Fountain Darter – Movement Study

Total Page:16

File Type:pdf, Size:1020Kb

Fountain Darter – Movement Study BIO-WEST ATTACHMENT 5 FEBRUARY 19, 2014 Fountain Darter – Movement Study EFFECTS OF VEGETATION DECAY AND WATER QUALITY DETERIORATION ON FOUNTAIN DARTER MOVEMENT STUDY Literature Review and Proposed Methodology PREPARED FOR: HCP SCIENCE COMMITTEE PREPARED BY: BIO-WEST PROJECT TEAM - February 18, 2014 1 BIO-WEST ATTACHMENT 5 FEBRUARY 19, 2014 Fountain Darter – Movement Study INTRODUCTION Every summer when ambient temperatures rise, the Upper Spring Run of the Comal River experiences an excessive green algae bloom. Although this condition occurs every summer, it clearly is exasperated during lower than average flow conditions. The scenario goes like this: Summer arrives; discharge declines; water temperatures increase; sunlight is at a maximum; and green algae explodes. When it does, it blankets all aquatic vegetation within the reach. The first aquatic vegetation that is shaded and physically killed off by the algae is the resident bryophytes. Rooted macrophytes are considerably more tolerant and seem to persist for longer durations. When aquatic vegetations dies, fewer darters are typically collected in the Upper Spring Run sample reach. The question is two-fold: At what point in time is aquatic vegetation rendered unsuitable habitat and darters seek other habitat types?; and, How far will fountain darters move to find usable habitat? Benefits to HCP Ecological Model In all fountain darter population modeling conducted for the HCP to develop the flow management objectives and associated “take” quantities, an embedded assumption was if aquatic vegetation died or was removed, all darters likewise died. This is obviously not reality but sufficient data is not available to describe the movement mechanism of fountain darters. Available literature describes small body fish movement (including the fountain darter) as “relatively sedentary, moving <50 m under normal hydrological conditions” or “appear highly sedentary……under a stable hydrograph”. Relative to the fountain darter, we know this is true for normal conditions and stable hydrographs but the real data gap is what happens at the extremes, which relates to both high (floods) and low (droughts) flow conditions. Although the focus of Phase II decisions lies heavily on low-flow conditions, floods or other disturbances (e.g. recreation) that remove aquatic vegetation from the system also can significantly affect fountain darter populations should darter movement in fact be limited. Should the fountain darter continue to be a sentinel species, movement under stressed conditions is perhaps the most pressing data gap needed as input to the HCP Ecological Model to ultimately inform Phase II decisions relative to long-term biological goals and flow management objectives. LITERATURE REVIEW Movement of freshwater stream fish depends on an array of physical and environmental factors (Jackson et. al. 2001). The restricted-movement paradigm predicts that small body, resident fishes are relatively sedentary, moving <50 m under normal hydrological conditions (Gerking 1959; Gowan et al. 1994). Etheostoma, a very speciose genus composed of the smallest species of darters, conform to the predictions of the restricted-movement paradigm, being highly sedentary with 80 to 97% of individuals remaining within habitat patch of initial observation (Boschung and Nieland 1986; Labbe and Fausch 2000; Mundahl and Ingersoll 1983; Roberts and Angermeier 2007b). Among a few mobile individuals, mean distance moved is <200 m (Mundahl and Ingersoll 1983; Roberts and Angermeier 2007a). Movement among highly sedentary darters coincides with non-reproductive seasons (Mundahl and Ingersoll 1983; Scalet 1973), shifting habitat preferences as the darters grow (Labbe and Fausch 2000), and declining habitat quality (Mundahl and Ingersoll 1983; Roberts and Angermeier 2007b). Among swift water darters, a 5% area loss of riffle habitats (i.e., shallow water habitats) because of summer- time dewatering prompted Fantail Darters (E. flabellare) to move away from riffles (Roberts and Angermeier 2007b). Movement is also associated with density dependent mechanisms. Darter movement from patches has been shown to increase as resources became limited (Mundahl and Ingersoll 1983). 2 BIO-WEST ATTACHMENT 5 FEBRUARY 19, 2014 Fountain Darter – Movement Study Fountain darters, like other darters, appear highly sedentary, moving on average 10 m within a year and up to 95 m within 26 days under a stable hydrograph (Dammeyer et al. 2013). When movement occurs, fountain darters move among habitats more frequently (51%) than other darters (3 to 20%; Mundahl and Ingersoll 1983; Labbe and Fausch 2000), most often towards low growing vegetation, upstream, and during the winter and spring-summer seasons. Determining how and why fountain darters disperse throughout the Comal River system could be vital to the conservation of this species. Dammeyer et al. (2013) have offered insight into this fundamental question under a stable hydrograph, however, this study intends to further investigate movement relative to changes in habitat and temperature caused by low-flow regimes. A wealth of information on aquatic vegetation preference by the fountain darter is available through long-term biological monitoring on both the Comal and San Marcos systems. Additional, 2013 applied research efforts (BIO-WEST 2013) focused on aquatic vegetation tolerance conducted both in the laboratory and ponds at the USFWS San Marcos Aquatic Resources Center (ARC) will provide the foundation for the manipulative pond studies proposed below. A mark and recapture study is also proposed to determine how movement of fountain darters is affected by habitat and temperature changes under low flow conditions. Fountain darter mark and recapture techniques will utilize methods previously developed for darters and other small-bodied fishes, with visual implant elastomer (VIE) as the marking material. Although recapture success rate varies among movement studies (9 to 37% Belica and Rahel 2008, Dammeyer et al. 2013, Labbe and Fausch 2000, Roberts and Angermeier 2007b, Schaefer et. al. 2003, Skyfield and Grossman 2008), VIE marking has been thoroughly tested (Belica and Rahel 2008, Holt et. al. 2013, Labbe and Fausch 2000, Phillips and Fries 2009, Roberts and Angermeier 2004, Weston and Johnson 2008) and shows a high rate of retention (79 – 100%) accompanied with high survivorship (85 – 100%). Additionally, laboratory studies using darters (Phillips and Fries 2009, Roberts and Angermeier 2004) found VIE advantageous compared with other marking mediums, such as acrylic paint or photonic dye. We propose using both visual (re-sight) and physical (dipnet, recapture) methods for relocating fountain darters due to their habitat affinity (i.e. benthic fish occupying areas of dense vegetation) (Alexander and Phillips 2012, Linam et. al. 1993), characteristics of the study reach, and successes/suggestions of previous studies (Belica and Rahel 2008, Dammeyer et al. 2013, Holt et. al. 2013, Jordan et al 2008, Labbe and Fausch 2000, Skyfield and Grossman 2008). The proposed field mark recapture study will be augmented by manipulative trials in an experimental pond to address the effects of specific factors on fountain darter movement. PROPOSED METHODS Fountain Darter Movement Manipulative Pond Studies An experimental pond at the ARC will be used as a study area for a series of experiments investigating the movement of fountain darters. Initial small scale trials will be used to refine experimental design and methods prior to commencement of the formal experiments. The initial experiments will investigate the use of vegetated vs. non-vegetated habitat patches by fountain darters. Vegetated patches will consist of specially designed Mobile Underwater Plant Propagation Trays (MUPPTS) planted with Ludwigia repens. The vegetation will be established in the pond prior to the beginning of experiments to allow for colonization of the vegetated patches by invertebrates to provide a food source representative of a natural system. Prior to initiation of experimental trials, all vegetation patches will be cropped to the same height to ensure homogeneity among patches. Vegetated patches will be arranged interspersed with equally-sized non-vegetated patches. Approximately one hundred fifty experimental darters will be housed in a holding tank at the ARC for use in these experiments. Darters will be allowed to “rest” in the holding tank between experimental trials such that the same individuals 3 BIO-WEST ATTACHMENT 5 FEBRUARY 19, 2014 Fountain Darter – Movement Study are not used in successive trials, but are rotated through experiments. All darters will be marked with visible implant elastomer (VIE, Northwest Marine Technology, Shaw Island, WA) using colors that fluoresce in a specially developed light designed by the manufacturer. It is anticipated that this will allow visual census of darters during the experiment. Fifty darters will be used for each two-week trial, with two trials per experiment. Darters will be introduced into the central vegetated patch, and all patches will be observed for darters twice weekly via snorkeling. Successive experiments are contingent upon the outcome of the first. Assuming that darters distribute themselves predominantly among vegetated patches only, the next experiment will focus on the relationship between inter-patch distances and darter movement. An array of vegetated patches will be placed such that all patches are different distances from a central patch in which
Recommended publications
  • Melanoides Tuberculata), Species Habitat Associations and Life History Investigations in the San Solomon Spring Complex, Texas
    FINAL REPORT As Required by THE ENDANGERED SPECIES PROGRAM TEXAS Grant No. TX E-121-R Endangered and Threatened Species Conservation Native springsnails and the invasive red-rim melania snail (Melanoides tuberculata), species habitat associations and life history investigations in the San Solomon Spring complex, Texas Prepared by: David Rogowski Carter Smith Executive Director Clayton Wolf Director, Wildlife 3 October 2012 FINAL REPORT STATE: ____Texas_______________ GRANT NUMBER: ___ TX E-121-R___ GRANT TITLE: Native springsnails and the invasive red-rim melania snail (Melanoides tuberculata), species habitat associations and life history investigations in the San Solomon Spring complex, Texas. REPORTING PERIOD: ____17 Sep 09 to 31 May 12_ OBJECTIVE(S): To determine patterns of abundance, distribution, and habitat use of the Phantom Cave snail (Cochliopa texana), Phantom Spring tryonia (Tryonia cheatumi), and the invasive red-rim melania snail (Melanoides tuberculta) in San Solomon Springs, and potential interactions. Segment Objectives: Task 1. January - February 2010. A reconnaissance visit(s) will be made to the region to investigate the study area and work on specific sampling procedural methods. Visit with TPWD at the Balmorhea State Park, as well as meet The Nature Conservancy personnel at Diamond Y and Sandia springs complexes. Task 2. March 2010– August 2011. Begin sampling. Field sampling will be conducted every 6-8 weeks, over a period of a year and a half. Sampling methods are outlined below stated Tasks. Task 3. December 2010. Completion of first year of study. With four seasonal samples completed, preliminary data analysis and statistical modeling will begin. Preliminary results will be presented at the Texas Chapter of the American Fisheries Society meeting.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • ECOLOGY of NORTH AMERICAN FRESHWATER FISHES
    ECOLOGY of NORTH AMERICAN FRESHWATER FISHES Tables STEPHEN T. ROSS University of California Press Berkeley Los Angeles London © 2013 by The Regents of the University of California ISBN 978-0-520-24945-5 uucp-ross-book-color.indbcp-ross-book-color.indb 1 44/5/13/5/13 88:34:34 AAMM uucp-ross-book-color.indbcp-ross-book-color.indb 2 44/5/13/5/13 88:34:34 AAMM TABLE 1.1 Families Composing 95% of North American Freshwater Fish Species Ranked by the Number of Native Species Number Cumulative Family of species percent Cyprinidae 297 28 Percidae 186 45 Catostomidae 71 51 Poeciliidae 69 58 Ictaluridae 46 62 Goodeidae 45 66 Atherinopsidae 39 70 Salmonidae 38 74 Cyprinodontidae 35 77 Fundulidae 34 80 Centrarchidae 31 83 Cottidae 30 86 Petromyzontidae 21 88 Cichlidae 16 89 Clupeidae 10 90 Eleotridae 10 91 Acipenseridae 8 92 Osmeridae 6 92 Elassomatidae 6 93 Gobiidae 6 93 Amblyopsidae 6 94 Pimelodidae 6 94 Gasterosteidae 5 95 source: Compiled primarily from Mayden (1992), Nelson et al. (2004), and Miller and Norris (2005). uucp-ross-book-color.indbcp-ross-book-color.indb 3 44/5/13/5/13 88:34:34 AAMM TABLE 3.1 Biogeographic Relationships of Species from a Sample of Fishes from the Ouachita River, Arkansas, at the Confl uence with the Little Missouri River (Ross, pers. observ.) Origin/ Pre- Pleistocene Taxa distribution Source Highland Stoneroller, Campostoma spadiceum 2 Mayden 1987a; Blum et al. 2008; Cashner et al. 2010 Blacktail Shiner, Cyprinella venusta 3 Mayden 1987a Steelcolor Shiner, Cyprinella whipplei 1 Mayden 1987a Redfi n Shiner, Lythrurus umbratilis 4 Mayden 1987a Bigeye Shiner, Notropis boops 1 Wiley and Mayden 1985; Mayden 1987a Bullhead Minnow, Pimephales vigilax 4 Mayden 1987a Mountain Madtom, Noturus eleutherus 2a Mayden 1985, 1987a Creole Darter, Etheostoma collettei 2a Mayden 1985 Orangebelly Darter, Etheostoma radiosum 2a Page 1983; Mayden 1985, 1987a Speckled Darter, Etheostoma stigmaeum 3 Page 1983; Simon 1997 Redspot Darter, Etheostoma artesiae 3 Mayden 1985; Piller et al.
    [Show full text]
  • Aquatic Fish Report
    Aquatic Fish Report Acipenser fulvescens Lake St urgeon Class: Actinopterygii Order: Acipenseriformes Family: Acipenseridae Priority Score: 27 out of 100 Population Trend: Unknown Gobal Rank: G3G4 — Vulnerable (uncertain rank) State Rank: S2 — Imperiled in Arkansas Distribution Occurrence Records Ecoregions where the species occurs: Ozark Highlands Boston Mountains Ouachita Mountains Arkansas Valley South Central Plains Mississippi Alluvial Plain Mississippi Valley Loess Plains Acipenser fulvescens Lake Sturgeon 362 Aquatic Fish Report Ecobasins Mississippi River Alluvial Plain - Arkansas River Mississippi River Alluvial Plain - St. Francis River Mississippi River Alluvial Plain - White River Mississippi River Alluvial Plain (Lake Chicot) - Mississippi River Habitats Weight Natural Littoral: - Large Suitable Natural Pool: - Medium - Large Optimal Natural Shoal: - Medium - Large Obligate Problems Faced Threat: Biological alteration Source: Commercial harvest Threat: Biological alteration Source: Exotic species Threat: Biological alteration Source: Incidental take Threat: Habitat destruction Source: Channel alteration Threat: Hydrological alteration Source: Dam Data Gaps/Research Needs Continue to track incidental catches. Conservation Actions Importance Category Restore fish passage in dammed rivers. High Habitat Restoration/Improvement Restrict commercial harvest (Mississippi River High Population Management closed to harvest). Monitoring Strategies Monitor population distribution and abundance in large river faunal surveys in cooperation
    [Show full text]
  • Comal County Regional Habitat Conservation Plan Environmental Impact Statement
    Draft Comal County Regional Habitat Conservation Plan Environmental Impact Statement Prepared for: Comal County, Texas Comal County Commissioners Court Prepared by: SWCA Environmental Consultants Smith, Robertson, Elliott, Glen, Klein & Bell, L.L.P. Prime Strategies, Inc. Texas Perspectives, Inc. Capital Market Research, Inc. April 2010 SWCA Project Number 12659-139-AUS DRAFT COMAL COUNTY REGIONAL HABITAT CONSERVATION PLAN ENVIRONMENTAL IMPACT STATEMENT April 2010 Type of Action: Administrative Lead Agency: U.S. Department of the Interior Fish and Wildlife Service Responsible Official: Adam Zerrenner Field Supervisor U.S. Fish and Wildlife Service 10711 Burnet Road, Suite 200 Austin, Texas For Information: Bill Seawell Fish and Wildlife Biologist U.S. Fish and Wildlife Service 10711 Burnet Road, Suite 200 Austin, Texas Tele: 512-490-0057 Abstract: Comal County, Texas, is applying for an incidental take permit (Permit) under section 10(a)(1)(B) of the Endangered Species Act of 1973, as amended 16 U.S.C. § 1531, et seq. (ESA), to authorize the incidental take of two endangered species, the golden-cheeked warbler (Dendroica chrysoparia) and the black-capped vireo (Vireo atricapilla), referred to collectively as the “Covered Species.” In support of the Permit application, the County has prepared a regional habitat conservation plan (Proposed RHCP), covering a 30-year period from 2010 to 2040. The Permit Area for the Proposed RHCP and the area of potential effect for this Environmental Impact Statement (EIS) is Comal County in central Texas. The requested Permit would authorize the following incidental take and mitigation for the golden-cheeked warbler: Take: As conservation credits are created through habitat preservation, authorize up to 5,238 acres (2,120 hectares) of golden-cheeked warbler habitat to be impacted over the 30-year life of the Proposed RHCP.
    [Show full text]
  • Reproductive Ecology and Habitat Preference of the Leopard Darter, Percina Pantherina
    REPRODUCTIVE ECOLOGY AND HABITAT PREFERENCE OF THE LEOPARD DARTER, PERCINA PANTHERINA By PAUL WILLIAM /~AMES Bachelor of Science University of Kansas Lawrence, Kansas 1981 ·4::er of Science ...1.issouri State University 3pringfield, Missouri 1983 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the·Degree of DOCTOR OF PHILOSOPHY July, 1989 . - ~· ,• ) "' Oklahoma State Univ. Lihra1 REPRODUCTIVE ECOLOGY AND HABITAT PREFERENCE OF THE LEOPARD DARTER, PERCINA PANTHERINA Thesis Approved: ii ACKNOWLEDGMENTS I wish to thank my advisor, Dr. o. Eugene Maughan, for giving me the opportunity to work on this project and for his encouragement throughout my graduate program. I would also like to thank the members of my graduate committee, Dr. William A. Drew, Dr. Anthony A. Echelle, Dr. Rudolph J. Miller, and Dr. Alexander v. Zale, for their professional and personal advice throughout the course of the study. I wish to extend my sincere gratitude to the u. s. Fish and Wildlife Service, the Oklahoma Department of Wildlife Conservation, and the Oklahoma Cooperative Fish and Wildlife Research Unit for providing financial and technical support for the study. I am especially grateful to Mr. Frank James of the Oklahoma Department of Wildlife Conservation's McCurtain County Wilderness Area for his friendship and hospitality during extended field trips. A sincere thanks goes to Rick Horton, Steve O'Donnell, and Todd Phillips for their help in the field and laboratory. A special thanks goes to Stuart Leon for helping with the development of many of the field and data analysis techniques used in this study.
    [Show full text]
  • Fishtraits: a Database on Ecological and Life-History Traits of Freshwater
    FishTraits database Traits References Allen, D. M., W. S. Johnson, and V. Ogburn-Matthews. 1995. Trophic relationships and seasonal utilization of saltmarsh creeks by zooplanktivorous fishes. Environmental Biology of Fishes 42(1)37-50. [multiple species] Anderson, K. A., P. M. Rosenblum, and B. G. Whiteside. 1998. Controlled spawning of Longnose darters. The Progressive Fish-Culturist 60:137-145. [678] Barber, W. E., D. C. Williams, and W. L. Minckley. 1970. Biology of the Gila Spikedace, Meda fulgida, in Arizona. Copeia 1970(1):9-18. [485] Becker, G. C. 1983. Fishes of Wisconsin. University of Wisconsin Press, Madison, WI. Belk, M. C., J. B. Johnson, K. W. Wilson, M. E. Smith, and D. D. Houston. 2005. Variation in intrinsic individual growth rate among populations of leatherside chub (Snyderichthys copei Jordan & Gilbert): adaptation to temperature or length of growing season? Ecology of Freshwater Fish 14:177-184. [349] Bonner, T. H., J. M. Watson, and C. S. Williams. 2006. Threatened fishes of the world: Cyprinella proserpina Girard, 1857 (Cyprinidae). Environmental Biology of Fishes. In Press. [133] Bonnevier, K., K. Lindstrom, and C. St. Mary. 2003. Parental care and mate attraction in the Florida flagfish, Jordanella floridae. Behavorial Ecology and Sociobiology 53:358-363. [410] Bortone, S. A. 1989. Notropis melanostomus, a new speices of Cyprinid fish from the Blackwater-Yellow River drainage of northwest Florida. Copeia 1989(3):737-741. [575] Boschung, H.T., and R. L. Mayden. 2004. Fishes of Alabama. Smithsonian Books, Washington. [multiple species] 1 FishTraits database Breder, C. M., and D. E. Rosen. 1966. Modes of reproduction in fishes.
    [Show full text]
  • United States Department of the Interior
    United States Department of the Interior FISH AND WILDLIFE SERVICE 10711 Burnet Road, Suite 200 Austin, Texas 78758 512 490-0057 FAX 490-0974 In Reply Refer to: Consultation 02ETAU00-2016-F-0216 AUG 15 2016 Stephen Brooks Chief, Regulatory Branch U.S. Army Corps of Engineers P.O. Box 17300 Fort Worth, Texas 76102-0300 Dear Mr. Brooks: This transmits the U.S. Fish and Wildlife Service's (Service) biological opinion for the U.S. Army Corps of Engineers (USACE) proposed authorization under section 404 of the Clean Water Act (CWA)(33 U.S.C. 1251 – 1376) for activities that are part of the development of the New Braunfels Utilities (NBU) Comal Springs Conservation Center (CSCC) in New Braunfels, Comal County, Texas. The USACE is proposing authorization of partial removal of the concrete spring cap at the head of Comal Springs spring run 4 under a CWA Nationwide Permit. The spring cap modification is part of an 18-acre project to replace the NBU service yard with an educational facility focused on conservation. The NBU proposes to build the CSCC on its property near Landa Lake, Comal Springs spring run 4, and Blieders Creek. In accordance with section 7 of the Endangered Species Act of 1973, as amended (16 U.S.C. 1531 et seq.)(Act), the USACE has determined this project may affect four listed endangered species: Peck’s cave amphipod (Stygobromus comalensis), Comal Springs dryopid beetle (Stygoparnus comalensis), Comal Springs riffle beetle (Heterelmis comalensis), and fountain darter (Etheostoma fonticola). In addition, the USACE has determined the project may affect federally designated critical habitat of Peck’s cave amphipod, Comal Springs dryopid beetle, and Comal Springs riffle beetle.
    [Show full text]
  • Environmental Assessment
    Job Number 012318 Tier 3 Categorical Exclusion Page 1 of 3 The Environmental Division reviewed the referenced project and has determined it falls within the definition of the Tier 3 Categorical Exclusion as defined by the ARDOT/FHWA Memorandum of Agreement on the processing of Categorical Exclusions. The following information is included for your review and, if acceptable, approval as the environmental documentation for this project. The proposed project would replace two bridges on Highway 7 over the Middle Fork of the Saline River in Garland County (Site 1) and Dry Run Creek in Perry County (Site 2), both within the boundary of the Ouachita National Forest. Total length of the project is approximately 0.5 mile. A project location map is enclosed. The existing roadway consists of two 11’ wide paved travel lanes with 2’ wide gravel shoulders at Site 1 and 2’ wide paved shoulders at Site 2. Existing right of way width averages 132’. Proposed improvements retain the two 11’ wide paved travel lanes, but increase the shoulder width to 6’ (2’ paved). The average proposed right of way width will be 187’ at Site 1 and 132’ at Site 2. Approximately 2.3 acres of additional permanent easement and 0.5 acre of temporary construction easement will be required for this project. To maintain traffic during construction, the Middle Fork Saline River bridge (Site 1) will be replaced using a temporary detour located 60’ east (downstream) of the existing bridge while the new bridge is constructed on the existing alignment. The Dry Run Creek bridge (Site 2) will be replaced approximately 80’ east (upstream) of the existing bridge.
    [Show full text]
  • United States Department of the Interior FISH and WILDLIFE SERVICE 10711 Burnet Road, Suite 200 Austin, Texas 78758 512490-0057 FAX 490-0974
    United States Department of the Interior FISH AND WILDLIFE SERVICE 10711 Burnet Road, Suite 200 Austin, Texas 78758 512490-0057 FAX 490-0974 Memorandum To: Regional Director, Region 2, Albuquerque, New Mexico ThrOUgh:/~sistant Regional Director, Ecological Services, Region 2, Albuquerque, New Mexico From: Field Supervisor, Austin Ecological Services Field Office, Austin, Te as Subject: Biological and Conference Opinions for the Edwards Aquifer Recovery Implementation Program Habitat Conservation Plan - Permit TE-63663A-0 (Consultation No. 214S0-201O-F-OllO) Enclosed are the biological and conference opinions for the final Edwards Aquifer Recovery Implementation Program (EARlP) Habitat Conservation Plan (HCP) that describes actions the Applicants have proposed to avoid, minimize, and mitigate adverse effects to the endangered Texas wild-rice (Zizania texana), Comal Springs dryopid beetle (Stygoparnus comalensis), Comal Springs riffle beetle (Heterelmis comalensis), Peck's Cave amphipod (Stygobromus pecki), fountain darter (Etheostomafonticola), San Marcos gambusia (Gambusia georgei), Texas blind salamander (Typhlomolge [=EwyceaJ rathbuni), the threatened San Marcos salamander (Eurycea nana), and the non-listed Texas cave diving beetle (Haideoporus texanus, also referred to as the Edwards Aquifer diving beetle), Texas troglobitic water slater (Lirceolus smithii), and Comal Springs salamander (Eurycea sp.) over a period of IS-years. We appreciate your staffs assistance throughout this consultation. If you have any questions regarding this biological opinion, please contact Tanya Sommer at SI2-490-00S7, extension 222. The biological opinion is based on the EARIP HCP dated December 2011 and the associated Enviromnental Impact Statement dated June 2012 pursuant to the National Enviromnental Policy Act of 1969; U.S. Fish and Wildlife Service (Service) files; discussions with species experts; published and un-published literature on the species of concern and related impacts; and other sources of information available to the Service.
    [Show full text]
  • Life History Aspects of a Relict Ironcolor Shiner Notropis Chalybaeus Population in a Novel Spring Environment Author(S) :Joshuah S
    Life History Aspects of a Relict Ironcolor Shiner Notropis chalybaeus Population in a Novel Spring Environment Author(s) :Joshuah S. Perkin, Zachary R. Shattuck, and Timothy H. Bonner Source: The American Midland Naturalist, 167(1):111-126. 2012. Published By: University of Notre Dame DOI: URL: http://www.bioone.org/doi/full/10.1674/0003-0031-167.1.111 BioOne (www.bioone.org) is a a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Am. Midl. Nat. (2012) 167:111–126 Life History Aspects of a Relict Ironcolor Shiner Notropis chalybaeus Population in a Novel Spring Environment 1 2 JOSHUAH S. PERKIN, ZACHARY R. SHATTUCK AND TIMOTHY H. BONNER Department of Biology/Aquatic Station, Texas State University, 601 University Drive, San Marcos 78666 ABSTRACT.—Ironcolor shiner Notropis chalybaeus is generally absent from groundwater- dominated systems throughout its range; however, a relict disjunct population occurs within the spring-fed upper reaches of the San Marcos River in central Texas.
    [Show full text]
  • APPENDIX 3: DELETION TABLES 3.1 Aluminum
    APPENDIX 3: DELETION TABLES APPENDIX 3: DELETION TABLES 3.1 Aluminum TABLE 3.1.1: Deletion process for the Santa Ana River aluminum site-specific database. Phylum Class Order Family Genus/Species Common Name Code Platyhelminthes Turbellaria Tricladida Planarlidae Girardiaia tigrina Flatworm G Annelida Oligochaeta Haplotaxida Tubificidae Tubifex tubifex Worm F Mollusca Gastropoda Limnophila Physidae Physa sp. Snail G Arthropoda Branchiopoda Diplostraca Daphnidae Ceriodaphnia dubia Cladoceran O* Arthropoda Branchiopoda Diplostraca Daphnidae Daphnia magna Cladoceran O* Arthropoda Malacostraca Isopoda Asellidae Caecidotea aquaticus Isopod F Arthropoda Malacostraca Amphipoda Gammaridae Crangonyx pseudogracilis Amphipod F Arthropoda Malacostraca Amphipoda Gammaridae Gammarus pseudolimnaeus Amphipod G Arthropoda Insecta Plecoptera Perlidae Acroneuria sp. Stonefly O Arthropoda Insecta Diptera Chironomidae Tanytarsus dissimilis Midge G Chordata Actinopterygii Salmoniformes Salmonidae Oncorhynchus mykiss Rainbow trout D Chordata Actinopterygii Salmoniformes Salmonidae Oncorhynchus tschawytscha Chinook Salmon D Chordata Actinopterygii Salmoniformes Salmonidae Salmo salar Atlantic salmon D Chordata Actinopterygii Cypriniformes Cyprinidae Hybognathus amarus Rio Grande silvery minnow F Chordata Actinopterygii Cypriniformes Cyprinidae Pimephales promelas Fathead minnow S Chordata Actinopterygii Perifomes Centrarchidae Lepomis cyanellus Green sunfish S Chordata Actinopterygii Perifomes Centrarchidae Micropterus dolomieui Smallmouth bass G Chordata Actinopterygii
    [Show full text]