Gödel's Incompleteness Theorems, Free Will And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
“The Church-Turing “Thesis” As a Special Corollary of Gödel's
“The Church-Turing “Thesis” as a Special Corollary of Gödel’s Completeness Theorem,” in Computability: Turing, Gödel, Church, and Beyond, B. J. Copeland, C. Posy, and O. Shagrir (eds.), MIT Press (Cambridge), 2013, pp. 77-104. Saul A. Kripke This is the published version of the book chapter indicated above, which can be obtained from the publisher at https://mitpress.mit.edu/books/computability. It is reproduced here by permission of the publisher who holds the copyright. © The MIT Press The Church-Turing “ Thesis ” as a Special Corollary of G ö del ’ s 4 Completeness Theorem 1 Saul A. Kripke Traditionally, many writers, following Kleene (1952) , thought of the Church-Turing thesis as unprovable by its nature but having various strong arguments in its favor, including Turing ’ s analysis of human computation. More recently, the beauty, power, and obvious fundamental importance of this analysis — what Turing (1936) calls “ argument I ” — has led some writers to give an almost exclusive emphasis on this argument as the unique justification for the Church-Turing thesis. In this chapter I advocate an alternative justification, essentially presupposed by Turing himself in what he calls “ argument II. ” The idea is that computation is a special form of math- ematical deduction. Assuming the steps of the deduction can be stated in a first- order language, the Church-Turing thesis follows as a special case of G ö del ’ s completeness theorem (first-order algorithm theorem). I propose this idea as an alternative foundation for the Church-Turing thesis, both for human and machine computation. Clearly the relevant assumptions are justified for computations pres- ently known. -
Unfolding of Systems of Inductive Definitions
UNFOLDINGOFSYSTEMSOFINDUCTIVE DEFINITIONS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MATHEMATICS AND THE COMMITTEE OF GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FORTHEDEGREEOF DOCTOROFPHILOSOPHY Ulrik Torben Buchholtz December 2013 © 2013 by Ulrik Torben Buchholtz. All Rights Reserved This work is licensed under the Creative Commons Attribution 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/us/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA. This dissertation is online at: http://purl.stanford.edu/kg627pm6592 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Solomon Feferman, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Grigori Mints, Co-Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Thomas Strahm Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost for Graduate Education An original signed hard copy of the signature page is on file in University Archives. iii iv ABSTRACT This thesis is a contribution to Solomon Feferman’s Unfolding Program which aims to provide a general method of capturing the operations on individuals and predicates (and the principles governing them) that are implicit in a formal axiomatic system based on open-ended schemata. -
Notices of the American Mathematical Society
June 18 and 19)- Page 341 Vl 0 ~ Mathematical Society Calendar of AMS Meetings THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of the Notices was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the Ameri· can Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meet ing. Abstracts should be submitted on special forms which are available in many departments of mathematics and from the office of the Society in Providence. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for ab· stracts submitted for consideration for presentation at special sessions is usually three weeks earlier than that specified below. For additional information consult the meeting announcement and the list of organizers of special sessions. MEETING ABSTRACT NUMBER DATE PLACE DEADLINE -
Proof Theory Synthese Library
PROOF THEORY SYNTHESE LIBRARY STUDIES IN EPISTEMOLOGY, LOGIC, METHODOLOGY, AND PHILOSOPHY OF SCIENCE Managing Editor: JAAKKO HINTIKKA, Boston University Editors: DIRK VAN DALEN, University of Utrecht, The Netherlands DONALD DAVIDSON, University of California, Berkeley THEO A.F. KUIPERS, University of Groningen, The Netherlands PATRICK SUPPES, Stanford University, California JAN WOLENSKI, iagiellonian University, Krakow, Poland VOLUME 292 PROOF THEORY History and Philosophical Significance Edited by VINCENT F. HENDRICKS University of Copenhagen. Denmark STIG ANDUR PEDERSEN and KLAUS FROVIN J0RGENSEN University of Roskilde, Denmark SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. A c.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-90-481-5553-8 ISBN 978-94-017-2796-9 (eBook) DOI 10.1007/978-94-017-2796-9 Printed on acid-free paper All Rights Reserved © 2000 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2000 Softcover reprint of the hardcover 1st edition 2000 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. CONTENTS Preface ................................................................. ix Contributing Authors ................................................. , xi HENDRICKS, PEDERSEN AND J0RGENSEN / Introduction .......... 1 PART 1. REVIEW OF PROOF THEORY SOLOMON FEFERMAN / Highlights in Proof Theory ................ , 11 1. Review of Hilbert's Program and Finitary Proof Theory ......... , 11 2. Results of Finitary Proof Theory via Gentzen's L-Calculi ......... 14 3. Shifting Paradigms .............................................. 21 4. Countably Infinitary Methods (Getting the Most Out of Logic) .. -
An Interview with Martin Davis
Notices of the American Mathematical Society ISSN 0002-9920 ABCD springer.com New and Noteworthy from Springer Geometry Ramanujan‘s Lost Notebook An Introduction to Mathematical of the American Mathematical Society Selected Topics in Plane and Solid Part II Cryptography May 2008 Volume 55, Number 5 Geometry G. E. Andrews, Penn State University, University J. Hoffstein, J. Pipher, J. Silverman, Brown J. Aarts, Delft University of Technology, Park, PA, USA; B. C. Berndt, University of Illinois University, Providence, RI, USA Mediamatics, The Netherlands at Urbana, IL, USA This self-contained introduction to modern This is a book on Euclidean geometry that covers The “lost notebook” contains considerable cryptography emphasizes the mathematics the standard material in a completely new way, material on mock theta functions—undoubtedly behind the theory of public key cryptosystems while also introducing a number of new topics emanating from the last year of Ramanujan’s life. and digital signature schemes. The book focuses Interview with Martin Davis that would be suitable as a junior-senior level It should be emphasized that the material on on these key topics while developing the undergraduate textbook. The author does not mock theta functions is perhaps Ramanujan’s mathematical tools needed for the construction page 560 begin in the traditional manner with abstract deepest work more than half of the material in and security analysis of diverse cryptosystems. geometric axioms. Instead, he assumes the real the book is on q- series, including mock theta Only basic linear algebra is required of the numbers, and begins his treatment by functions; the remaining part deals with theta reader; techniques from algebra, number theory, introducing such modern concepts as a metric function identities, modular equations, and probability are introduced and developed as space, vector space notation, and groups, and incomplete elliptic integrals of the first kind and required. -
PREFACE Does God Have a Big Toe? (Pages 1 - 13)
PREFACE Does God have a Big TOE? We are called to be in the world. Not of it. But not out of it, either.1 This book holds the mirror to a single paradox: We must live the historical moment we are in without letting that moment explain us. Christianity must bring to every culture an indigenous faith that is true to its heritage without Christianity’s becoming a culture faith. If every book has one idea, this is it for the one you are reading. The cardinal sin for modernity has been antiintellectualism, a dissenting spirit against celebrating the powers of the mind that has gripped large segments of the Christian church. The sin governing much of the church today may be ahistoricalism or antihistoricalism. Large segments of the Christian community, finding the intellectual and social company of modernism more congenial than that of postmodernism, are in retreat, having disconnected from the unprecedented, restructuring changes taking place all around them. The Christian mind is failing to comprehend the times, our times. The New Light apologetic chronicled in this book is devoted to enfranchising and energizing Christians to connect their faith with the indigenous historical place in which God has chosen them to live. It aims to jolt Christians into a sense of their own time, out of their fashionable out-of-itness. For the God who exists beyond time is the God who lives, moves, and has being in this time. The ultimate hospitality is, then, an entertainment of divine mystery in human life. Benedictine/biblical scholar Demetrius R. -
REFLECTIONS on KURT G¨ODEL Hao Wang Bradford Books, the MIT
REFLECTIONS ON KURT GODEL¨ Hao Wang Bradford Books, The MIT Press, second printing, 1988 A review by: Wim Ruitenburg Department of Mathematics, Statistics and Computer Science Marquette University Milwaukee, WI 53233 Except for a few minor corrections this second printing is identical to the first ([Wang 1987]). The book is meant to be a first attempt to consider G’s life and work as a whole within an inclusive context that, except maybe for chapters 6, 10, and 11, is accessible to most thoughtful people. The many personal contacts that W had with G during the later years of G’s life makes him an important source of informa- tion about G, particularly when one realizes that G was a rather private person, was reluctant to publish, and left a wide range of unfinished projects. W decided, for reasons of organization, to separate the private sayings for inclusion in a later book entitled Conversations with Kurt G¨odel. The current volume, less dependent upon unpublished material, is subdivided into three parts. Part I, consisting of chapters 1 through 4, presents facts about G¨odel’s life and work. Chapter 1 contains a discussion of G’s life from the per- spective of his dedication to fundamental theoretical work. W quotes and discusses three documents relevant to G’s life and work. These documents are a letter from G’s brother Dr. Rudolf G¨odel in 1985, in response to an inquiry of W; the Grandjean questionnaire of 1974, a specially designed questionnaire that was answered by G, but never sent; and an evaluation of G’s work, compiled by W and approved by G, on the occasion of G’s receiving an honorary degree from The Rockefeller University in 1972. -
Plausibility and Probability in Deductive Reasoning
Plausibility and probability in deductive reasoning Andrew MacFie∗ Abstract We consider the problem of rational uncertainty about unproven mathe- matical statements, remarked on by Gödel and others. Using Bayesian-inspired arguments we build a normative model of fair bets under deductive uncertainty which draws from both probability and the theory of algorithms. We comment on connections to Zeilberger’s notion of “semi-rigorous proofs”, particularly that inherent subjectivity would be present. We also discuss a financial view with models of arbitrage where traders have limited computational resources. Contents 1 A natural problem: Quantified deductive uncertainty 2 1.1 Thephenomenon ......................... 2 1.2 The(modeling)problem . .. .. 3 2 Formal representation of plausibilities 4 2.1 Plausibility functions . 4 2.2 Languages............................. 5 2.3 Epistemic quality vs. computation costs . 5 2.4 Conditional plausibility . 7 3 Rational plausibilities in mathematics 7 3.1 Scoringrules............................. 7 3.2 Foundationsof“semi-rigorous proofs” . 8 arXiv:1708.09032v6 [cs.AI] 16 Dec 2019 4 Arbitrage pricing in markets with computational constraints 10 5 Conclusion 11 References 11 ∗School of Mathematics and Statistics, Carleton University. This work was done in part while the author was a visitor at the Harvard John A. Paulson School of Engineering and Applied Sciences. 1 1 A natural problem: Quantified deductive uncertainty 1.1 The phenomenon Epistemic uncertainty is usually defined as uncertainty among physical states due to lack of data or information. By information we mean facts which we observe from the external world. For example, whether it rains tomorrow is a piece of information we have not observed, so we are uncertain about its truth value. -
Theses for Computation and Recursion on Concrete and Abstract Structures
Theses for Computation and Recursion on Concrete and Abstract Structures Solomon Feferman Abstract: The main aim of this article is to examine proposed theses for computation and recursion on concrete and abstract structures. What is generally referred to as Church’s Thesis or the Church-Turing Thesis (abbreviated CT here) must be restricted to concrete structures whose objects are finite symbolic configurations of one sort or another. Informal and principled arguments for CT on concrete structures are reviewed. Next, it is argued that proposed generalizations of notions of computation to abstract structures must be considered instead under the general notion of algorithm. However, there is no clear general thesis in sight for that comparable to CT, though there are certain wide classes of algorithms for which plausible theses can be stated. The article concludes with a proposed thesis RT for recursion on abstract structures. 1. Introduction. The concepts of recursion and computation were closely intertwined from the beginning of the efforts early in the 1930s to obtain a conceptual analysis of the informal notion of effective calculability. I provide a review of those efforts in sec. 2 as background to the remainder of this article, but I have nothing new to add here to the extensive historical and analytical literature.1 It is generally agreed that the conceptual analysis of effective calculability was first provided most convincingly by Turing (1936- 7). Not long before that Church (1936) had proposed identifying effective calculability with the Herbrand-Gödel notion of general recursiveness, soon enough proved equivalent to Turing computability among other suggested explications. -
Representations in Measure Theory: Between a Non-Computable Rock
REPRESENTATIONS IN MEASURE THEORY: BETWEEN A NON-COMPUTABLE ROCK AND A HARD TO PROVE PLACE DAG NORMANN AND SAM SANDERS Abstract. The development of measure theory in ‘computational’ frame- works proceeds by studying the computational properties of countable approx- imations of measurable objects. At the most basic level, these representations are provided by Littlewood’s three principles, and the associated approxima- tion theorems due to e.g. Lusin and Egorov. In light of this fundamental role, it is then a natural question how hard it is to prove the aforementioned theorems (in the sense of the Reverse Mathematics program), and how hard it is to com- pute the countable approximations therein (in the sense of Kleene’s schemes S1-S9). The answer to both questions is ‘extremely hard’, as follows: one one hand, proofs of these approximation theorems require weak compactness, the measure-theoretical principle underlying e.g. Vitali’s covering theorem. In terms of the usual scale of comprehension axioms, weak compactness is only provable using full second-order arithmetic. On the other hand, computing the associated approximations requires a weak fan functional Λ, which is a realiser for weak compactness and is only computable from (a certain comprehension functional for) full second-order arithmetic. Despite this observed hardness, we show that weak compactness, and certain weak fan functionals, behave much better than (Heine-Borel) compactness and the associated class of realisers, called special fan functionals Θ. In particular, we show that the combina- tion of any Λ-functional and the Suslin functional has no more computational power than the latter functional alone, in contrast to Θ-functionals. -
Preface and Introduction Mark Van Atten
Preface and introduction Mark van Atten To cite this version: Mark van Atten. Preface and introduction. Essays on Gödel’s Reception of Leibniz, Husserl, and Brouwer, 35, 2015, Logic, Epistemology, and the Unity of Science, ISBN 978-3-319-10030-2. hal- 01403574 HAL Id: hal-01403574 https://hal.archives-ouvertes.fr/hal-01403574 Submitted on 26 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License preface and introduction to Essays on Gödel’s Reception of Leibniz, Husserl, and Brouwer (Dordrecht: Springer, 2015) Mark van Atten∗ 1 Preface This is a collection of most of the essays on Kurt Gödel that I have au- thored or co-authored. In their publication over the past decade, these essays have been dispersed, as they address various topics for various primary audiences: philosophers of logic and mathematics, phenomen- ologists interested in science, and historians of modern philosophy. The rationale for bringing them together here is that, not so much in spite as because of this variety, they show a coherence predicated on that of the many-sided project of Gödel’s that they collectively analyse: the project of using Husserl’s phenomenology to reconstruct and develop Leibniz’ monadology as an axiomatic metaphysics, and then to provide a Platon- istic foundation for classical mathematics starting from the metaphysics thus obtained. -
CSE370: Introduction to Digital Design
Announcements • Reading assignments CSE 311 Foundations of – 7th Edition, Section 9.1 and pp. 594-601 – 6th Edition, Section 8.1 and pp. 541-548 Computing I – 5th Edition, Section 7.1 and pp. 493-500 Lecture 19 • Upcoming topics – Relations Relations – Finite State Machines Autumn 2011 Autumn 2011 CSE 311 1 Autumn 2011 CSE 311 2 Definition of Relations Relation Examples Let A and B be sets, R1 = {(a, 1), (a, 2), (b, 1), (b, 3), (c, 3)} A binary relation from A to B is a subset of A B R2 = {(x, y) | x ≡ y (mod 5) } Let A be a set, A binary relation on A is a subset of A A R3 = {(c1, c2) | c1 is a prerequisite of c2 } R4 = {(s, c) | student s had taken course c } Autumn 2011 CSE 311 4 Properties of Relations Combining Relations Let R be a relation on A Let R be a relation from A to B R is reflexive iff (a,a) R for every a A Let S be a relation from B to C The composite of R and S, S R is the relation R is symmetric iff (a,b) R implies (b, a) R from A to C defined S R = {(a, c) | b such that (a,b) R and (b,c) S} R is antisymmetric iff (a,b) R and a b implies (b,a) / R R is transitive iff (a,b) R and (b, c) R implies (a, c) R Examples Examples (a,b) Parent: b is a parent of a Using the relations: Parent, Child, Brother, (a,b) Sister: b is a sister of a Sister, Sibling, Father, Mother express What is Parent Sister? Uncle: b is an uncle of a What is Sister Parent? Cousin: b is a cousin of a S R = {(a, c) | b such that (a,b) R and (b,c) S} Powers of a Relation How is Anderson related to Bernoulli? R2 = R R = {(a, c) | b such