durán-Barrón*, Oscar F. Francke y Tila Ma. Pérez-Ortiz Colección Nacional de Arácnidos (CNAN), Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México. Ciudad Universitaria, Apartado postal 70-153, 04510 México, D. F., México. *Correspondencia: [email protected] Resumen. La ecología urbana es un área de investigación relativamente reciente. Los ecosistemas urbanos son aquellos defi nidos como ambientes dominados por el hombre. Con el proceso de urbanización, insectos y arácnidos silvestres aprovechan los nuevos microhábitats que las viviendas humanas ofrecen. Se revisaron arañas recolectadas dentro de 109 viviendas durante los años de 1985 a 1986, 1996 a 2001 y 2002 a 2003. Se cuantifi caron 1 196 organismos , los cuales se determinaron hasta especie. Se obtuvo una lista de 25 familias, 52 géneros y 63 especies de arañas sinantrópicas. Se utilizaron 3 índices (ocupación, densidad y estacionalidad) y un análisis de intervalos para sustentar la siguiente clasifi cación: accidentales (índice de densidad de 0-0.9), ocasionales (1-2.9), frecuentes (3.0-9.9) y comunes (10 en adelante). Se comparan las faunas de arañas sinantrópicas de 5 países del Nuevo Mundo. Palabras clave: sinantropismo, ecología, urbanización, microhábitats. Abstract. Urban ecology is a relatively new area of research, with urban ecosystems being defi ned as environments dominated by humans. Insects and arachnids are 2 groups that successfully exploit the habitats offered by human habitations. -
Phylogeny of the Orb‐Weaving Spider
Cladistics Cladistics (2019) 1–21 10.1111/cla.12382 Phylogeny of the orb-weaving spider family Araneidae (Araneae: Araneoidea) Nikolaj Scharffa,b*, Jonathan A. Coddingtonb, Todd A. Blackledgec, Ingi Agnarssonb,d, Volker W. Framenaue,f,g, Tamas Szuts} a,h, Cheryl Y. Hayashii and Dimitar Dimitrova,j,k aCenter for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark; bSmithsonian Institution, National Museum of Natural History, 10th and Constitution, NW Washington, DC 20560-0105, USA; cIntegrated Bioscience Program, Department of Biology, University of Akron, Akron, OH, USA; dDepartment of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405-0086, USA; eDepartment of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia; fSchool of Animal Biology, University of Western Australia, Crawley, WA 6009, Australia; gHarry Butler Institute, Murdoch University, 90 South St., Murdoch, WA 6150, Australia; hDepartment of Ecology, University of Veterinary Medicine Budapest, H1077 Budapest, Hungary; iDivision of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA; jNatural History Museum, University of Oslo, PO Box 1172, Blindern, NO-0318 Oslo, Norway; kDepartment of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway Accepted 11 March 2019 Abstract We present a new phylogeny of the spider family Araneidae based on five genes (28S, 18S, COI, H3 and 16S) for 158 taxa, identi- fied and mainly sequenced by us. This includes 25 outgroups and 133 araneid ingroups representing the subfamilies Zygiellinae Simon, 1929, Nephilinae Simon, 1894, and the typical araneids, here informally named the “ARA Clade”. -
2018 AAS Abstracts
2018 AAS Abstracts The American Arachnological Society 42nd Annual Meeting June 22-26, 2018 Eastern Michigan University, Ypsilanti, MI Cara Shillington and Anne Danielson-Francois MEETING ABSTRACTS Arranged by first author’s last name Presenters in underline * designates student competition participant Global diversification of Anelosimus spiders driven by long distance overwater dispersal and Neogene climate oscillations Agnarsson, Ingi, Yufa Luo, Seok Ping Goh, Marcelo O. Gonzaga, Adalberto J. Santos, Akio Tanikawa, Hajime Yoshida, Charles Haddad, Laura J. May-Collado, Matjaž Gregorič, Eva Turk and Matjaž Kuntner University of Vermont The major factors shaping the distribution and diversity of extant organisms include geological change (vicariance), organismal movement (dispersal), and fluctuating climate. Anelosimus spiders (Theridiidae) are solitary-social organisms with a cosmopolitan distribution in temperate to tropical areas. Their discontinuous distribution and patterns of diversification suggest that two factors, long distance overwater dispersal and climate change during the Neogene (23–2.6 Ma), have been the prominent drivers of their biogeographical history. We investigate the spatiotemporal biogeography of Anelosimus through culmination of a 20-year comprehensive global sampling at the species level (63 species or 85% of the known 74 species worldwide, represented by 268 individuals). Based on analyses of nucleotide data from seven loci (5.5 kb) for Anelosimus and outgroups. Anelosimus is monophyletic with an Oligocene (~30 Ma) South American origin. Major clades on other continents originate via multiple, overwater dispersal events, of solitary and subsocial—but not social—lineages, from the Americas. These intercontinental dispersals were to Africa, Madagascar (twice), and SE Asia/Australasia. The early diversification of Anelosimus spiders coincides with a sudden thermal increase in the late Oligocene (~27–25 Ma). -
1 the RESTRUCTURING of ARTHROPOD TROPHIC RELATIONSHIPS in RESPONSE to PLANT INVASION by Adam B. Mitchell a Dissertation Submitt
THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell 1 A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology and Wildlife Ecology Winter 2019 © Adam B. Mitchell All Rights Reserved THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell Approved: ______________________________________________________ Jacob L. Bowman, Ph.D. Chair of the Department of Entomology and Wildlife Ecology Approved: ______________________________________________________ Mark W. Rieger, Ph.D. Dean of the College of Agriculture and Natural Resources Approved: ______________________________________________________ Douglas J. Doren, Ph.D. Interim Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Douglas W. Tallamy, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Charles R. Bartlett, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Jeffery J. Buler, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. -
Ants of Christmas Island (Part 1)
Australasian Arachnology No. 76 Page 4 deserves special mention. Most of the th 17 International Congress of 168 species described in this work are Arachnology well documented and recognisable with the original illustrations. São Pedro, São Paulo (Brazil) Modern taxonomic studies of 5-10 August 2007 Australian Salticidae emerged 35 years ago. Proszynski (1971) catalogued http://www.ib.usp.br/~ricrocha/ISA17/ISA.htm salticid type material from major collections worldwide and verified the generic status of some of the species. The same author produced a two-volume atlas of diagnostic drawings (Proszynski 1984, 1987) and a catalogue (Proszynski 1990), all three of them eventually amalgamated into an online world catalogue of the Salticidae (Proszynski 2003). Davies and Zabka (1989) published a key to the 50 Australian genera of Salticidae with diagnoses and remarks on some species of uncertain taxonomic status. The interactive CD- Rom Spiders of Australia by Raven et al. (2002) was one of the latest contributions to include jumping spiders. Jumping spider (Araneae, In the last 20 years nearly 140 new Salticidae) taxonomy and species and 14 genera were described biogeography in Australia: (see Richardson and Zabka 2003; current state and future bibliography below), most of them by myself (9 genera and 109 species) and by prospects F.R. Wanless (4 genera and 25 species). Marek Zabka, Academy of Podlasie, Thus, the current list of Australian Siedlce, Poland, email: jumping spiders comprises 355 species in [email protected] 76 genera (8 of which are doubtful) (Richardson & Zabka 2003; Zabka, The history of Australian jumping unpublished data). -
1 the Handheld Signing Math & Science Dictionaries for Deaf And
The Handheld Signing Math & Science Dictionaries for Deaf and Hard of Hearing Museum Visitors Research Project: A Sub-study Conducted with Families at the Harvard Museum of Natural History (NSF, Grant #DRL-1008546) TERC by Judy Vesel, Principal Investigator Bill Nave, Project Evaluator Tara Robillard, Lead Researcher April 2015 1 SUB-STUDY DESCRIPTION With this project, TERC and the Museum of Science (MoS) Boston are studying how family and school visitors integrate iPod Touch versions of the Signing Science Pictionary (SSP), Signing Science Dictionary (SSD), and Signing Math Dictionary (SMD) into their museum experience and the impact of dictionary use. This report focuses on a pilot test involving family visitors to the Harvard Museum of Natural History (HMNH). Prior to this sub-study, TERC and the MoS conducted a primary study that examined use of the dictionaries at the MoS1. Findings from this study showed the following: • Visitors used the signing dictionaries to learn the signs and definitions for terms that were new to them as they visited each of two exhibit areas. • Family groups engaged in discussions about the activities they visited. The new signs they learned from using the dictionaries were used to support these discussions. • Family members reported that they used the dictionaries to learn signs and definitions for terms that were new to them more frequently at activities where Word Lists that included key dictionary terms were posted. Additionally, many participants indicated that they would be interested in using the signing dictionaries during another visit to the MoS or to a different informal science setting such as a zoo or aquarium. -
Common Spiders (Arachnida: Araneae) in the Wichita Mountains and Surrounding Areas
Common Spiders (Arachnida: Araneae) in the Wichita Mountains and Surrounding Areas Angel A. Chiri Entomologist and abdomen) and does not include legs. Introduction Although this guide is primarily for spiders, harvestmen, scorpions, ticks, and sun spiders are Spiders belong in the Phylum Arthropoda, Class briefly mentioned. Arachnida, Order Araneae. These common arachnids are found in grasslands, forests, orchards, cultivated fields, backyards, gardens, empty lots, parks, and homes. There are some 570 genera and 3,700 species of spiders in North America, north of Mexico. According to an Oklahoma State University checklist at least some 187 genera and 432 species were recorded in the state. Cokendolpher and Bryce (1980) examined arachnid specimens collected at the Wichita Mountains Wildlife Refuge by various groups between 1926 and 1978. Their work yielded a total of 182 arachnid species, of which 170 were spiders. Figure 1. Texas brown tarantula, Aphonopelma hentzi, male Many spiders are common and distinctive, often seen resting on their webs or crawling on the Summary of Structure and Function ground during the warmer months. The larger orb-weavers, for instance, are readily noticed in Being arthropods, spiders have a rigid external late summer and early fall because of their size skeleton, or exoskeleton, and jointed legs. The and conspicuousness. Others are uncommon or spider body consists of two segments, the seldom seen because of their secretive habits or cephalothorax (anterior segment) and the small size. For instance, some spiders that live abdomen (posterior segment), joined by a short, in leaf litter are minute, cryptic, and seldom thin, flexible pedicel. The dorsal part of the noticed without the use of special collecting cephalothorax is the carapace.