Recent Advances in Low Rank ADI for Lyapunov Equations

Total Page:16

File Type:pdf, Size:1020Kb

Recent Advances in Low Rank ADI for Lyapunov Equations GAMM Anual Meeting Novi Sad, March 20th 2013 Recent advances in low rank ADI for Lyapunov equations Jens Saak joint work with Peter Benner, Patrick K¨urschner Computational Methods in Systems and Control Theory (CSC) Max Planck Institute for Dynamics of Complex Technical Systems MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Max Planck Institute Magdeburg Jens Saak, Recent advances in LR-ADI 1/20 Low Rank ADI Basics Low Rank Factors of Residuals Adaptive ADI Shift Computation Numerical Experiments Outline 1 Low Rank ADI Basics 2 Low Rank Factors of Residuals 3 Adaptive ADI Shift Computation 4 Numerical Experiments Max Planck Institute Magdeburg Jens Saak, Recent advances in LR-ADI 2/20 Low Rank ADI Basics Low Rank Factors of Residuals Adaptive ADI Shift Computation Numerical Experiments Low Rank ADI Basics Max Planck Institute Magdeburg Jens Saak, Recent advances in LR-ADI 3/20 Low-rank factor ADI iteration (LR-ADI) [Penzl '99, Benner/Li/Penzl '08] −1 −1 V1 = (F + p1I ) G; Vj = I − (pj + pj−1)(F + pj I ) Vj−1; p p Z1 := −2 Re (p1)V1; Zj := [Zj−1; −2 Re (pj )Vj ]: Low Rank ADI Basics Low Rank Factors of Residuals Adaptive ADI Shift Computation Numerical Experiments Low Rank ADI Basics Low Rank Solution of Lyapunov Equations Lyapunov equation Consider FX + XF T = −GG T with F 2 Rn×n Hurwitz, G 2 Rn×m; m n. Goal: X = ZZ H Max Planck Institute Magdeburg Jens Saak, Recent advances in LR-ADI 4/20 Low Rank ADI Basics Low Rank Factors of Residuals Adaptive ADI Shift Computation Numerical Experiments Low Rank ADI Basics Low Rank Solution of Lyapunov Equations Lyapunov equation Consider FX + XF T = −GG T with F 2 Rn×n Hurwitz, G 2 Rn×m; m n. Goal: X = ZZ H Low-rank factor ADI iteration (LR-ADI) [Penzl '99, Benner/Li/Penzl '08] −1 −1 V1 = (F + p1I ) G; Vj = I − (pj + pj−1)(F + pj I ) Vj−1; p p Z1 := −2 Re (p1)V1; Zj := [Zj−1; −2 Re (pj )Vj ]: Max Planck Institute Magdeburg Jens Saak, Recent advances in LR-ADI 4/20 Low Rank ADI Basics Low Rank Factors of Residuals Adaptive ADI Shift Computation Numerical Experiments Low Rank ADI Basics Shift Parameters Optimal shift parameters For J ADI iterations, the optimal shift parameters solve the rational minmax problem 0 1 J Y pj − λ` min @ max A ; λ` 2 Λ(F ): p1;:::;pJ ⊂ − 1≤`≤n pj + λ` C j=1 (sub-)optimal shifts [Wachspress et al ∼'95] Optimal number J of shifts and their location computable for a given error tolerance for real spectra. suboptimal for Λ(F ) ⊂ C. Heuristic Penzl shifts [Penzl '99] Since λ` not easily available in large-scale setting, take small numbers of Ritz values of F and F −1 (generated with Arnoldi) instead. Max Planck Institute Magdeburg Jens Saak, Recent advances in LR-ADI 5/20 L (Y ) := FY + YF T + GG T Residual Based Stopping T L(ZZ ) F computed via clever QR updates [Penzl'99] T T L(ZZ ) 2 = λmax(L(ZZ )) apply Arnoldi/Lanczos [S. et al '09-] Low Rank ADI Basics Low Rank Factors of Residuals Adaptive ADI Shift Computation Numerical Experiments Low Rank ADI Basics Stopping Criteria Relative Change of Z: p −2 Re (pj )Vj F ≤ tol jjZj jjF Max Planck Institute Magdeburg Jens Saak, Recent advances in LR-ADI 6/20 Low Rank ADI Basics Low Rank Factors of Residuals Adaptive ADI Shift Computation Numerical Experiments Low Rank ADI Basics Stopping Criteria Relative Change of Z: p −2 Re (pj )Vj F ≤ tol jjZj jjF L (Y ) := FY + YF T + GG T Residual Based Stopping T L(ZZ ) F computed via clever QR updates [Penzl'99] T T L(ZZ ) 2 = λmax(L(ZZ )) apply Arnoldi/Lanczos [S. et al '09-] Max Planck Institute Magdeburg Jens Saak, Recent advances in LR-ADI 6/20 Low Rank ADI Basics Low Rank Factors of Residuals Adaptive ADI Shift Computation Numerical Experiments Low Rank Factors of Residuals Max Planck Institute Magdeburg Jens Saak, Recent advances in LR-ADI 7/20 And for the ADI iterates : X = F X F H − 2 Re (p )G G H j pj j−1 pj j pj pj T T Then: L(Xj ) = FXj + Xj F + GG T = F (Xj − X ) + (Xj − X ) F H j ! j ! Y T Y = ··· = Fpi GG Fpi i=1 i=1 H = Wj Wj : Low Rank ADI Basics Low Rank Factors of Residuals Adaptive ADI Shift Computation Numerical Experiments Low Rank Factors of Residuals Equivalence of Lyapunov and Stein Equations e.g.[Hylla '10] T T p2C<0 H H FX + XF = −GG () X = FpXFp − 2 Re (p)GpGp −1 −1 Here: Fp := (F − pI )(F + pI ) and Gp := (F + pI ) G Max Planck Institute Magdeburg Jens Saak, Recent advances in LR-ADI 8/20 T T Then: L(Xj ) = FXj + Xj F + GG T = F (Xj − X ) + (Xj − X ) F H j ! j ! Y T Y = ··· = Fpi GG Fpi i=1 i=1 H = Wj Wj : Low Rank ADI Basics Low Rank Factors of Residuals Adaptive ADI Shift Computation Numerical Experiments Low Rank Factors of Residuals Equivalence of Lyapunov and Stein Equations e.g.[Hylla '10] T T p2C<0 H H FX + XF = −GG () X = FpXFp − 2 Re (p)GpGp −1 −1 Here: Fp := (F − pI )(F + pI ) and Gp := (F + pI ) G And for the ADI iterates : X = F X F H − 2 Re (p )G G H j pj j−1 pj j pj pj Max Planck Institute Magdeburg Jens Saak, Recent advances in LR-ADI 8/20 Low Rank ADI Basics Low Rank Factors of Residuals Adaptive ADI Shift Computation Numerical Experiments Low Rank Factors of Residuals Equivalence of Lyapunov and Stein Equations e.g.[Hylla '10] T T p2C<0 H H FX + XF = −GG () X = FpXFp − 2 Re (p)GpGp −1 −1 Here: Fp := (F − pI )(F + pI ) and Gp := (F + pI ) G And for the ADI iterates : X = F X F H − 2 Re (p )G G H j pj j−1 pj j pj pj T T Then: L(Xj ) = FXj + Xj F + GG T = F (Xj − X ) + (Xj − X ) F H j ! j ! Y T Y = ··· = Fpi GG Fpi i=1 i=1 H = Wj Wj : Max Planck Institute Magdeburg Jens Saak, Recent advances in LR-ADI 8/20 −1 Vj = I − (pj−1 + pj )(F + pj I ) Vj−1 j−1 ! −1 Y = ··· =( F + pj I ) Fpi G: i=1 Low Rank ADI Basics Low Rank Factors of Residuals Adaptive ADI Shift Computation Numerical Experiments Low Rank Factors of Residuals Rank and Computability of the Residual Factor [Benner/Kurschner/S.'13]¨ j ! H Y L(Xj ) = Wj Wj for Wj = Fpi G i=1 Max Planck Institute Magdeburg Jens Saak, Recent advances in LR-ADI 9/20 Low Rank ADI Basics Low Rank Factors of Residuals Adaptive ADI Shift Computation Numerical Experiments Low Rank Factors of Residuals Rank and Computability of the Residual Factor [Benner/Kurschner/S.'13]¨ j ! H Y L(Xj ) = Wj Wj for Wj = Fpi G i=1 −1 Vj = I − (pj−1 + pj )(F + pj I ) Vj−1 −1 = (F − pj−1I )(F + pj I ) Vj−1 −1 −1 = (F − pj−2I )( F + pj−1I ) (F − pj−1I )( F + pj I ) Vj−2 −1 = (F − pj−2I ) Fpj−1 (F + pj I ) Vj−2 j−1 ! −1 Y = ··· =( F + pj I ) Fpi G: i=1 Max Planck Institute Magdeburg Jens Saak, Recent advances in LR-ADI 9/20 Low Rank ADI Basics Low Rank Factors of Residuals Adaptive ADI Shift Computation Numerical Experiments Low Rank Factors of Residuals Rank and Computability of the Residual Factor [Benner/Kurschner/S.'13]¨ j ! H Y L(Xj ) = Wj Wj for Wj = Fpi G i=1 −1 Vj = I − (pj−1 + pj )(F + pj I ) Vj−1 j−1 ! −1 Y = ··· =( F + pj I ) Fpi G: i=1 j ! j−1 ! Y −1 Y Wj = Fpi G = (F − pj I )( F + pj I ) Fpi G i=1 i=1 Max Planck Institute Magdeburg Jens Saak, Recent advances in LR-ADI 9/20 Low Rank ADI Basics Low Rank Factors of Residuals Adaptive ADI Shift Computation Numerical Experiments Low Rank Factors of Residuals Rank and Computability of the Residual Factor [Benner/Kurschner/S.'13]¨ j ! H Y L(Xj ) = Wj Wj for Wj = Fpi G i=1 −1 Vj = I − (pj−1 + pj )(F + pj I ) Vj−1 j−1 ! −1 Y = ··· =( F + pj I ) Fpi G: i=1 Wj = (F − pj I ) Vj Max Planck Institute Magdeburg Jens Saak, Recent advances in LR-ADI 9/20 −1 Wj = (F − pj I ) Vj = (F − pj I )(F + pj I ) Wj−1 −1 = I − (pj + pj )(F + pj I ) Wj−1 = Wj−1 − 2 Re (pj )Vj The latter result was independently derived from a Krylov subspace recurrence perspective in [Wolf/Panzer/Lohmann '13] Low Rank ADI Basics Low Rank Factors of Residuals Adaptive ADI Shift Computation Numerical Experiments Low Rank Factors of Residuals Rank and Computability of the Residual Factor [Benner/Kurschner/S.'13]¨ Wj = (F − pj I ) Vj Moreover: −1 Vj = (F + pj I ) (F − pj−1I ) Vj−1 −1 = (F + pj I ) Wj−1 Max Planck Institute Magdeburg Jens Saak, Recent advances in LR-ADI 10/20 Low Rank ADI Basics Low Rank Factors of Residuals Adaptive ADI Shift Computation Numerical Experiments Low Rank Factors of Residuals Rank and Computability of the Residual Factor [Benner/Kurschner/S.'13]¨ Wj = (F − pj I ) Vj Moreover: −1 Vj = (F + pj I ) (F − pj−1I ) Vj−1 −1 = (F + pj I ) Wj−1 −1 Wj = (F − pj I ) Vj = (F − pj I )(F + pj I ) Wj−1 −1 = I − (pj + pj )(F + pj I ) Wj−1 = Wj−1 − 2 Re (pj )Vj The latter result was independently derived from a Krylov subspace recurrence perspective in [Wolf/Panzer/Lohmann '13] Max Planck Institute Magdeburg Jens Saak, Recent advances in LR-ADI 10/20 Note: H H W`−1W`−1 = W`−1W`−1 2=F 2=F H and W`−1W`−1 inner product m × m ≡ small Low Rank ADI Basics Low Rank Factors of Residuals Adaptive ADI Shift Computation Numerical Experiments Low Rank Factors of Residuals A New LR-ADI Formulation [Benner/Kurschner/S.'13]¨ Algorithm 1 LR-ADI Re-Formulation T T Input: F ,G in FX + XF = −GG , and proper shifts pj ,(j = 1;:::; J) Output: Z with X ≈ ZZ H 1: Z = [] 2: W0 = G 3: ` = 1 H 4: while ( W`−1W`−1 > tol and ` ≤ J) do −1 5: V` = (F + p`I ) W`−1 6: W` = W`−1 − 2 Re (p`)V` h p i 7: Z = Z; −2 Re (p`)V` 8: ` + + 9: end while Max Planck Institute Magdeburg Jens Saak, Recent advances in LR-ADI 11/20 Low Rank ADI Basics Low Rank Factors of Residuals Adaptive ADI Shift Computation Numerical Experiments Low Rank Factors of Residuals A New LR-ADI Formulation [Benner/Kurschner/S.'13]¨ Algorithm 1 LR-ADI Re-Formulation T T Input: F ,G in FX + XF = −GG , and proper shifts pj ,(j = 1;:::; J) Output: Z with X ≈ ZZ H 1: Z = [] 2: W0 = G 3: ` = 1 H 4: while ( W`−1W`−1 > tol and ` ≤ J) do −1
Recommended publications
  • Adam of Bremen on Slavic Religion
    Chapter 3 Adam of Bremen on Slavic Religion 1 Introduction: Adam of Bremen and His Work “A. minimus sanctae Bremensis ecclesiae canonicus”1 – in this humble manner, Adam of Bremen introduced himself on the pages of Gesta Hammaburgensis ecclesiae pontificum, yet his name did not sink into oblivion. We know it thanks to a chronicler, Helmold of Bosau,2 who had a very high opinion of the Master of Bremen’s work, and after nearly a century decided to follow it as a model. Scholarship has awarded Adam of Bremen not only with a significant place among 11th-c. writers, but also in the whole period of the Latin Middle Ages.3 The historiographic genre of his work, a history of a bishopric, was devel- oped on a larger scale only after the end of the famous conflict on investiture between the papacy and the empire. The very appearance of this trend in histo- riography was a result of an increase in institutional subjectivity of the particu- lar Church.4 In the case of the environment of the cathedral in Bremen, one can even say that this phenomenon could be observed at least half a century 1 Adam, [Praefatio]. This manner of humble servant refers to St. Paul’s writing e.g. Eph 3:8; 1 Cor 15:9, and to some extent it seems to be an allusion to Christ’s verdict that his disciples quarrelled about which one of them would be the greatest (see Lk 9:48). 2 Helmold I, 14: “Testis est magister Adam, qui gesta Hammemburgensis ecclesiae pontificum disertissimo sermone conscripsit …” (“The witness is master Adam, who with great skill and fluency described the deeds of the bishops of the Church in Hamburg …”).
    [Show full text]
  • Economic Risks Associated with Low Flows in the Elbe River Basin (Germany): an Integrated Economic-Hydrologic Approach to Assess Vulnerability to Climate Change
    IWRM Conference in Dresden 12-13 October 2011 Hamburg Magdeburg Dresden Ústí n. L. Economic risks associated with low flows in the Elbe River Basin (Germany): an integrated economic-hydrologic approach to assess vulnerability to climate change. Malte Grossmann TU Berlin IWRM Conference 12.-13. Oct. 2011 Dresden Grossmann Hamburg Overview Magdeburg 1 / General background Dresden 2/ Approach of the GLOWA Elbe Project Ústí n. L. 3/ Results – assessment of climate risk 4/ Results - cost benefit analysis of adaptation options 5/ Conclusions IWRM Conference 12.-13. Oct. 2011 Dresden Grossmann Hamburg Magdeburg Dresden Ústí n. L. 1 / General background IWRM Conference 12.-13. Oct. 2011 Dresden Grossmann Why develop integrated hydrologic-economic waterHamburg resources models? Magdeburg Dresden Ústí n. L. Management challenges: (a) to develop strategies to minimise economic impact of drought and periodic water shortages (b) to assess basin wide efficiency of water use and to assess instruments to improve efficiency for example by inter-sectoral reallocations in water scarce basins (c) to assess infrastructure investments in terms of benefits and costs in the context of long term water systems planning => to assess the impacts of climate change on the long term performance of water resource system IWRM Conference 12.-13. Oct. 2011 Dresden Grossmann Hamburg Two principal modelling approaches Magdeburg Optimisation Dresden => ability to identify economically efficient water allocations and to analyse Ústí n. L. different institutional mechanisms of water allocation. Simulation ⇒ allow a more detailed analysis of the hydrological processes. ⇒ assessment of the feasibility of management options with regard to infrastructure operations and to identify systems components that have a high risk of failure under extreme conditions.
    [Show full text]
  • Magdeburg - Hamburg (8 Tage)
    Magdeburg - Hamburg (8 Tage) Beschreibung: Dieser Routenverlauf verbindet Sie, dem Strom der Elbe folgend, mit zwei sehr sehens- und erlebenswerten Städten. Sie beginnen Ihre Tour in der sachsen-anhaltischen Landeshauptstadt Magdeburg, die im Jahr 2005 ihr 1200-jähriges Stadtjubiläum beging. Auf dem Elberadweg radeln Sie auf einer der reizvollsten Radwanderrouten Europas Richtung Norden. Lassen Sie Ihren Blick über die weiträumigen Auenlandschaften schweifen und erkunden Sie die Schätze des Biosphärenreservats „Flusslandschaft Elbetal“. Neben der einzigartigen Flusslandschaft durchradeln Sie reizvolle Orte, allen voran die Kaiserstadt Tangermünde und das malerische Elbstädtchen Lauenburg. Den abschließenden Höhepunkt Ihrer Tour bildet die Freie und Hansestadt Hamburg. Hamburg bietet nicht nur viel Sehenswertes und alle Vorzüge einer Metropole, sondern auch einmalige Bedingungen für alle Fahrrad- und Naturbegeisterten. Klicken Sie auf das Bild rechts für weitere Impressionen! Termine: Reisebeginn täglich möglich 01.04. - 31.10.2021 buchbarer Zeitraum: 01.04.2021 - 31.10.2021 Streckenlänge: 353 km Route: Tag 1: Individuelle Anreise nach Magdeburg Heute reisen Sie in Magdeburg an. Die 1200-jährige Landeshauptstadt Sachsen-Anhalts hält viel Sehens- und Erlebenswertes für Sie bereit! Mit zahllosen Parkanlagen, die zu Erholung und Entspannung einladen, ist sie die drittgrünste Stadt Deutschlands. Besuchen Sie den imposanten Dom und das altehrwürdige Kloster Unser Lieben Frauen im Herzen der Stadt. Überall begegnen Ihnen Spuren berühmter Kinder der Stadt, von denen der Physiker Otto von Guericke, der Musiker Georg Phillip Telemann und General von Steuben zu den bekanntesten zählen. Tag 2: Magdeburg - Tangermünde (ca. 73 km) Über den Herrenkrugpark, immer entlang der Elbe, verlassen Sie die Domstadt Richtung Norden. Besichtigen Sie auf Ihrem Weg das modernste Wasserstraßenkreuz Europas mit einer Trogbrücke, die ingenieurtechnisch ihresgleichen sucht.
    [Show full text]
  • Elbe, Magdeburg - Hamburg - Cuxhaven Vom „Magdeburger Reiter“ Zur Hansestadt, Dem „Tor Zur Welt“ Und an Die Nordsee
    Individuell Elbe, Magdeburg - Hamburg - Cuxhaven Vom „Magdeburger Reiter“ zur Hansestadt, dem „Tor zur Welt“ und an die Nordsee Hamburg mit Rathaus und Alster 10. Tag Glückstadt – Cuxhaven Deutschland Die Elbfähre (nicht inkl.) bringt Sie über den Fluss. Sie radeln durch den “Cuxland” genannten Landkreis Cuxhaven, in dem traditionsreiche Badeorte und Seebäder zahlreiche Gäste an die Nordseeküste locken. (ca. 58 km) 11. Tag Cuxhaven Individuelle Abreise oder Verlängerung. Termine Tour EBH/EBC Freitag u. Sonntag Saison 1: 09.04. - 21.05. und 24.08. - 04.10.21 Saison 2: 22.05. - 23.08.21 Termine Tour EH/EC Samstag u. Montag Saison 1: 10.04. - 21.05. und 24.08. - 04.10.21 Saison 2: 22.05. - 23.08.21 (Sondertermine ab 4 Personen auf Anfrage) Reisepreise in EUR pro Person: Tour DZ/ÜF EZZ Die Domstadt Magdeburg ist Startpunkt dieser Radreise. Auf dieser abwechslungsreichen Tour EH, Saison 1 595 175 kommen Sie in das mittelalterliche Tangermünde, nach Havelberg mit dem prächtigen Dom und in EH, Saison 2 635 175 die Fachwerkstadt Hitzacker. Das Biosphärenreservat Flusslandschaft Elbe, die Festung Dömitz, das EBH, Saison 1 675 200 Schloss Bleckede und Lauenburg sind weitere Höhepunkte auf dem Weg zum “Tor zur Welt” und der EBH, Saison 2 715 200 EC, Saison 1 785 225 Elbphilharmonie. Bei der 10 bzw. 11 tägigen Tour radeln Sie weiter bis an die Nordsee. EC, Saison 2 825 225 4. Tag Tangermünde – Havelberg EBC, Saison 1 849 250 Individuelle Touren, ca. 350/460 km EBC, Saison 2 879 250 EH/EBH: 8/9 Tage / 7/8 Nächte Die Radeltour durch das Naturschutzgebiet “Alte Leihrad 7-/21-Gang, EH/EBH 79/85 Magdeburg - Hamburg Elbe” führt Sie vorbei am Schloss Storkau nach Leihrad 7-/21-Gang EC/EBC 89/95 EC/EBC: 10/11 Tage / 9/10 Nächte Havelberg, der “Insel- und Domstadt im Grünen” Elektrorad, EH/EBH 189/199 Magdeburg - Hamburg - Cuxhaven am Zusammenfluss von Havel und Elbe.
    [Show full text]
  • Program (As of February 20, 2020)
    Program (as of February 20, 2020) 19:00 Welcome reception Arrival and registration Get-together Sunday, 23 Feb. Feb. 2020 23 From 6:30 Breakfast 9:00-10:00 Registration 10:00-10:10 Opening remarks (A. Seidel-Morgenstern & S. Pushpavanam) Session I: Fundamentals and modeling Chair: Ulrich Nieken, University of Stuttgart, Germany Lec01 Krishnamurthy IIT Bombay, India A perspective for modelling solid-solid 10:10-10:40 Suresh reactions - the contact point framework Akkihebbal Lec02 Raimund Hamburg University of Understanding catalyst dynamics by 10:40-11:00 Horn Technology, Germany operando concentration-, temperature-, XASs- and raman profiles in a fixed-bed reactor Lec03 Preeti IIT Madras, India Detailed kinetic modeling of catalytic NOx 11:00-11:20 Aghalayam reduction in automotive applications Lec04 Sri IIT Kanpur, India Nature inspired artificial skin models 11:20-11:40 Sivakumar Lec05 Heiko Briesen Technical University of Mophological characterization and modeling 11:40-12:00 Munich, Germany of filamentous fungi Lec06 Faseeh IIT Madras, India Process intensification through dean vortices: 12:00-12:15 Kulangara study of the direct synthesis of hydrogen Kandiyil peroxide in a serpentine membrane micro- reactor 12:15-13:15 Lunch break Session II: Separation: principles and processes Chair: Kamal Kishore Pant, IIT Dehli, India Lec07 Heike Max Planck Institute From plant-based extracts to specific target Monday, 24 Feb. 2020 Feb. 24 Monday, 13:15-13:45 Lorenz Magdeburg, Germany compounds via crystallization Lec08 Guhan IIT Madras, India Continuous matrix-assisted refolding of 13:45-14:05 Jayaraman proteins from solubilized inclusion bodies Lec09 Ulrich University of Stuttgart, Combined material and process design in 14:05-14:25 Nieken Germany adsorption cooling Lec10 Fridolin O.
    [Show full text]
  • Assistive Technologies: Companion Or Controller? Appropriation Instead of Instruction
    Assistive technologies: companion or controller? Appropriation instead of instruction Tina HAASE Fraunhofer Institute for Factory Operation and Automation IFF Sandtorstr. 22, 39106 Magdeburg, Germany Wilhelm TERMATH Otto von Guericke University Magdeburg, Department of Vocational Education and Human Resources Development Zschokkestr. 32, 39104 Magdeburg, Germany Dirk BERNDT Fraunhofer Institute for Factory Operation and Automation IFF 39106 Magdeburg, Germany Michael DICK Otto von Guericke University Magdeburg, Department of Vocational Education and Human Resources Development Zschokkestr. 32, 39104 Magdeburg, Germany ABSTRACT1 1. DIGITAL ASSISTIVE TECHNOLOGIES Assistive digital technologies support employees in coping Digital cognitive assistance systems already support the with complex activities by providing the necessary infor- employee in many areas of work [1]. In the field of mainte- mation directly related to the work task and according to nance, the employee requests status data of complex tech- the individual requirements. On the one hand, they have nical systems, opens the latest maintenance documents for the potential to relieve people at work, for example by sup- a malfunctioning component in the work situation, and re- porting physical assistance systems in physically demand- ceives information about the machine and the colleague ing activities. Cognitive assistance systems can achieve re- who conducted the last maintenance [2]. lief by preparing complex data in a way that is comprehen- In the commissioning department, the warehouse employ- sible to the employee and supporting him in carrying out ees are guided using data glasses and pick-by-light. his work and in making decisions. On the other hand, as- In manual assembly, assistance systems are used to sup- sistance systems can lead to expropriation and alienation port the worker in the assembly of increasingly diversified by depriving employees of autonomy and room for maneu- products.
    [Show full text]
  • Application of the Process Modeling Tool Promot to the Modeling of Metabolic Networks
    APPLICATION OF THE PROCESS MODELING TOOL PROMOT TO THE MODELING OF METABOLIC NETWORKS M. Ginkel1, A. Kremling1, F. Tr¨ankle2, E. D. Gilles1,3, and M. Zeitz3 1 Max-Planck-Institut f¨urDynamik komplexer technischer Systeme, Zenit-Geb¨aude Leipziger Str. 44, D-39120 Magdeburg, Phone: +49 391 6117 563, E-mail: [email protected] 2 ETAS GmbH & Co. KG, Stuttgart, Germany. 3 Institut f¨urSystemdynamik und Regelungstechnik, Universit¨atStuttgart, Germany. Abstract. The process modeling tool ProMoT [6, 5] has been developed for the object-oriented and equation-based modeling of chemical processes. This contribution presents the application of ProMoT to a novel application field: the design and implementation of a knowledge base for modeling metabolic networks in living cells. This knowledge base contains predefined modeling entities for the hierarchical aggregation of complex reaction network models. The principles of defining primitive metabolic entities as well as the construction of a flexible knowledge base for modeling larger metabolic networks are presented. Key words: computer-aided process modeling, knowledge base design, object-oriented modeling lan- guage, process modeling tool, metabolic processes 1 Introduction Today commercially and freely available software tools for the steady-state and dynamic simulation of chemical and biological processes are well established in the process engineering community. Whereas these simulation tools provide state-of-the-art numerical methods, the computer-aided development, im- plementation, and reuse of mathematical models for chemical and bioengineering processes are not suffi- ciently supported. The process modeling tool ProMoT has been designed for the computer-aided mod- eling of chemical processes as well as for the implementation of knowledge bases that contain reusable modeling entities [5, 6].
    [Show full text]
  • Cities of Tomorrow Challenges, Visions, Ways Forward
    EN Cities of tomorrow Challenges, visions, ways forward October 2011 Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. Copyrights: Cover: © ZAC DE BONNE - AKTIS ARCHITECTURE - Chapter 1: © iStockphoto Page 6: © EC - Page 9: © PHOTOGRAPHIEDEPOT Frank-Heinrich Müller - Chapter 2: © Tova Svanfeldt Page 15: © Corinne Hermant - Page 17: © iStockphoto - Page 20: © Krisztina Keresztely Page 23: © Carmen Vossen - Chapter 3: © Iván Tosics - Page 36: © iStockphoto - Page 37: © iStockphoto Page 41: © Henrik Johansson - Page 42: © La Citta Vita - Page 46: © EC - Page 47: © iStockphoto Page 53: © Anja Schlamann - Page 54: © Marie Schmerkova - Page 59: © iStockphoto - Chapter 4: © Iván Tosics Page 67: © Iván Tosics - Page 73: © iStockphoto - Page 77: © Bernard_in_va Page 82: © "Fragment de Tags" http://fragmentdetags.net/ - Page 83: © W. Vainqueur Conclusions: © City of Växjö © European Union, 2011 Reproduction is authorised provided the source is acknowledged. ISBN: 978-92-79-21307-6 doi:10.2776/41803 European Commission, Directorate General for Regional Policy Unit C.2 - Urban Development, Territorial Cohesion Wladyslaw Piskorz E-mail: [email protected] Internet: http://ec.europa.eu/regional_policy/conferences/citiesoftomorrow/index_en.cfm Unit B.1 – Communication, Information, Relations with Third Countries Raphaël Goulet Avenue de Tervuren 41 B - 1040 Brussels Fax: +32 22966003 E-mail: [email protected] Internet: http://ec.europa.eu/regional_policy/index_en.htm The opinion expressed in this publication do not necessarily reflect the views of the European Commission.
    [Show full text]
  • Germany – Elbe from Dresden to Magdeburg Bike Tour 2021 Individual Self- Guided 8 Days / 7 Nights
    Germany – Elbe from Dresden to Magdeburg Bike Tour 2021 Individual Self- Guided 8 days / 7 nights You arrive in the Florence of the Elbe, Dresden, which is beautifully located along the Elbe valley. Experience in Magdeburg the famous Cathedral and the Monastery. You arrive in the Florence of the Elbe, Dresden, which is beautifully located along the Elbe valley. Magdeburg offers lots of rambling parkways where you can relax. Experience also the famous Cathedral and the Monastery. OK Cycle & Adventure Tours Inc. - 666 Kirkwood Ave - Suite B102 – Ottawa, Ontario Canada K1Z 5X9 www.okcycletours.com Toll Free 1-888-621-6818 Local 613-702-5350 Itinerary Day to Day Day 1: Arrival to Dresden You arrive in the “Florence of the Elbe” Dresden, which is beautifully located along the Elbe valley. Whether the famous Zwinger, the Semper Opera or the Court Church – a tour of the former royal residence by bicycle is worth it. Day 2: Dresden – Meissen 30 km From far away you can already see the landmark of the city of Meissen: the impressive castle hill with the cathedral and Albrechtsburg castle. A visit to the world-famous Meissen porcelain factory is also a must. Enjoy a good wine in the evening as you are in the heart of one of the smallest yet most distinguished winegrowing regions of Germany. Day 3: Meissen – Riesa or Strehla 28 km or 36 km Today’s tour will take you along the picturesque wine villages located along the Elbe River. Next stop will be Riesa, the city of sports or Strehla with an enchanting rural atmosphere.
    [Show full text]
  • Symplectic Lanczos for Hamiltonian-Positive Matrices Encounters No Serious Breakdown!)
    GAMM Annual Meeting 2013 Novi Sad, March 18{22, 2013 THE SYMPLECTIC LANCZOS PROCESS FOR HAMILTONIAN-POSITIVE MATRICES (Symplectic Lanczos for Hamiltonian-positive matrices encounters no serious breakdown!) Peter Benner Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Magdeburg, Germany TU Chemnitz Mathematics in Industry and Technology Chemnitz, Germany Joint work with Ahmed Salam (ULCO, Calais) Introduction Symplectic Lanczos Hamiltonian-positiv References Introduction Hamiltonian Eigenproblems Definition 0 In Let J = , then H 2 R2n×2n is called Hamiltonian if −In 0 (HJ)T = HJ. Note: J−1 = JT = −J. Explicit block form of Hamiltonian matrices AB ; where A; B; C 2 n×n and B = BT ; C = C T : C −AT R Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 2/13 Introduction Symplectic Lanczos Hamiltonian-positiv References Introduction Hamiltonian Eigenproblems Definition 0 In Let J = , then H 2 R2n×2n is called Hamiltonian if −In 0 (HJ)T = HJ. Note: J−1 = JT = −J. Explicit block form of Hamiltonian matrices AB ; where A; B; C 2 n×n and B = BT ; C = C T : C −AT R Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 2/13 Typical Hamiltonian spectrum Introduction Symplectic Lanczos Hamiltonian-positiv References Introduction Spectral Properties Hamiltonian Eigensymmetry Hamiltonian matrices exhibit the Hamiltonian eigensymmetry: if λ is a finite eigenvalue of H, then λ,¯ −λ, −λ¯ are eigenvalues of H, too. Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 3/13 Introduction Symplectic Lanczos Hamiltonian-positiv References Introduction Spectral Properties Hamiltonian Eigensymmetry Hamiltonian matrices exhibit the Hamiltonian eigensymmetry: if λ is a finite eigenvalue of H, then λ,¯ −λ, −λ¯ are eigenvalues of H, too.
    [Show full text]
  • How to Handle the Covid-19-Pandemic in Saxony-Anhalt and Magdeburg at the Moment There Are a Many New Infections with the Coronavirus Every Day in Magdeburg
    How to handle the Covid-19-pandemic in Saxony-Anhalt and Magdeburg At the moment there are a many new infections with the Coronavirus every day in Magdeburg. It is important to prevent the virus from spreading fast in order to keep schools and day care/ kindergarten operating and maintain a functional health system. Please take care of yourself and help also to protect others. Therefore reduce the number of private contacts only to essential meetings and try to avoid visits with family and friends. What should I do, if I feel sick or had close contact to somebody, who was tested positivly? Typical symptoms of COVID-19: cough, elevated temperature, fever, shortness of breath, loss of taste or smell, soare throat, headache and muscle aches, or fatigue. If you notice any of these symptoms, stay at home! - do not meet other people, don’t go to work or school - call your doctor or the local public health department (hotline : 0391/ 540 2000) and follow the instructions. - inform your employer and/or the children’s day-care/school - if you notice typical symptoms of COVID-19, you can get tested at Fieberambulanz. - If you show no symptoms of COVID-19, but had contact to an infected person, you will be tested towards the end of quarantine. - Infected people and those, who had contact to infected people stay under quarantine for 14 days (counted from either the positve test result or the day of contact). - A negative test result does not end quarantine. Realisation of Corona test and results: - The test can be realized in Fieberambulanz, Brandenburger Straße 8, 39104 Magdeburg.
    [Show full text]
  • Hamburg - Magdeburg (8 Tage)
    Hamburg - Magdeburg (8 Tage) Beschreibung: Der Elberadweg gehört zu den reizvollsten und abwechslungsreichsten Radwanderrouten Europas. Nehmen Sie sich Zeit, all die landschaftlichen, historischen und kulturellen Orte zu bestaunen! Sie beginnen Ihre Tour in der Hansestadt Hamburg mit ihren zahlreichen Sehenswürdigkeiten und kulturellen Angeboten. Ihre Fahrt führt Sie durch die herrliche norddeutsche Landschaft, die vom Segen und Fluch des Elbwassers geprägt ist. Der mächtige Fluss durchzieht in seinem freien Lauf idyllische Fachwerkdörfer und riesige Obstplantagen. Durch das Biosphärenreservat „Flusslandschaft Elbe“ und die malerische Kaiserstadt Tangermünde führt Sie Ihr Weg bis in die Domstadt Magdeburg. Auch hier lohnt ein längeres Verweilen, denn die Lieblingsresidenz Kaiser Otto I. blickt auf eine 1200-jährige Geschichte zurück. Das flache Terrain ermöglicht es auch dem ungeübten Radler, überall problemlos größere Etappen zu bewältigen. Klicken Sie auf das Bild rechts für weitere Impressionen! Termine: Reisebeginn täglich möglich 01.04. - 31.10.2021 buchbarer Zeitraum: 01.04.2021 - 31.10.2021 Streckenlänge: 353 km Route: Tag 1: Individuelle Anreise nach Hamburg Individuelle Anreise nach Hamburg. Haben Sie Lust abends noch eines der zahlreichen Musicaltheater zu besuchen? Gern sind wir Ihnen bei der Organisation behilflich. Tag 2: Hamburg - Lauenburg (ca. 55 km) Heute beginnt Ihre Radtour Richtung Süden. Erholsam für Auge und Seele sind die stillen Elbauen und eine Wonne für jeden Naturliebhaber. Ihr Etappenziel Lauenburg hat eine malerische Altstadt mit vielen Fachwerkhäusern. Tag 3: Lauenburg - Hitzacker (ca. 57 km) Wenn Sie am linken Elbufer weiterfahren, passieren Sie Bleckede, ein Städtchen am historischen Elbübergang (Fähre) an der „Storchenstraße“. In Hitzacker säumen schmucke Fachwerkhäuser die Ufer des Stromes. Die pittoreske Altstadtinsel mit Fachwerkhäusern und norddeutscher Backsteinarchitektur prägen das Städtchen.
    [Show full text]