Convection Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Convection Introduction Agronomy 541 : Lesson 12a Convection Introduction Developed by D. Todey and E. Taylor It is suggested that you watch Video 12A and complete the exercise in the video before continuing with the lesson. Podcast Version Full Podcast List On a sunny afternoon, a breeze blows through the trees creating a gentle rustling sound, familiar to everyone. This pleasing sound has a more scientific association than creating an attractive afternoon sound. It helps to transfer excess heat away from the leaves on the trees. It serves to reduce the temperature difference between the leaves and the surrounding air. This heat transfer, called convection will be discussed in this lesson. What You Will Learn in This Lesson: Definitions of convection. About flow around an object. How surfaces affect the flow near them. Agronomy 541 : Lesson 12a Convection Convection Atmospheric convection is simply the effect of wind. Wind is important, not just because it blows things away, breaks things, and is associated with severe storms. Transport of heat and moisture by the wind is called convective transfer. Heat, as it relates to leaves, is the main item that we will look at. Large objects are not as likely to be at air temperature as small objects. That is a generalization, of course, but there are plenty of examples. Large pipes go from the automobile engine to the radiator. The radiator is just a series of small pipes or tubes with cooling fins attached to them. Radiators in an automobile do not cool by radiation. They are designed to cool by convection. Air is forced through the fins of the radiator, either by the motion of the automobile, or by the fan next to the automobile radiator. The movement of the air carries the heat away from the small pipes and the cooling fins in the radiator. There is no convection in outer space. Lack of air disallows heat transfer via convection. Having no convection present, things cool by radiation. Spaceships cool by radiation. An astronaut on a space walk outside a spaceship cools by radiation. Also, if the sun is shining on the astronaut, they heat by radiation. But there is no air temperature effect, no wind effect, because those things do not exist there. A radiator designed to cool a spaceship is quite different from a "radiator" that we see on an automobile engine. Agronomy 541 : Lesson 12a Convection Convection Thermal Boundary Layer The temperature of small objects is strongly influenced by air temperature. The temperature of the air is strongly influenced by the temperature of large surfaces. Figure 12.1 shows a car. The top of the car is a large surface. Cut a tiny piece out of the top of a car, maybe an inch or two wide and six inches long, and set that piece near the top of the automobile. The piece is sitting next to the top of the car. It will also be flat and at the same orientation as the top of the car. Fig. 12.1 A car is parked in the sunlight. A small piece of metal (a), similar in composition and orientation to the sun, is placed above the car top (b). Study Question 12.1 In the sun of the afternoon, which will be warmer: the top of the car or the little piece of metal? Top of the car Piece of metal Check Answer Agronomy 541 : Lesson 12a Convection Convection Thermal Boundary Layer (cont.) If it is parked in the sun, the top of the car will be warmer than the piece of metal. It would be difficult for air to move over such a large object as the car and carry away the heat, whereas air will move very freely around the small piece of metal. A very small object is tightly coupled to the atmospheric conditions. A large item is de-coupled from the atmosphere. A large item can have a different temperature than the air of its environment. The top of the car can heat up to a much warmer temperature than the air around it. The asphalt of a sidewalk can become much warmer than the air a foot above the sidewalk. A small piece of asphalt, broken off and suspended in the air, will be close to the air temperature. It will not heat up greatly if it is suspended in the air. Again, it is a case of size influencing the effectiveness of convection. A thin object, such as a pencil lead, suspended in the air, must of necessity be very close to the air temperature. Again that is because the air can move freely around it. Even though the lead may be a dark color, absorbing a lot of sunlight, the coupling to the atmosphere and freedom of air moving around it will keep it close to air temperature. Convection will quickly carry away heat that the item gains from the radiation impinging on it. The molecules of air near the hood of the car (Figure 12.2) are at the same temperature as the metal. A few molecules away, the temperature will still be close to the surface temperature, but somewhere in between that and the temperature of free air. At some distance from the car, the air temperature will be the same as the environmental air. The atmosphere will no longer be influenced by the surface. The layer where the temperature of the surface directly influences the atmosphere is known as the boundary layer. It is an unstirred layer adjacent to a surface. Fig. 12.2. When air (a) does not move or moves slowly across a car, a boundary layer (b) forms where air is stagnant, immediately adjacent to the car's surface. If the car begins to move the boundary layer will be wiped away at a speed of 20 mph or so. There is a temperature gradient across the boundary layer. If the temperature of the car were the same as the temperature of the atmosphere, there would be no thermal boundary layer. Only where there is a temperature difference next to a surface will there be a boundary layer. This layer of stagnant air essentially insulates the object from the atmospheric environment around it. Boundary layers can exist in any fluid. Air and waters are fluids. Air is a gas, water is a liquid, but are both fluids. Wherever there is a fluid, there can be a boundary layer. Temperature changes across a solid material are referred to as a thermal gradient, or when you are referring to temperature changes across a uniform substance not in contact with a boundary. But in a fluid in contact with an object, a boundary layer can be formed. The boundary layer will vary in thickness depending on the temperature difference and other factors including air flow. The boundary layer over the automobile may be an inch or two thick when the air is still. When the car is moving, wind will likely wipe away this boundary layer. The air striking the front of the car will essentially remove the boundary layer. Perhaps where the air is not striking directly, there will still be a thin layer, but often the car surface will cool to the air temperature of the environment once it is moving. Stagnant air insulates an object from the environment, and boundary layers exist in all fluids. These are important facts to remember. If there is wind, the boundary layer becomes thin and may disappear altogether. Because air can move freely around small objects, small objects always have thin boundary layers whether or not there is wind. There is a temperature gradient across the thermal boundary layer. Agronomy 541 : Lesson 12a Convection Convection Moisture Boundary Layer There is also a moisture boundary layer. If a wet object is suspended in the air, the moisture evaporating (water molecules breaking free from the surface) will saturate the air next to this object. Moving away from the evaporating surface, the amount of water vapor in the air will decrease until the moisture content would be the same as the background humidity of the surrounding atmosphere. Any surface which has water that can evaporate will set up a moisture boundary layer. The depth and strength of the boundary layer are influenced by the moisture gradient and wind flow. In this lesson, the thermal boundary layer is emphasized first. Boundary layers also apply to the surface of the Earth in regard to the rest of the atmosphere. The temperature structure near the surface is shown in Fig. 12.3. Fig. 12.3 Temperature structure (a) and moisture structure (b) over and some distance away from a grass field. Different surfaces react differently at different times of day in regard to heat and moisture transfer at the surface. But some distance away from the surface all the profiles become similar to the background temperature and humidity becoming affected by the surface. An example of a moisture boundary layer was displayed in Lesson 7 discussing dew. Water evaporating from a moist surface helps saturate the air near it. Air can mix away more of the moisture in windy conditions. The saturated and near-saturated air are blown away by the wind. So the evaporation rate continues strongly. Discussion Topic 12.1 How would these profiles change during the day? Study Question 12.2 When does a plant use most water? windy day calm day Check Answer FYI : Surface Heat Heat and moisture from the surface warm and evaporate water into a layer 1-2 km thick above the surface. Above this point, the atmosphere is essentially insulated or unaffected by changes in the surface.
Recommended publications
  • Storm Data Publication
    FEBRUARY 2008 VOLUME 50 SSTORMTORM DDATAATA NUMBER 2 AND UNUSUAL WEATHER PHENOMENA WITH LATE REPORTS AND CORRECTIONS NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION noaa NATIONAL ENVIRONMENTAL SATELLITE, DATA AND INFORMATION SERVICE NATIONAL CLIMATIC DATA CENTER, ASHEVILLE, NC Cover: This cover represents a few weather conditions such as snow, hurricanes, tornadoes, heavy rain and flooding that may occur in any given location any month of the year. (Photos courtesy of NCDC) TABLE OF CONTENTS Page Outstanding Storm of the Month …..…………….….........……..…………..…….…..…..... 4 Storm Data and Unusual Weather Phenomena ....…….…....…………...…...........…............ 5 Reference Notes .............……...........................……….........…..….…............................................ 278 STORM DATA (ISSN 0039-1972) National Climatic Data Center Editor: William Angel Assistant Editors: Stuart Hinson and Rhonda Herndon STORM DATA is prepared, and distributed by the National Climatic Data Center (NCDC), National Environmental Satellite, Data and Information Service (NESDIS), National Oceanic and Atmospheric Administration (NOAA). The Storm Data and Unusual Weather Phenomena narratives and Hurricane/Tropical Storm summaries are prepared by the National Weather Service. Monthly and annual statistics and summaries of tornado and lightning events re- sulting in deaths, injuries, and damage are compiled by the National Climatic Data Center and the National Weather Service’s (NWS) Storm Prediction Center. STORM DATA contains all confi rmed information on storms available to our staff at the time of publication. Late reports and corrections will be printed in each edition. Except for limited editing to correct grammatical errors, the data in Storm Data are published as received. Note: “None Reported” means that no severe weather occurred and “Not Received” means that no reports were received for this region at the time of printing.
    [Show full text]
  • PRECIPITATION What Does a 60 Percent Chance of Precipitation Mean?
    PRECIPITATION What does a 60 percent chance of precipitation mean? http://www.cbc.ca/news/canada/ottawa/canada-weather-forecast-no-50-per-cent-forecast-1.4206067 The probability of (PoP) does not mean • the percent of time precipitation will be observed over the area; or • the percentage of meteorologists who believe precipitation will fall! The most common definition among meteorologists is the probability that at least one one-hundredth inch of liquid-equivalent precipitation will fall in a single spot. Here’s a good way to grasp a PoP of 60 percent: If we had ten tomorrows with identical weather conditions, any given point would receive rain on six (60 percent) of those days. And rain would not fall on four of those days — on any given point. Remember: this PoP is a forecast for 10 potential tomorrows, not a forecast for the next 10 days! Although this may be confusing, weather forecasters have no problem thinking of tomorrow’s weather as a group of potential tomorrows. One thing you can take to the bank: as the PoP increases, precipitation grows more likely. In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. So many types… Rain Sleet Drizzle Hail Snow Graupel Thundersnow Fog and mist are technically SUSPENSIONS and not precipitation SYMBOLS RAINSHOWERS are identified on weather maps as a dot over a triangle Heavier rain as a series of dots, more when rain is heavier Rain - and other forms of precipitation - occur when Basically… warm moist air cools and condensation occurs.
    [Show full text]
  • Proximity Sounding Composites of Midwestern Thundersnow Events
    P4.2 PROXIMITY SOUNDING COMPOSITES OF MIDWESTERN THUNDERSNOW EVENTS Patrick S. Market*,1, Angela M. Oravetz1, David Gaede2, Evan Bookbinder2, Brian Pettegrew1, and Rashida Thomas1 1Department of Atmospheric Science 2National Weather Service Forecast Office University of Missouri-Columbia Springfield, MO Columbia, MO 1. INTRODUCTION Sounding profiles of the atmosphere during thundersnow analysis of rawinsonde data. are examined. Horizontal composite fields (Market et al. This work is patterned after Curran and Pearson 2004, this volume) paint a vivid portrait of an active (1971); a reanalysis of their sounding profile is snowstorm, but fail to distinguish clearly a typical cyclone reproduced in Figure 1. Proximity soundings were found from one that harbors an electrified cloud and in 12 thundersnow events and are discussed and defined thundersnow. Proximity soundings were found in 12 presently. Four of the events occurred at the exact time thundersnow events and are defined and discussed and location of a sounding. Four of the events occurred presently. at the exact time of a sounding but were not at the exact These profiles add value to the horizontal composites location the sounding occurred; the location of produced previously, which revealed thundersnow events thundersnow was within 90 nautical miles (nmi; 166.68 to be occurring in otherwise unremarkable, snow bearing km) of the sounding station. The remaining four cases extratropical cyclones. Working on the assumption that occurred within 90 nmi of the sounding station and the some feature (instability) makes these events unique, and thundersnow report occurred in a window of zero to that convection resulting from instability is the source of three hours after the rawinsonde was released.
    [Show full text]
  • …Top 10 Weather Events of 2012…
    …Top 10 weather events of 2012… In terms of severe weather, 2012 started out fast and furious, and then petered out by late March. 1) By anyone’s measure, the tornado outbreak on the 2nd of March must qualify as our top event of 2012. The 49 mile long EF-4 tornado that tracked across southern Indiana became the first EF-4 in our forecast area since the northern Bullitt County tornado on May 28, 1996. Seven other tornadoes also developed on March 2, with 3 confirmed tornadoes in Trimble County alone. The image to the left shows two supercells following similar paths across southern Indiana. The first cell was producing an EF-4 tornado at this time. The second storm later brought softball sized hail and an EF-1 tornado just south of Henryville. Also, excessively large hail fell across both southern Indiana and south central Kentucky. Outside of several reports of softball-sized hail near Henryville, Indiana, associated with the second of two supercells that tracked over nearly the same path, our most damaging hailstorm developed across southwestern Adair County. This storm produced a hail swath more than 10 miles long, smashing the windshields of hundreds of vehicles before knocking out the skylights of a Walmart store in Columbia. The first picture, courtesy Simon Brewer of The Weather Channel, shows a large tornado in Washington County, IN. The image at left shows hail damage to a golf course near Henryville. 2) The Leap Day tornado outbreak on February 29 featured a squall line that spawned 6 tornadoes across central and south central Kentucky.
    [Show full text]
  • Analysis of Thundersnow Storms Over Northern Colorado
    DECEMBER 2015 K U M J I A N A N D D E I E R L I N G 1469 Analysis of Thundersnow Storms over Northern Colorado MATTHEW R. KUMJIAN Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania WIEBKE DEIERLING Research Applications Laboratory, National Center for Atmospheric Research,* Boulder, Colorado (Manuscript received 13 January 2015, in final form 12 August 2015) ABSTRACT Lightning flashes during snowstorms occur infrequently compared to warm-season convection. The rarity of such thundersnow events poses an additional hazard because the lightning is unexpected. Because cloud electrification in thundersnow storms leads to relatively few lightning discharges, studying thundersnow events may offer insights into mechanisms for charging and possible thresholds required for lightning dis- charges. Observations of four northern Colorado thundersnow events that occurred during the 2012/13 winter are presented. Four thundersnow events in one season strongly disagrees with previous climatologies that used surface reports, implying thundersnow may be more common than previously thought. Total lightning information from the Colorado Lightning Mapping Array and data from conterminous United States light- ning detection networks are examined to investigate the snowstorms’ electrical properties and to compare them to typical warm-season thunderstorms. Data from polarimetric WSR-88Ds near Denver, Colorado, and Cheyenne, Wyoming, are used to reveal the storms’ microphysical structure and determine operationally relevant signatures related to storm electrification. Most lightning occurred within convective cells containing graupel and pristine ice. However, one flash occurred in a stratiform snowband, apparently triggered by a tower. Depolarization streaks were observed in the radar data prior to the flash, indicating electric fields strong enough to orient pristine ice crystals.
    [Show full text]
  • A Winter Forecasting Handbook Winter Storm Information That Is Useful to the Public
    A Winter Forecasting Handbook Winter storm information that is useful to the public: 1) The time of onset of dangerous winter weather conditions 2) The time that dangerous winter weather conditions will abate 3) The type of winter weather to be expected: a) Snow b) Sleet c) Freezing rain d) Transitions between these three 7) The intensity of the precipitation 8) The total amount of precipitation that will accumulate 9) The temperatures during the storm (particularly if they are dangerously low) 7) The winds and wind chill temperature (particularly if winds cause blizzard conditions where visibility is reduced). 8) The uncertainty in the forecast. Some problems facing meteorologists: Winter precipitation occurs on the mesoscale The type and intensity of winter precipitation varies over short distances. Forecast products are not well tailored to winter Subtle features, such as variations in the wet bulb temperature, orography, urban heat islands, warm layers aloft, dry layers, small variations in cyclone track, surface temperature, and others all can influence the severity and character of a winter storm event. FORECASTING WINTER WEATHER Important factors: 1. Forcing a) Frontal forcing (at surface and aloft) b) Jetstream forcing c) Location where forcing will occur 2. Quantitative precipitation forecasts from models 3. Thermal structure where forcing and precipitation are expected 4. Moisture distribution in region where forcing and precipitation are expected. 5. Consideration of microphysical processes Forecasting winter precipitation in 0-48 hour time range: You must have a good understanding of the current state of the Atmosphere BEFORE you try to forecast a future state! 1. Examine current data to identify positions of cyclones and anticyclones and the location and types of fronts.
    [Show full text]
  • Heat Transfer Model of a Rotary Compressor S
    Purdue University Purdue e-Pubs International Compressor Engineering Conference School of Mechanical Engineering 1992 Heat Transfer Model of a Rotary Compressor S. K. Padhy General Electric Company Follow this and additional works at: https://docs.lib.purdue.edu/icec Padhy, S. K., "Heat Transfer Model of a Rotary Compressor" (1992). International Compressor Engineering Conference. Paper 935. https://docs.lib.purdue.edu/icec/935 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/ Herrick/Events/orderlit.html HEAT TRANSFER MODEL OF A ROTARY COMPRESSOR Sisir K. Padhy General Electric C_ompany Appliance Park 5-2North, Louisville, KY 40225 ABSTRACT Energy improvements for a rotary compressor can be achieved in several ways such as: reduction of various electrical and mechanical losses, reduction of gas leakage, better lubrication, better surface cooling, reduction of suction gas heating and by improving other parameters. To have a ' better understanding analytical/numerical analysis is needed. Although various mechanical models are presented to understand the mechanical losses, dynamics, thermodynamics etc.; little work has been done to understand the compressor from a heat uansfer stand point In this paper a lumped heat transfer model for the rotary compressor is described. Various heat sources and heat sinks are analyzed and the temperature profile of the compressor is generated. A good agreement is found between theoretical and experimental results. NOMENCLATURE D, inner diameter D.
    [Show full text]
  • Soaring Weather
    Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven­ contributions to meteorology. For example, soar­ tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun­ altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be­ denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur­ a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft.
    [Show full text]
  • * Corresponding Author Address: Mark A. Tew, National Weather Service, 1325 East-West Highway, Silver Spring, MD 20910; E-Mail: [email protected]
    P1.13 IMPLEMENTATION OF A NEW WIND CHILL TEMPERATURE INDEX BY THE NATIONAL WEATHER SERVICE Mark A. Tew*1, G. Battel2, C. A. Nelson3 1National Weather Service, Office of Climate, Water and Weather Services, Silver Spring, MD 2Science Application International Corporation, under contract with National Weather Service, Silver Spring, MD 3Office of the Federal Coordinator for Meteorological Services and Supporting Research, Silver Spring, MD 1. INTRODUCTION group is called the Joint Action Group for Temperature Indices (JAG/TI) and is chaired by the NWS. The goal of The Wind Chill Temperature (WCT) is a term used to JAG/TI is to internationally upgrade and standardize the describe the rate of heat loss from the human body due to index for temperature extremes (e.g., Wind Chill Index). the combined effect of wind and low ambient air Standardization of the WCT Index among the temperature. The WCT represents the temperature the meteorological community is important, so that an body feels when it is exposed to the wind and cold. accurate and consistent measure is provided and public Prolonged exposure to low wind chill values can lead to safety is ensured. frostbite and hypothermia. The mission of the National After three workshops, the JAG/TI reached agreement Weather Service (NWS) is to provide forecast and on the development of the new WCT index, discussed a warnings for the protection of life and property, which process for scientific verification of the new formula, and includes the danger associated from extremely cold wind generated implementation plans (Nelson et al. 2001). chill temperatures. JAG/TI agreed to have two recognized wind chill experts, The NWS (1992) and the Meteorological Service of Mr.
    [Show full text]
  • Investigation of Compressor Heat Dispersion Model Da Shi Shanghai Hitachi Electronic Appliances, China, People's Republic Of, [email protected]
    Purdue University Purdue e-Pubs International Compressor Engineering Conference School of Mechanical Engineering 2014 Investigation Of Compressor Heat Dispersion Model Da Shi Shanghai Hitachi Electronic Appliances, China, People's Republic of, [email protected] Hong Tao Shanghai Hitachi Electronic Appliances, China, People's Republic of, [email protected] Min Yang Shanghai Hitachi Electronic Appliances, China, People's Republic of, [email protected] Follow this and additional works at: https://docs.lib.purdue.edu/icec Shi, Da; Tao, Hong; and Yang, Min, "Investigation Of Compressor Heat Dispersion Model" (2014). International Compressor Engineering Conference. Paper 2314. https://docs.lib.purdue.edu/icec/2314 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/ Herrick/Events/orderlit.html 1336, Page 1 Investigation of Rotary Compressor Heat Dissipation Model Da SHI 1, Hong TAO2, Min YANG 3* 1SHEC, R&D Centre, Shanghai, China Contact Information (+8621-13564483789, [email protected]) 2SHEC, R&D Centre, Shanghai, China Contact Information (+8621-13501728323,[email protected]) 3SHEC, R&D Centre, Shanghai, China Contact Information (+8621-15900963244, [email protected]) * Corresponding Author ABSTRACT This paper presented a model of rotary compressor heat dissipation, which can be used to calculate heat dissipation under forced-convective/natural-convective and heat radiation mode respectively. The comparison, between calculated and experimental result for both constant speed compressor and variable speed one, shows that the average heat dissipation error is below 20% and discharge temperature deflection is less than 4 ℃。 1.
    [Show full text]
  • Convective Heat Transfer Coefficient for Indoor Forced Convection Drying of Corn Kernels
    Int. J. Mech. Eng. & Rob. Res. 2013 Ravinder Kumar Sahdev et al., 2013 ISSN 2278 – 0149 www.ijmerr.com Vol. 2, No. 4, October 2013 © 2013 IJMERR. All Rights Reserved Research Paper CONVECTIVE HEAT TRANSFER COEFFICIENT FOR INDOOR FORCED CONVECTION DRYING OF CORN KERNELS Ravinder Kumar Sahdev1*, Chinu Rathi Saroha1 and Mahesh Kumar2 *Corresponding Author: Ravinder Kumar Sahdev, [email protected] In this present research paper, an attempt has been made to determine the convective heat transfer coefficient of corn kernels under indoor forced convection drying mode. The experiments were conducted in the month of May 2013 in the climatic conditions of Rohtak (28° 40': 29 05'N 76° 13': 76° 51'E). Corn kernels were dried from initial moisture content 43% dry-basis. Experimental data was used to evaluate the values of constants (C and n) in Nusselt number expression by using linear regression analysis and consequently convective heat transfer coefficient was determined. The convective heat transfer coefficient for corn kernels was found to be 1.04 W/m2 °C. The experimental error in terms of percent uncertainty has also been calculated. Keywords: Corn kernels, Convective heat transfer coefficient, Indoor forced convection drying INTRODUCTION the interior of the corn kernels takes place due Corn is one of the main agricultural products to induced vapor pressure difference between in many countries. It is an important industrial the corn kernels and surrounding medium. raw material in the starch industry (Haros and The convective heat transfer coefficient is Surez, 1997; and Soponronnarit et al., 1997a). an important parameter in drying rate It is also a grain that can be eaten raw off the simulation since the temperature difference cob.
    [Show full text]
  • Using Analogues to Simulate Intensity, Trajectory, and Dynamical Changes in Alberta Clippers with Global Climate Change
    Using Analogues to Simulate Intensity, Trajectory, and Dynamical Changes in Alberta Clippers with Global Climate Change Item Type Thesis Authors Ward, Jamie L. Download date 07/10/2021 05:51:34 Link to Item http://hdl.handle.net/10484/5573 Using Analogues to Simulate Intensity, Trajectory, and Dynamical Changes in Alberta Clippers with Global Climate Change _______________________ A thesis Presented to The College of Graduate and Professional Studies Department of Earth and Environmental Systems Indiana State University Terre Haute, Indiana ______________________ In Partial Fulfillment of the Requirements for the Degree Master of Arts _______________________ by Jamie L. Ward August 2014 Jamie L. Ward, 2014 Keywords: Alberta Clippers, Storm Tracks, Lee Cyclogenesis, Global Climate Change, Atmospheric Analogues ii COMMITTEE MEMBERS Committee Chair: Gregory D. Bierly (Ph.D.) Professor of Geography Indiana State University Committee Member: Stephen Aldrich (Ph.D.) Assistant Professor of Geography Indiana State University Committee Member: Jennifer C. Latimer Associate Professor of Geology Indiana State University iii ABSTRACT Alberta Clippers are extratropical cyclones that form in the lee of the Canadian Rocky Mountains and traverse through the Great Plains and Midwest regions of the United States. With the imminent threat of global climate change and its effects on regional teleconnection patterns like El Niño-Southern Oscillation (ENSO), properties of Alberta Clipper could be altered as a result of changing atmospheric circulation patterns. Since the Great Plains and Midwest regions both support a large portion of the national population and agricultural activity, the effects of global climate change on Alberta Clippers could affect these areas in a variety of ways.
    [Show full text]