Philosophy and Physics: a Reconciliation

Total Page:16

File Type:pdf, Size:1020Kb

Philosophy and Physics: a Reconciliation PHILOSOPHY AND PHYSICS: A RECONCILIATION JESSICA ODDAN Bachelor of Arts, University of Lethbridge, 2015 AThesis Submitted to the School of Graduate Studies of the University of Lethbridge in Partial Fulfilment of the Requirements for the Degree MASTER OF ARTS Department of Philosophy University of Lethbridge LETHBRIDGE, ALBERTA, CANADA c Jessica Oddan, 2017 PHILOSOPHY AND PHYSICS: A RECONCILIATION JESSICA ODDAN Date of Defence: June 15, 2017 Dr. K. Peacock Professor Ph.D. Supervisor Dr. B. Brown Professor Ph.D. Thesis Examination Committee Member Dr. S. Das Professor Ph.D. Thesis Examination Committee Member Dr.M.Stingl Professor Ph.D. Chair, Thesis Examination Committee ii ABSTRACT Historically, philosophy and physics have been highly integrated disciplines. However, after the Quantum Revolution, physics distanced itself from the philosophical method, leading to a dramatic change in methodology and philosophy of science. As scientific style has shifted and philosophy fallen out of favour, the distancing of philosophy and physics has made its way into the public arena, with highly regarded physicists denigrating the discipline of philosophy and philosophers arguing for the value of their discipline. This thesis discusses di↵erent conceptions in philosophy of science, the role of scientism in the public discussion of the integration of philosophy and physics, and how string theory provides a unique and fitting example of how science can be a↵ected by unrecognized changes in underlying philosophies of science. I determine that as evidenced by my discussion of string theory, philosophical intervention is necessary for solving some of the most fundamental problems in physics and that collaboration between the two disciplines must continue to increase. iii ACKNOWLEDGEMENTS First and foremost, I would like to thank my supervisor, Dr. Kent Peacock, for his continued support. Thank you for our endless conversations, for continuing to inspire me, and for pushing me to always do my best. I truly could not thank you enough. I would also like to thank Dr. Bryson Brown and Dr. Saurya Das for serving on my committee and for your wonderful feedback. Thank you to Dr. Michael Stingl for serving as the Chair for my defence. Thank you to my family and friends, particularly my mother, who has always encouraged me. And finally I extend my thanks to the University of Lethbridge, to the School of Graduate Studies, and to the Government of Alberta for providing funding and support throughout this endeavour. iv Contents 1 Introduction 1 2 Philosophy of Science: Karl Popper 4 3 Philosophy of Science: Thomas Kuhn 12 3.1 Phase change in science .......................... 13 3.2 Tradition and innovation ......................... 16 3.3 Paradigm use ............................... 18 3.4 Incommensurability thesis ........................ 19 3.5 Objections ................................. 22 3.6 Conclusions ................................ 30 4 Scientism 37 4.1 The honourific use of “science” and its cognates ............ 38 4.2 Inappropriately adopting the trappings of science ........... 40 4.3 Preoccupation with “the problem of demarcation” ........... 41 4.4 The quest for the “scientific method” .................. 44 4.5 Looking to the sciences for answers to questions beyond their scope . 46 4.6 Denigrating the Non-scientific ...................... 48 4.7 Deference, Respect, and Anti-Science .................. 49 5 History of String Theory 51 5.1 The First Revolution ........................... 56 5.2 The Second Revolution .......................... 61 5.3 A Theory of Anything .......................... 65 6 Philosophy of Science: String Theory 72 6.1 The Current Status of String Theory .................. 73 6.2 Canonical Understanding of Scientific Process ............. 76 6.3 Paradigm shift .............................. 78 6.4 Three Contextual Arguments ...................... 80 6.5 Scientific underdetermination ...................... 83 6.6 Summary ................................. 86 7 Concluding Remarks 91 v Chapter 1 Introduction It has often been said, and certainly not without justification, that the man of science is a poor philosopher. Why then should it not be the right thing for the physicist to let the philosopher do the philosophizing? Such might indeed be the right thing at a time when the physicist believes he has at his disposal a rigid system of fundamental concepts and fundamental laws which are so well established that waves of doubt can not reach them; but it can not be right at a time when the very foundations of physics itself have become problematic as they are now. At a time like the present, when experience forces us to seek a newer and more solid foundation, the physicist cannot simply surrender to the philosopher the critical contemplation of the theoretical foundations; for, he himself knows best, and feels more surely where the shoe pinches. In looking for a new foundation, he must try to make clear in his own mind just how far the concepts which he uses are justified, and are necessities. (Einstein) [16] The above quotation comes from one of the most profound thinkers of the 20th century. Albert Einstein approached questions in physics with philosophy in mind, as did many pioneers of quantum theory such Heisenberg and Niels Bohr. These people who revolutionized quantum theory, physics, and knowledge as a whole practiced physics with a di↵erent ‘style’ than is predominant today. Of late, it appears as though physics and philosophy are at odds. Many of the world’s most celebrated physicists (such as Stephen Hawking, Richard Feynman, and Steven Weinberg) have publicly denounced philosophy as useless, fickle, and obsolete. The quotation below is a poignant example of what I argue is a widespread contemporary attitude toward the integration of physics and philosophy: 1 How can we understand the world in which we find ourselves? How does the universe behave? What is the nature of reality? Traditionally these are questions for philosophy, but philosophy is dead.Philosophyhas not kept up with modern developments in science, particularly physics. Scientists have become the bearers of the torch of discovery in our quest for knowledge. Stephen Hawking and Leonard Mlodinow [My emphasis] [67] Lawrence Krauss, upon receiving criticism of his book A Universe from Nothing from philosopher and physicist David Albert, called Albert a “moronic philosopher” [2]. Steven Weinberg, a theoretical physicist and Nobel laureate wrote that he finds philosophy “murky and inconsequential” [24]. These examples are an indication of the gradual distancing between two robust disciplines, physics and philosophy. But physics and philosophy have always been closely intertwined, physics being born out of philosophy. So the disintegration of the connection between these two disciplines is surely a matter of interest, the disintegration being, Iargue,adangerousoccurrencefortheadvancementofknowledge.Theweakening link between physics and philosophy is the antithesis of what I am arguing, that a continued and open dialogue and collaboration between physicists and philosophers is necessary for the betterment of both academic fields and knowledge as a whole. I shall begin with Karl Popper’s falsifiability criterion as it is important for my discussion of the status of string theory. I shall then discuss Thomas Kuhn’s philosophy of science which I shall use for the notion of phase change. The above quotations by Hawking, Feynman, etc., are examples of scientism, a notion discussed by Susan Haack. I shall identify scientistic attitudes as an obstacle to my overall thesis. I shall then go through the historical development of string theory as I have emphasized that keeping science in a historical context is important for overall understanding. A discussion of Richard Dawid’s String Theory and the Scientific Method will follow where I shall argue that the current disagreements regarding the status of string theory stem from a fundamentally philosophical disagreement. Finally, I shall conclude that in order to properly discuss the status of 2 string theory there must be an increased integration of physics and philosophy. I use string theory as a real-world example of how physics can go awry when philosophy and physics are not integrated. This integration of the philosophical method into physics is what I shall consider a necessary paradigm shift in physics. 3 Chapter 2 Philosophy of Science: Karl Popper The principle of falsification in science was described by Karl Popper. Popper’s work in the philosophy of science focused on the demarcation between science and pseudo-science and the search for “a criterion for the scientific character of status of atheory“[54,p.3].Popperbelievedthedemarcationbetweenscienceand pseudo-science to be the foremost problem in the philosophy of science. He was moved to work on the problem of demarcation because he observed a tendency for scientific inquiry to fail, and for pseudo-science to nonetheless be perceived as being successful. According to Popper, the general consensus within philosophy of science is that the demarcation between science and pseudo-science occurs in virtue of science’s empirical method that is based upon observation and experimentation [54, p. 4]. This empirical method relies on the process of induction, a philosophical notion with a complicated history. A general definition of induction is the process of predicting future events on the basis of previous experiences. However, this definition is limited; induction is difficult to
Recommended publications
  • Thermodynamic Physics and the Poetry and Prose of Gerard Manley Hopkins
    Georgia State University ScholarWorks @ Georgia State University English Dissertations Department of English 5-11-2015 Literatures of Stress: Thermodynamic Physics and the Poetry and Prose of Gerard Manley Hopkins Thomas Mapes Follow this and additional works at: https://scholarworks.gsu.edu/english_diss Recommended Citation Mapes, Thomas, "Literatures of Stress: Thermodynamic Physics and the Poetry and Prose of Gerard Manley Hopkins." Dissertation, Georgia State University, 2015. https://scholarworks.gsu.edu/english_diss/134 This Dissertation is brought to you for free and open access by the Department of English at ScholarWorks @ Georgia State University. It has been accepted for inclusion in English Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. LITERATURES OF STRESS: THERMODYNAMIC PHYSICS AND THE POETRY AND PROSE OF GERARD MANLEY HOPKINS by THOMAS MAPES Under the Direction of Paul Schmidt, PhD ABSTRACT This dissertation examines two of the various literatures of energy in Victorian Britain: the scientific literature of the North British school of energy physics, and the poetic and prose literature of Gerard Manley Hopkins. As an interdisciplinary effort, it is intended for several audiences. For readers interested in science history, it offers a history of two terms – stress and strain – central to modern physics. As well, in discussing the ideas of various scientific authors (primarily William John Macquorn Rankine, William Thomson, P.G. Tait, and James Clerk Maxwell), it indicates several contributions these figures made to larger culture. For readers of Hopkins’ poems and prose, this dissertation corresponds with a recent trend in criticism in its estimation of Hopkins as a scientifically informed writer, at least in his years post-Stonyhurst.
    [Show full text]
  • Arxiv:1801.04898V1 [Cs.SI] 15 Jan 2018
    Network assembly of scientific communities of varying size and specificity Daniel T. Citron1, ∗ and Samuel F. Way2, y 1Department of Physics, Cornell University, Ithaca, New York, 14853 USA 2Department of Computer Science, University of Colorado, Boulder CO, 80309 USA How does the collaboration network of researchers coalesce around a scientific topic? What sort of social restructuring occurs as a new field develops? Previous empirical explorations of these questions have examined the evolution of co-authorship networks associated with several fields of science, each noting a characteristic shift in network structure as fields develop. Historically, however, such studies have tended to rely on manually annotated datasets and therefore only consider a handful of disciplines, calling into question the universality of the observed structural signature. To overcome this limitation and test the robustness of this phenomenon, we use a comprehensive dataset of over 189,000 scientific articles and develop a framework for partitioning articles and their authors into coherent, semantically-related groups representing scientific fields of varying size and specificity. We then use the resulting population of fields to study the structure of evolving co-authorship networks. Consistent with earlier findings, we observe a global topological transition as the co- authorship networks coalesce from a disjointed aggregate into a dense giant connected component that dominates the network. We validate these results using a separate, complimentary corpus of scientific articles, and, overall, we find that the previously reported characteristic structural evolution of a scientific field’s associated co-authorship network is robust across a large number of scientific fields of varying size, scope, and specificity.
    [Show full text]
  • Sacred Rhetorical Invention in the String Theory Movement
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Communication Studies Theses, Dissertations, and Student Research Communication Studies, Department of Spring 4-12-2011 Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement Brent Yergensen University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/commstuddiss Part of the Speech and Rhetorical Studies Commons Yergensen, Brent, "Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement" (2011). Communication Studies Theses, Dissertations, and Student Research. 6. https://digitalcommons.unl.edu/commstuddiss/6 This Article is brought to you for free and open access by the Communication Studies, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Communication Studies Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT by Brent Yergensen A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Communication Studies Under the Supervision of Dr. Ronald Lee Lincoln, Nebraska April, 2011 ii SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT Brent Yergensen, Ph.D. University of Nebraska, 2011 Advisor: Ronald Lee String theory is argued by its proponents to be the Theory of Everything. It achieves this status in physics because it provides unification for contradictory laws of physics, namely quantum mechanics and general relativity. While based on advanced theoretical mathematics, its public discourse is growing in prevalence and its rhetorical power is leading to a scientific revolution, even among the public.
    [Show full text]
  • What Scientific Theories Could Not Be Author(S): Hans Halvorson Reviewed Work(S): Source: Philosophy of Science, Vol
    What Scientific Theories Could Not Be Author(s): Hans Halvorson Reviewed work(s): Source: Philosophy of Science, Vol. 79, No. 2 (April 2012), pp. 183-206 Published by: The University of Chicago Press on behalf of the Philosophy of Science Association Stable URL: http://www.jstor.org/stable/10.1086/664745 . Accessed: 03/12/2012 10:32 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and Philosophy of Science Association are collaborating with JSTOR to digitize, preserve and extend access to Philosophy of Science. http://www.jstor.org This content downloaded by the authorized user from 192.168.52.67 on Mon, 3 Dec 2012 10:32:52 AM All use subject to JSTOR Terms and Conditions What Scientific Theories Could Not Be* Hans Halvorson†‡ According to the semantic view of scientific theories, theories are classes of models. I show that this view—if taken literally—leads to absurdities. In particular, this view equates theories that are distinct, and it distinguishes theories that are equivalent. Furthermore, the semantic view lacks the resources to explicate interesting theoretical relations, such as embeddability of one theory into another.
    [Show full text]
  • What's So Bad About Scientism? Moti Mizrahi Florida Institute Of
    What’s so bad about Scientism? Moti Mizrahi Florida Institute of Technology Abstract: In their attempt to defend philosophy from accusations of uselessness made by prominent scientists, such as Stephen Hawking, some philosophers respond with the charge of “scientism.” This charge makes endorsing a scientistic stance a mistake by definition. For this reason, it begs the question against these critics of philosophy, or anyone who is inclined to endorse a scientistic stance, and turns the scientism debate into a verbal dispute. In this paper, I propose a different definition of scientism, and thus a new way of looking at the scientism debate. Those philosophers who seek to defend philosophy against accusations of uselessness would do philosophy a much better service, I submit, if they were to engage with the definition of scientism put forth in this paper, rather than simply make it analytic that scientism is a mistake. Keywords: inference to the best explanation; epistemological scientism; scientistic stance; success of science 1. Introduction In their attempt to defend philosophy from accusations of uselessness made by prominent scientists, such as Hawking and Mlodinow (2010, p. 5), who write that “philosophy is dead,”1 some philosophers accuse these scientists of “scientism.” According to Pigliucci (2010, p. 235), the term ‘scientism’ “is in fact only used as an insult.” By “scientism,” Pigliucci (2010, p. 235) means, “the intellectual arrogance of some scientists who think that, given enough time and especially financial resources, science will be able to answer whatever meaningful questions we may wish to pose—from a cure for cancer to the elusive equation that will tell us how the laws of nature themselves came about” (emphasis added).2 And Sorell (2013, p.
    [Show full text]
  • Reexamining the Problem of Demarcating Science and Pseudoscience by Evan Westre B.A., Vancouver Island University, 2010 a Thesis
    Reexamining the Problem of Demarcating Science and Pseudoscience By Evan Westre B.A., Vancouver Island University, 2010 A Thesis Submitted in Partial Fulfillment of the Requirements For the Degree of MASTER OF ARTS ©Evan Westre, 2014 All Rights Reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. Supervisory Committee Reexamining the Problem of Demarcating Science and Pseudoscience By Evan Westre B.A., Vancouver Island University, 2010 Dr. Audrey Yap: Supervisor (Department of Philosophy) Dr. Jeffrey Foss: Departmental Member (Department of Philosophy) ii Abstract Supervisory Committee Dr. Audrey Yap: Supervisor (Department of Philosophy) Dr. Jeffrey Foss: Departmental Member (Department of Philosophy) The demarcation problem aims to articulate the boundary between science and pseudoscience. Solutions to the problem have been notably raised by the logical positivists (verificationism), Karl Popper (falsificationism), and Imre Lakatos (methodology of research programmes). Due, largely, to the conclusions drawn by Larry Laudan, in a pivotal 1981 paper which dismissed the problem of demarcation as a “pseudo-problem”, the issue was brushed aside for years. Recently, however, there has been a revival of attempts to reexamine the demarcation problem and synthesize new solutions. My aim is to survey two of the contemporary attempts and to assess these approaches over and against the broader historical trajectory of the demarcation problem. These are the efforts of Nicholas Maxwell (aim-oriented empiricism), and Paul Hoyningen-Huene (systematicity). I suggest that the main virtue of the new attempts is that they promote a self-reflexive character within the sciences.
    [Show full text]
  • Electrons, Phonons, Magnons
    <. Electrons 4x he ee eye pee we (2), f TA r eae i Sem Pies E 2a Ne Be E c=3x i0 emmfateh E e Ara 2 ; Publishers Moscow M. WU. Karanon JUeEKTPOHbI. WPonoHbt. Marnornbi Usnatenpetso «Hayka» MockBa M. I. Kaganov Electrons Phonons Magnons Translated from the Russian by V. I. Kissin Mir Publishers Moscow First published 1984 Revised from the 1979 Russian edition Ha aneauticnom asare © PuapHan pefakuua u3suKo-MaTemaTtu4ecKon JMTepaTypbl U3sfaterbeTBa «HayKay, 1979 © English translation, Mir Publishers, 1984 Contents Instead of an Introduction: Languages of Science Chapter 14. On Physics in General and Quantum Mechanics in Partic- ular 13 Introduction to the Next Five Chapters: Solid State Physics 92 Chapter 2. Phonons 109 Chapter 3. Two Statistics 146 Chapter 4. Electrons 168 Chapter 5. Electrons and Phonons 190 Chapter 6. Magnons 222 Concluding Remarks 209 So long, the stone! Long live, the wave! D. Samoilov Lndtead of an Introduction Languages of Science When science perceives the surrounding world and transforms “things in themselves into things for us’, when it masters new fields and turns its achievements into everyday tools of human- ity, it also fulfills one additional function. Namely, it composes a picture of the world which is modified by each subsequent generation and serves as one of the most important character- istics of civilization. The picture of the world, that is, the sum total of humanity’s information about nature, is stored in hundreds of volumes of special monographs and in tens of thousands of articles in scientific journals. Strictly speaking, this picture is known to humanity as a whole but not to any single per- son.
    [Show full text]
  • PHYSICS, PHILOSOPHY and PSYCHOANALYSIS Essays in Honor of Adolf Grilnbaum
    PHYSICS, PHILOSOPHY AND PSYCHOANALYSIS Essays in Honor of Adolf Grilnbaum Edited by R. s. COHEN Boston University and L. LAUDAN Virginia Polytechnic Institute D. REIDEL PUBLISHING COMPANY A MEMBER OF THE KLUWER ACADEMIC PUBLISHERS GROUP DORDRECHT I BOSTON I LANCASTER Library of Congress Cataloging in Publication Data Main entry under title: Physics, philosophy, and psychoanalysis. (Boston studies in the philosophy of science; v. 76) Bibliography: p. Includes index. 1. Physics-Philo sophy-Addresses, essays, lectures. 2. Philos- ophy-Addresses, essays, lectures. 3. Psychoanalysis-Addresses, essays;lectures. 4. Griinbaum, Adolf. I. Griinbaum, Adolf. II. Cohen, Robert Sonne. III. Series. Q174.B67 vol. 76 [QC6.21 501s 1530'.011 83-4576 ISBN-I3: 978-94-009-7057-1 e-ISBN-13: 978-94-009-7055-7 DOl: 10.1007/978-94-009-7055-7 Published by D. Reidel Publishing Company, P.O. Box 17,3300 AA Dordrecht, Holland. Sold and distributed in the U.S.A. and Canada by Kluwer Boston Inc., 190 Old Derby Street, Hingham, MA 02043, U.S.A. In all other countries, sold and distributed by Kluwer Academic Publishers Group, P.O. Box 322, 3300 AH Dordrecht, Holland. All Rights Reserved. Copyright © 1983 by D. Reidel Publishing Company, Dordrecht, Holland and copyright holders as specified on appropriate pages within. Softcover reprint of the hardcover 15t edition 1983 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any informational storage and retrieval system, without written permission from the copyright owner.
    [Show full text]
  • Causes As Explanations: a Critique*
    JAEGWON KIM CAUSES AS EXPLANATIONS: A CRITIQUE* Causes certainly are connected with effects; but this is because our theories connect them, not because the world is held together by cosmic glue. 1 Norwood Russell Hanson ABSTRACT. This paper offers a critique of the view that causation can be analyzed in terms of explanation. In particular, the following points are argued: (1) a genuine explanatory analysis of causation must make use of a fully epistemological-psychological notion of explanation; (2) it is unlikely that the relatively clear-cut structure of the causal relation can be captured by the relatively unstructured relation of explanation; (3) the explanatory relation does not always parallel the direction of causation; (4) certain difficulties arise for any attempt to construct a nonrelativistic relation of caus- ation from the essentially relativistic relation of explanation; and (5) to analyze causation as explanation is to embrace a form of "causal idealism", the view that causal connec- tions are not among the objective features of the world. The paper closes with a brief discussion of the contrast between the two fundamentally opposed viewpoints about causality, namely causal idealism and causal realism. It is little more than a truism to say that causes explain their effects, or that to ask for the cause of an event is to ask for an explanation of why or how the event occurred. This close association between causation and explanation is amply mirrored in language: we answer 'why'-questions with 'becuase'- statements, and surely there is more than an orthographic resemblance between 'cause' and 'because'. The association is also ancient: it goes back to Aristotle, who characterized true, scientific knowledge as knowledge of the 'why' of things, that is, knowledge of the cause that makes a thing what it is and not something else.
    [Show full text]
  • From Fleck's Denkstil to Kuhn's Paradigm: Conceptual Schemes and Incommensurability Babette E
    Fordham University Masthead Logo DigitalResearch@Fordham Articles and Chapters in Academic Book Philosophy Collections 2003 From Fleck’s Denkstil to Kuhn’s Paradigm: Conceptual Schemes and Incommensurability Babette Babich Fordham University, [email protected] Follow this and additional works at: https://fordham.bepress.com/phil_babich Part of the Continental Philosophy Commons, History of Philosophy Commons, Medicine and Health Commons, Philosophy of Science Commons, and the Sociology of Culture Commons Recommended Citation Babich, Babette, "From Fleck’s Denkstil to Kuhn’s Paradigm: Conceptual Schemes and Incommensurability" (2003). Articles and Chapters in Academic Book Collections. 7. https://fordham.bepress.com/phil_babich/7 This Article is brought to you for free and open access by the Philosophy at DigitalResearch@Fordham. It has been accepted for inclusion in Articles and Chapters in Academic Book Collections by an authorized administrator of DigitalResearch@Fordham. For more information, please contact [email protected]. This article was downloaded by:[Ingenta Content Distribution] On: 23 December 2007 Access Details: [subscription number 768420433] Publisher: Routledge Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK International Studies in the Philosophy of Science Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713427740 From Fleck's Denkstil
    [Show full text]
  • LD5655.V855 1993.C655.Pdf (11.60Mb)
    SCIENTIFIC DISCOURSE, SOCIOLOGICALT HEORY, AND THE STRUCTURE OF RHETORIC by James H. Collier Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Science and Technology Studies APPROVED: Y— Joseph C. Pitt, Chair Aone ble EtaaT hone, Steve Fuller Elisworth Fuhrman April, 1993 Blacksburg, VA LD S635 VE5S , DaQa cose} aM’~ Scientific Discourse, Sociological Theory, and the Structure of Rhetoric James H. Collier Graduate Program in Science and Technology Studies Chair: Joseph C. Pitt (ABSTRACT) This thesis examines the rhetorical, analytical and critical efficacy of reflexivity and sociological theory as means for reconciling the normative and descriptive functions of the rhetoric of science. In attempting to define a separate research domain within Science Studies, rhetoric of science has borrowed Strong Program and constructivist principles and descriptions of scientific practice from the Sociology of Scientific Knowledge (SSK) as a basis for analyzing scientific discourse. While epistemological claims in the social sciences have been considered inherently self-referential and subject to reflexive analysis and critique, rhetoricians have generally taken these claims on face value and applied them to a treatment of scientific practice. Accordingly, rhetoricians have maintained a natural ontological attitude to sociological theories and descriptions supporting an understanding of scientific discourse as implicitly rhetorical. Recently, however, the concept of "rhetoric" in rhetoric of science has come under scrutiny. This thesis will connect arguments involving the relation of the "irreducibly social" nature of science, to a concept of scientific discourse as rhetorical "without remainder,” to the philosophical commitments of reflexive analysis.
    [Show full text]
  • Notes: Scientific Method and Scientific Notation Prof
    Notes: Scientific Method and Scientific Notation Prof. Fiore, [email protected] Scientific Method The scientific method is a means of uncovering and explaining physical phenomena. It relies on observation and logical reasoning to achieve insight into the actions and relations of the phenomena, and a means of relating it to similar items. The method starts with observations and measurements. Based on these and background knowledge such as mathematics, physics, the behavior of similar phenomena, and so on, a tentative explanation, or hypothesis, is derived. The hypothesis is then tested using experimental or field data. The precise nature of the tests depend on the area of study, but the idea will always be the same: namely to see if the predictions of the hypothesis are borne out under alternate applicable conditions or data sets. A proper hypothesis must be testable and falsifiable. That is, the hypothesis must be able to be proven wrong by subsequent observation. If it is not, then the hypothesis is better classified as philosophy. For example, Newtonian gravitation could be proven false by letting go of a suspended hammer and watching it remain motionless or fall upwards, rather than fall down toward the Earth. Similarly, Evolution could be proven false by the discovery of “fossil rabbits in the Precambrian”, to quote famous biologist J. B. S. Haldane (Haldane was being somewhat snippy, but in general, he meant anything that would be clearly out of the expected time-line, in this case a small mammal predating even the most simple creatures with backbones). A hypothesis is tested by repeated cycles of prediction, observation and measurement, and also subject to peer review, that is, the critique of others in the field of study who may point out inconsistencies in the explanations or logic, errors in experimental design, and so on.
    [Show full text]