Ants of Christmas Island (Part 1)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cravens Peak Scientific Study Report
Geography Monograph Series No. 13 Cravens Peak Scientific Study Report The Royal Geographical Society of Queensland Inc. Brisbane, 2009 The Royal Geographical Society of Queensland Inc. is a non-profit organization that promotes the study of Geography within educational, scientific, professional, commercial and broader general communities. Since its establishment in 1885, the Society has taken the lead in geo- graphical education, exploration and research in Queensland. Published by: The Royal Geographical Society of Queensland Inc. 237 Milton Road, Milton QLD 4064, Australia Phone: (07) 3368 2066; Fax: (07) 33671011 Email: [email protected] Website: www.rgsq.org.au ISBN 978 0 949286 16 8 ISSN 1037 7158 © 2009 Desktop Publishing: Kevin Long, Page People Pty Ltd (www.pagepeople.com.au) Printing: Snap Printing Milton (www.milton.snapprinting.com.au) Cover: Pemberton Design (www.pembertondesign.com.au) Cover photo: Cravens Peak. Photographer: Nick Rains 2007 State map and Topographic Map provided by: Richard MacNeill, Spatial Information Coordinator, Bush Heritage Australia (www.bushheritage.org.au) Other Titles in the Geography Monograph Series: No 1. Technology Education and Geography in Australia Higher Education No 2. Geography in Society: a Case for Geography in Australian Society No 3. Cape York Peninsula Scientific Study Report No 4. Musselbrook Reserve Scientific Study Report No 5. A Continent for a Nation; and, Dividing Societies No 6. Herald Cays Scientific Study Report No 7. Braving the Bull of Heaven; and, Societal Benefits from Seasonal Climate Forecasting No 8. Antarctica: a Conducted Tour from Ancient to Modern; and, Undara: the Longest Known Young Lava Flow No 9. White Mountains Scientific Study Report No 10. -
Salticidae (Arachnida, Araneae) of Islands Off Australia
1999. The Journal of Arachnology 27:229±235 SALTICIDAE (ARACHNIDA, ARANEAE) OF ISLANDS OFF AUSTRALIA Barbara Patoleta and Marek ZÇ abka: Zaklad Zoologii WSRP, 08±110 Siedlce, Poland ABSTRACT. Thirty nine species of Salticidae from 33 Australian islands are analyzed with respect to their total distribution, dispersal possibilities and relations with the continental fauna. The possibility of the Torres Strait islands as a dispersal route for salticids is discussed. The studies of island faunas have been the ocean level ¯uctuations over the last 50,000 subject of zoogeographical and evolutionary years, at least some islands have been sub- research for over 150 years and have resulted merged or formed land bridges with the con- in hundreds of papers, with the syntheses by tinent (e.g., Torres Strait islands). All these Carlquist (1965, 1974) and MacArthur & Wil- circumstances and the human occupation son (1967) being the best known. make it rather unlikely for the majority of Modern zoogeographical analyses, based islands to have developed their own endemic on island spider faunas, began some 60 years salticid faunas. ago (Berland 1934) and have continued ever When one of us (MZ) began research on since by, e.g., Forster (1975), Lehtinen (1980, the Australian and New Guinean Salticidae 1996), Baert et al. (1989), ZÇ abka (1988, 1990, over ten years ago, close relationships be- 1991, 1993), Baert & Jocque (1993), Gillespie tween the faunas of these two regions were (1993), Gillespie et al. (1994), ProÂszynÂski expected. Consequently, it was hypothesized (1992, 1996) and Berry et al. (1996, 1997), that the Cape York Peninsula and Torres Strait but only a few papers were based on veri®ed islands were the natural passage for dispersal/ and suf®cient taxonomic data. -
Dynamics of Salticid-Ant Mimicry Systems
ResearchOnline@JCU This file is part of the following reference: Ceccarelli, Fadia Sara (2006) Dynamics of salticid-ant mimicry systems. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/1311/ If you believe that this work constitutes a copyright infringement, please contact [email protected] and quote http://eprints.jcu.edu.au/1311/ TITLE PAGE Dynamics of Salticid-Ant Mimicry Systems Thesis submitted by Fadia Sara CECCARELLI BSc (Hons) in March 2006 for the degree of Doctor of Philosophy in Zoology and Tropical Ecology within the School of Tropical Biology James Cook University I STATEMENT OF ACCESS I, the undersigned author of this thesis, understand that James Cook University will make it available for use within the University Library and, by microfilm or other means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement: In consulting this thesis I agree not to copy or closely paraphrase it in whole of part without the written consent of the author; and to make proper public written acknowledgement for any assistance which I have obtained from it. Beyond this, I do not wish to place any restriction on access to this thesis. ------------------------------ -------------------- F. Sara Ceccarelli II ABSTRACT Mimicry in arthropods is seen as an example of evolution by natural selection through predation pressure. The aggressive nature of ants, and their possession of noxious chemicals, stings and strong mandibles make them unfavourable prey for many animals. The resemblance of a similar-sized arthropod to an ant can therefore also protect the mimic from predation. -
Salticidae (Araneae) of Oriental, Australian and Pacific Regions, IV
AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Zabka, Marek, 1990. Salticidae (Araneae) of Oriental, Australian and Pacific Regions, IV. Genus Ocrisiona Simon, 1901. Records of the Australian Museum 42(1): 27–43. [23 March 1990]. doi:10.3853/j.0067-1975.42.1990.105 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia Records of the Australian Museum (1990) Vol. 42: 27-43. ISSN 0067 1975 27 Salticidae (Araneae) of Oriental, Australian and Pacific Regions, IV. Genus Ocrisiona Simon, 1901 MA..REK ZABKA * Visiting Fellow, Australian Museum P.O. Box A285, Sydney South, NSW 2000, Australia *Present Address: Zaklad Zoologii, WSR-P 08-110 Siedlce, P91and ABSTRACT. The spider genus Ocrisiona Simon is revised. Eight species are diagnosed, described and illustrated, five new ones are established: O. eucalypti, O. koahi, O. parmeliae, O. victoriae and O. yakatunyae. Four species, O. aerata (L. Koch), O. elegans (L. Koch), O. Jrenata Simon and O. parallelistriata (L. Koch), are excluded as not related, three additional ones, O. complanata (L. Koch), O.fusca (Karasch) and O. invenusta (L. Koch), are transferred to Holoplatys. The genus is redefined and its relationships are discussed. Remarks on biology are presented, maps of distribution and key to the species are given. Geographical distribution of Ocrisiona is limited to Australia and adjacent areas; O. leucocomis (L. Koch) and O. melanopyga Simon are mainland species also recorded from Tasmania, and O. -
Salticidae (Araneae) of Oriental, Australian and Pacifrc Regions
Recordsof the AustralianMuseum (1990) Vol. 42: 2743. ISSN 0067 1975 27 Salticidae(Araneae) of Oriental, Australian and PacifrcRegions, IV. Genus Ocrisiona Simon, L90L Mlnnr Znnxl* Visiting Fellow, Australian Museum P.O. Box 4285, SydneySouth, NSW 2000, Australia xPresentAddress: Zaklad Zooloel| WSR-P 08-110 Siedlce,Polani AssrRAcr. The spider genus Ocrisiona Simon is revised. Eight speciesare diagnosed,described and illustrated, five new ones are established: O. eucalypti, O. koahi, O. parmeliae, O. victoriae and O. yakatunyae. Four species, O. aerata (L. Koch), O. elegans (L. Koch), O. frenata Simon and O. parallelistriata (L. Koch), are excluded asnot related,three additional ones,O. complanata (L. Koch), O .fusca (Karasch) and O . invenu.slc(L. Koch), are transferred to Holoplatys. The genusis redefined and its relationships are discussed.Remarks on biology are presented,maps of distribution and key to the species are given. Geographical distribution of Ocrisiona is limited to Australia and adjacent areas; O. leucocomis(L. Koch) and O. melanopygaSimon are mainland speciesalso recorded from Tasmania, andO. melancholica (L. Koch) is also known from Lord Howe Island. Zxnrce' M., 1990. Salticidae(Araneae) of Oriental, Australian and Pacific Regions,IV. GenusOcrisiona Simon, 1901.Records of the AustralianMuseum 42(1\: 2743. Sinceitsoriginaldescriptionthetaxonomy of Ocrisiona of O. cinerea and O. liturata cannot be found but their has not been studied. One species was illustrated by original descriptions suggest that both should be Pr6szynski (1984) but without any further comments.The transferredtoHoloplatys,aswellasO. complanata,O.fusca synonymisation of the genus with Holoplatys (Pr6szynski, and O. invenusta. 1987)was premature. Simon (1901a) providedthefirstclear diagnosis of the genus based upon morphological criteria, but even his taxonomic decisionswere partly wrong. -
Australasian Arachnology 76 Features a Comprehensive Update on the Taxonomy Change of Address and Systematics of Jumping Spiders of Australia by Marek Zabka
AAususttrraalaassiianan AArracachhnnoollogyogy Price$3 Number7376 ISSN0811-3696 January200607 Newsletterof NewsletteroftheAustralasianArachnologicalSociety Australasian Arachnology No. 76 Page 2 THE AUSTRALASIAN ARTICLES ARACHNOLOGICAL The newsletter depends on your SOCIETY contributions! We encourage articles on a We aim to promote interest in the range of topics including current research ecology, behaviour and taxonomy of activities, student projects, upcoming arachnids of the Australasian region. events or behavioural observations. MEMBERSHIP Please send articles to the editor: Membership is open to amateurs, Volker Framenau students and professionals and is managed Department of Terrestrial Invertebrates by our administrator: Western Australian Museum Locked Bag 49 Richard J. Faulder Welshpool, W.A. 6986, Australia. Agricultural Institute [email protected] Yanco, New South Wales 2703. Australia Format: i) typed or legibly printed on A4 [email protected] paper or ii) as text or MS Word file on CD, Membership fees in Australian dollars 3½ floppy disk, or via email. (per 4 issues): LIBRARY *discount personal institutional Australia $8 $10 $12 The AAS has a large number of NZ / Asia $10 $12 $14 reference books, scientific journals and elsewhere $12 $14 $16 papers available for loan or as photocopies, for those members who do There is no agency discount. not have access to a scientific library. All postage is by airmail. Professional members are encouraged to *Discount rates apply to unemployed, pensioners and students (please provide proof of status). send in their arachnological reprints. Cheques are payable in Australian Contact our librarian: dollars to “Australasian Arachnological Society”. Any number of issues can be paid Jean-Claude Herremans PO Box 291 for in advance. -
Encyclopedia of Social Insects
G Guests of Social Insects resources and homeostatic conditions. At the same time, successful adaptation to the inner envi- Thomas Parmentier ronment shields them from many predators that Terrestrial Ecology Unit (TEREC), Department of cannot penetrate this hostile space. Social insect Biology, Ghent University, Ghent, Belgium associates are generally known as their guests Laboratory of Socioecology and Socioevolution, or inquilines (Lat. inquilinus: tenant, lodger). KU Leuven, Leuven, Belgium Most such guests live permanently in the host’s Research Unit of Environmental and nest, while some also spend a part of their life Evolutionary Biology, Namur Institute of cycle outside of it. Guests are typically arthropods Complex Systems, and Institute of Life, Earth, associated with one of the four groups of eusocial and the Environment, University of Namur, insects. They are referred to as myrmecophiles Namur, Belgium or ant guests, termitophiles, melittophiles or bee guests, and sphecophiles or wasp guests. The term “myrmecophile” can also be used in a broad sense Synonyms to characterize any organism that depends on ants, including some bacteria, fungi, plants, aphids, Inquilines; Myrmecophiles; Nest parasites; and even birds. It is used here in the narrow Symbionts; Termitophiles sense of arthropods that associated closely with ant nests. Social insect nests may also be parasit- Social insect nests provide a rich microhabitat, ized by other social insects, commonly known as often lavishly endowed with long-lasting social parasites. Although some strategies (mainly resources, such as brood, retrieved or cultivated chemical deception) are similar, the guests of food, and nutrient-rich refuse. Moreover, nest social insects and social parasites greatly differ temperature and humidity are often strictly regu- in terms of their biology, host interaction, host lated. -
The Effect of Larval Social Environment and Circadian Rhythms on Mating Behavior in Bicyclus Anynana and Heliconius Hewitsoni" (2018)
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2018 A Tale of Two Butterflies: Theffec E t of Larval Social Environment and Circadian Rhythms on Mating Behavior in Bicyclus anynana and Heliconius hewitsoni Deonna Nicole Robertson University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Behavior and Ethology Commons, and the Entomology Commons Recommended Citation Robertson, Deonna Nicole, "A Tale of Two Butterflies: The Effect of Larval Social Environment and Circadian Rhythms on Mating Behavior in Bicyclus anynana and Heliconius hewitsoni" (2018). Theses and Dissertations. 3093. https://scholarworks.uark.edu/etd/3093 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. A Tale of Two Butterflies: The Effect of Larval Social Environment and Circadian Rhythms on Mating Behavior in Bicyclus anynana and Heliconius hewitsoni A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology by Deonna Nicole Robertson Henderson State University Bachelor of Science in Biology, 2013 December 2018 University of Arkansas This thesis is approved for recommendation to the Graduate Council. ___________________________________ Erica Westerman, Ph.D. Thesis Director ___________________________________ ___________________________________ Marlis Douglas, Ph.D. Adam Siepielski, Ph.D. Committee Member Committee Member ___________________________________ Neelendra Joshi, Ph.D. Committee Member Abstract Two key components of mate choice research focus on: 1) who an organism mates with, which may be influenced by any number of factors from sexual ornamentation to male-male competition; and, 2) when an organism courts, be it daily, monthly, or seasonally. -
Ocrisiona Simon, 1901
Ocrisiona Simon, 1901 Taxonomy Ocrisiona has nine Australian species, Ocrisiona aerata, O. eucalypti, O. koahi, O. leucocomis, O. melancholica, O. melanopyga, O. parmeliae, O. victoriae and O. yakatunya. A further species, Ocrisiona parallelestriata, is considered misplaced. The genus is part of an Australasian clade (Maddison et al 2008) related to Abracadabrella, Apricia, Clynotis, Holoplatys, Huntiglennia, Examples of live Ocrisiona leucocomis Opisthoncus, Paraphilaeus, Paraplatoides, Pungalina, Tara, Trite and Zebraplatys (Maddison Illustrators (and ©) R. Whyte, G. Anderson 2015). Several very poorly known genera from New Caledonia (e.g. Corambis, Lystrocteisa and (BL) Penionomus), may also be part of this group. Further information on the genus and described species can be found in Richardson and Żabka (2017) and Whyte and Anderson (2017). Description Ocrisiona includes large spiders, ranging in body lengths from 10 to 15 mm. The head, viewed from above, is pear-shaped, widest well behind the posterior lateral eyes. The cephalothorax is low and flat, the abdomen elongate-ovate. Chelicerae have a single (unident) retromarginal tooth and two promarginal teeth. The first and fourth legs are longest, the second pair of legs next longest. The third pair of legs is much shorter. The spines on the first and second tibia are Aspects of the general morphology of vestigial, otherwise spines are absent. Superficially, Ocrisiona spp. can be almost Ocrisiona leucocomis Illustrators (and ©) B.J. Richardson (CSIRO), indistinguishable from some Holoplatys spp. The palp morphology differs, but for those M. Zabka (diag,) (QMB) without access to genitalia, there is another useful difference; the absence of a small pit on the medial side of each of the posterior lateral eyes in Ocrisiona but present in Holoplatys. -
Dynamics of Salticid-Ant Mimicry Systems
ResearchOnline@JCU This file is part of the following reference: Ceccarelli, Fadia Sara (2006) Dynamics of salticid-ant mimicry systems. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/1311/ If you believe that this work constitutes a copyright infringement, please contact [email protected] and quote http://eprints.jcu.edu.au/1311/ TITLE PAGE Dynamics of Salticid-Ant Mimicry Systems Thesis submitted by Fadia Sara CECCARELLI BSc (Hons) in March 2006 for the degree of Doctor of Philosophy in Zoology and Tropical Ecology within the School of Tropical Biology James Cook University I STATEMENT OF ACCESS I, the undersigned author of this thesis, understand that James Cook University will make it available for use within the University Library and, by microfilm or other means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement: In consulting this thesis I agree not to copy or closely paraphrase it in whole of part without the written consent of the author; and to make proper public written acknowledgement for any assistance which I have obtained from it. Beyond this, I do not wish to place any restriction on access to this thesis. ------------------------------ -------------------- F. Sara Ceccarelli II ABSTRACT Mimicry in arthropods is seen as an example of evolution by natural selection through predation pressure. The aggressive nature of ants, and their possession of noxious chemicals, stings and strong mandibles make them unfavourable prey for many animals. The resemblance of a similar-sized arthropod to an ant can therefore also protect the mimic from predation. -
Brockman Resources Limited Rail Corridor Short Range Endemic Invertebrate Survey
OCTOBER 2011 BROCKMAN RESOURCES LIMITED RAIL CORRIDOR SHORT RANGE ENDEMIC INVERTEBRATE SURVEY This page has been left blank intentionally BROCKMAN RESOURCES LIMITED RAIL CORRIDOR SHORT RANGE ENDEMIC INVERTEBRATE SURVEY Brockman Resources Limited Rail Corridor SRE Survey Document Status Approved for Issue Rev Author Reviewer/s Date Name Distributed To Date A N. Dight L. Roque‐Albelo 15/12/10 L.Roque‐Albelo J. Greive 1 N. Dight M. Davis 20/11/11 L. Roque‐Albelo G. Firth 21/10/11 ecologia Environment (2011). Reproduction of this report in whole or in part by electronic, mechanical or chemical means including photocopying, recording or by any information storage and retrieval system, in any language, is strictly prohibited without the express approval of Brockman Resources Limited and/or ecologia Environment. Restrictions on Use This report has been prepared specifically for Brockman Resources Limited. Neither the report nor its contents may be referred to or quoted in any statement, study, report, application, prospectus, loan, or other agreement document, without the express approval of Brockman Resources and/or ecologia Environment. ecologia Environment 1025 Wellington Street WEST PERTH WA 6005 Phone: 08 9322 1944 Fax: 08 9322 1599 Email: [email protected] October 2011 iii Brockman Resources Limited Rail Corridor SRE Survey TABLE OF CONTENTS EXECUTIVE SUMMARY..................................................................................................................VIII 1 INTRODUCTION ............................................................................................................... -
Carabidae Semiochemistry: Current and Future Directions
Journal of Chemical Ecology https://doi.org/10.1007/s10886-018-1011-8 REVIEW ARTICLE Carabidae Semiochemistry: Current and Future Directions Adam M. Rork1 & Tanya Renner1 Received: 30 May 2018 /Revised: 14 August 2018 /Accepted: 23 August 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Ground beetles (Carabidae) are recognized for their diverse, chemically-mediated defensive behaviors. Produced using a pair of pygidial glands, over 250 chemical constituents have been characterized across the family thus far, many of which are considered allomones. Over the past century, our knowledge of Carabidae exocrine chemistry has increased substantially, yet the role of these defensive compounds in mediating behavior other than repelling predators is largely unknown. It is also unclear whether non-defensive compounds produced by ground beetles mediate conspecific and heterospecific interactions, such as sex- aggregation pheromones or kairomones, respectively. Here we review the current state of non-exocrine Carabidae semiochemistry and behavioral research, discuss the importance of semiochemical research including but not limited to allomones, and describe next-generation methods for elucidating the underlying genetics and evolution of chemically- mediated behavior. Keywords Carabidae . Chemical ecology . Allomones . Entomology . Semiochemistry . Transcriptomics . Phylogenetics Introduction and behavioral research in Carabidae and discuss new methods for studying the underlying genetics and evolution Ground beetles (Carabidae) have long captured the attention of biosynthetic pathways responsible for synthesis of these of evolutionary biologists and chemical ecologists due to their semiochemicals. great diversity and array of chemical defensive strategies (Darwin 1846;Eisner1958). Since Thomas Eisner’s pioneering studies on bombardier beetles, knowledge of cara- Carabidae Semiochemistry bid defensive chemistry has grown tremendously, with over 250 distinct chemical classes currently described (Lečić et al.