The Ocean: a Carbon Pump

Total Page:16

File Type:pdf, Size:1020Kb

The Ocean: a Carbon Pump www.ocean-climate.org Laurent Bopp*, The Ocean: (LSCE, Gif-sur-Yvette) Chris Bowler*, (ENS, Paris) a Carbon Lionel Guidi, (CNRS UPMC, Villefranche-sur-Mer) Pump Éric Karsenti, (EMBL) Colomban de Vargas (CNRS UPMC, Roscoff) *lead authors The ocean contains 50 times more carbon than the atmosphere and is exchanging large amounts of CO2 with the atmosphere every year. In the past decades, the ocean has slowed down the rate of climate change by absorbing about 30% of human emissions. Whereas this absorption of anthropogenic CO2 is today the result of physical-chemical processes, ma- rine biology is playing an important role in the ocean carbon cycle by sequestering carbon in the deep ocean. Changes in any of these physical, chemical and biological processes may result in climate feedbacks that either increase or decrease the rate of climate change, although knowledge of such interconnections is today still limited. The feedbacks between climate, the ocean, and its ecosystems need to be better understood in order to predict the co-evolution of atmospheric CO2 and climate change more reliably and also to understand the characteristics of a future ocean. A MAJOR ROLE FOR THE OCEAN IN than any other that has happened during the THE EVOLUTION OF ATMOSPHERIC past 65 million years (Portner et al., 2014; Rhein et al., 2014). CO2 Since the beginning of the industrial era, the ocean The cycling of carbon involves a wide range of has played a key role in the evolution of atmos- physico-chemical and biological processes contri- pheric CO2 by absorbing a significant fraction buting to a series of interconnected carbon re- of CO2 emitted into the atmosphere by human servoirs in the Earth System. A schematic diagram activities, deforestation and burning of fossil fuels. of the global carbon cycle showing the relative During the past decade (2004-2013), the global importance of each of these processes is shown in ocean has absorbed 2.6 billion tonnes of carbon Figure 1. The global cycle was roughly balanced per year, representing nearly 30% of anthropogenic before the industrial era. During the past 200 years, emissions over this period. Since 1870, the amount atmospheric CO2 has increased from less than of carbon absorbed by the ocean has reached 0.03% to more than 0.04%, as a result of fossil fuel 150 billion tonnes – also representing 30% of anthro- burning, cement production, deforestation and pogenic emissions over this period. By absorbing other changes in land use. It is considered that this greenhouse gas, the ocean thus contributes such a rapid change is at least ten times faster to slow down human-induced climate change. 12 www.ocean-climate.org A NATURAL OCEAN CARBON organic carbon pool (~3PgC), but they are ca- CYCLE INVOLVING PHYSICO- pable of generating large amounts of dissolved organic carbon (DOC: ~700PgC) to sustain the CHEMICAL AND BIOLOGICAL food chains because their turnover is very rapid, PROCESSES from a few days to several weeks. A fraction of produced organic material exits the surface layer as sinking particles, thus trans- Anthropogenic carbon absorbed by the ocean ferring the surface carbon towards the deep feeds a considerable natural carbon reservoir. layers of the ocean (Figure). Before being se- The ocean contains about 40,000 billion tonnes questered to the deep the atmospheric carbon of carbon (40,000PgC), mainly in the form of fixed by photosynthetic organisms undergoes a inorganic carbon dissolved in seawater. This series of transformations: phytoplankton can be amount represents 50 times the size of the at- directly consumed by zooplankton, or indirectly mospheric reservoir. Each year, the ocean natu- by heterotrophic bacteria, which will in turn be rally exchanges with the atmosphere almost a eaten by larger organisms. During this process, hundred billion tonnes of carbon as CO2. a fraction of the total carbon biomass (average value of 10%) ends up as detrital matter, fecal In the ocean, this carbon, which prevails essen- pellets or dead cells which compose the stock of - tially in the form of bicarbonate ions (HCO3 ), marine particles. In turn, a fraction of these par- is not evenly distributed, as dissolved carbon ticles (in suspension or sinking) also undergoes concentrations are higher at depth than at the a series of transformations before reaching the surface. The spatial distribution of carbon with base of the mesopelagic layer (typically 1000m depth controls atmospheric CO2 levels, as only depth), thus sequestering atmospheric CO2 for the inorganic carbon from the sea surface is in thousands of years.2 It is generally believed that contact with the atmosphere and contributes 0.1 to 1% of the carbon-containing material at to the exchange of CO2 between the atmos- the surface finally reaches the base of the me- phere and the ocean. This vertical gradient of sopelagic zone, then the sediment where it can carbon can be explained by both physico-che- turn into fossil fuel deposits. The remaining orga- mical and biological processes. nic matter is remineralized through respiration, and CO2 returns to the atmosphere. Each year, • Biological Processes nearly 10 billion tonnes of carbon are exported Phytoplankton living in the sunlit layer of the from the surface layer and are responsible for ocean use light energy to perform photosyn- most of the carbon vertical gradient. All of these thesis. They take up nutrients as well as dissolved inorganic car- atmospheric CO bon to produce organic matter. atmospheric 2 CO CO The production of these car- 2 2 carbon dissolved bon-based materials supported at the surface by solar energy is called primary deep convection production. It represents the base euphotic zone phytoplankton upwelling carbon of the trophic chains from which zooplankton upwelling 100m dissolved in deep waters other non- photosynthetic or- sinking organic ganisms can feed on. Photosyn- detritus thetic activity is therefore an ef- ficient mechanism for extracting 400m remineralisation dissolved carbon of organic detritus CO2 from the atmosphere and transferring the carbon into living organisms. Surprisingly, the orga- nisms that contribute to primary Natural carbon cycle and representation of biological and physical production represent only a small pumps (Bopp et al. 2002). 13 www.ocean-climate.org processes that contribute to the governing role from further contact with the atmosphere. This of marine biology on the carbon cycle in the process that contributes to the vertical gradient ocean are part of the so called biological car- of ocean carbon is known as the physical pump bon pump (Figure). or solubility pump (Figure). Although only a small fraction (~ 0.2PgCyr-1) of Despite the fact that biological processes are the carbon exported by biological processes responsible for the majority of the vertical gra- from the surface reaches the sea floor, the fact dient of natural carbon in the ocean, the phy- that it can be stored in sediments for millennia sico-chemical processes can nevertheless ex- and longer (Denman et al., 2007; Ciais and al., plain the anthropogenic carbon sink observed 2014) means that this biological pump is the today. Indeed, excess CO2 in the atmosphere most important biological mechanism in the will lead to a net carbon flux to the ocean due Earth System allowing CO2 to be removed from to the disproportion induced between atmos- the carbon cycle for very long periods of time. pheric and oceanic CO2 concentrations. Sub- sequently, once the anthropogenic CO2 enters Over geological time-scales, the biological car- surface waters, it is transported by ocean cur- bon pump has formed oil deposits that today rents and progressively mixed with the sub-sur- fuel our economy. In addition, biochemical se- face waters. dimentary rocks such as limestone are derived principally from calcifying corals, molluscs, and IS THE OCEANIC CARBON SINK foraminifera, while the considerable reserves of deep sea methane hydrates (or clathrates) are GOING TO SATURATE? similarly the result of hundreds of millions of years of activity of methanogenic microbial consortia. To date, and since the beginning of the indus- Considering that, each day, large amounts of trial era, the ocean has continuously absorbed CO2 that have been trapped for millions of years a relatively constant part of the amount of CO2 are discharged into the atmosphere (the order emitted by human activities. However, many of magnitude is now probably about a million studies based on theoretical considerations, in years of trapped carbon burned by humankind situ observations, controlled laboratory expe- each year), it is easier to understand the rapi- riments, or supported by models, suggest that dity at which present climate change is taking several processes may lessen or slow-down this place. Consequently, there is a dramatic diffe- natural carbon sink. rence between the rate of CO2 sequestration by photosynthesis and rate of CO2 discharge into The first series of processes is related to the che- the atmosphere. The anthropogenic emissions mistry of carbonates (exchanges between CO2, 3- 2- will therefore need to be redistributed by the HCO and CO3 ) and can eventually lead to a global carbon cycle until a new steady state is saturation of the oceanic carbon sink. Indeed, reached. the dissolution of anthropogenic carbon dioxide decreases the ocean carbonate ion content and therefore the buffer effect of the ocean, • Physico-Chemical Processes which in turn increases the proportion of CO2 in A second series of processes, comprising phy- comparison to the other forms of dissolved inor- sico-chemical activities, also contributes to the ganic carbon species and thus may reduce the increasing carbon distribution with depth. The efficiency of the natural carbon sink. This phe- cooling of surface waters at high latitudes fa- nomenon occurs in parallel with the process of vours their ability to dissolve atmospheric CO2 ocean acidification, and could potentially have (mainly by increasing the solubility of the gas) serious impacts on life in the ocean.
Recommended publications
  • CO2-Fixing One-Carbon Metabolism in a Cellulose-Degrading Bacterium
    CO2-fixing one-carbon metabolism in a cellulose- degrading bacterium Clostridium thermocellum Wei Xionga, Paul P. Linb, Lauren Magnussona, Lisa Warnerc, James C. Liaob,d, Pin-Ching Manessa,1, and Katherine J. Choua,1 aBiosciences Center, National Renewable Energy Laboratory, Golden, CO 80401; bDepartment of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095; cNational Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401; and dAcademia Sinica, Taipei City, Taiwan 115 Edited by Lonnie O. Ingram, University of Florida, Gainesville, FL, and approved September 23, 2016 (received for review April 6, 2016) Clostridium thermocellum can ferment cellulosic biomass to for- proposed pathway involving CO2 utilization in C. thermocellum is mate and other end products, including CO2. This organism lacks the malate shunt and its variant pathway (7, 14), in which CO2 is formate dehydrogenase (Fdh), which catalyzes the reduction of first incorporated by phosphoenolpyruvate carboxykinase (PEPCK) 13 CO2 to formate. However, feeding the bacterium C-bicarbonate to form oxaloacetate and then is released either by malic enzyme or and cellobiose followed by NMR analysis showed the production via oxaloacetate decarboxylase complex, yielding pyruvate. How- of 13C-formate in C. thermocellum culture, indicating the presence ever, other pathways capable of carbon fixation may also exist but of an uncharacterized pathway capable of converting CO2 to for- remain uncharacterized. mate. Combining genomic and experimental data, we demon- In recent years, isotopic tracer experiments followed by mass strated that the conversion of CO2 to formate serves as a CO2 spectrometry (MS) (15, 16) or NMR measurements (17) have entry point into the reductive one-carbon (C1) metabolism, and emerged as powerful tools for metabolic analysis.
    [Show full text]
  • Phytoplankton As Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate
    sustainability Review Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate Samarpita Basu * ID and Katherine R. M. Mackey Earth System Science, University of California Irvine, Irvine, CA 92697, USA; [email protected] * Correspondence: [email protected] Received: 7 January 2018; Accepted: 12 March 2018; Published: 19 March 2018 Abstract: The world’s oceans are a major sink for atmospheric carbon dioxide (CO2). The biological carbon pump plays a vital role in the net transfer of CO2 from the atmosphere to the oceans and then to the sediments, subsequently maintaining atmospheric CO2 at significantly lower levels than would be the case if it did not exist. The efficiency of the biological pump is a function of phytoplankton physiology and community structure, which are in turn governed by the physical and chemical conditions of the ocean. However, only a few studies have focused on the importance of phytoplankton community structure to the biological pump. Because global change is expected to influence carbon and nutrient availability, temperature and light (via stratification), an improved understanding of how phytoplankton community size structure will respond in the future is required to gain insight into the biological pump and the ability of the ocean to act as a long-term sink for atmospheric CO2. This review article aims to explore the potential impacts of predicted changes in global temperature and the carbonate system on phytoplankton cell size, species and elemental composition, so as to shed light on the ability of the biological pump to sequester carbon in the future ocean.
    [Show full text]
  • B.-Gioli -Co2-Fluxes-In-Florance.Pdf
    Environmental Pollution 164 (2012) 125e131 Contents lists available at SciVerse ScienceDirect Environmental Pollution journal homepage: www.elsevier.com/locate/envpol Methane and carbon dioxide fluxes and source partitioning in urban areas: The case study of Florence, Italy B. Gioli a,*, P. Toscano a, E. Lugato a, A. Matese a, F. Miglietta a,b, A. Zaldei a, F.P. Vaccari a a Institute of Biometeorology (IBIMET e CNR), Via G.Caproni 8, 50145 Firenze, Italy b FoxLab, Edmund Mach Foundation, Via E. Mach 1, San Michele all’Adige, Trento, Italy article info abstract Article history: Long-term fluxes of CO2, and combined short-term fluxes of CH4 and CO2 were measured with the eddy Received 15 September 2011 covariance technique in the city centre of Florence. CO2 long-term weekly fluxes exhibit a high Received in revised form seasonality, ranging from 39 to 172% of the mean annual value in summer and winter respectively, while 12 January 2012 CH fluxes are relevant and don’t exhibit temporal variability. Contribution of road traffic and domestic Accepted 14 January 2012 4 heating has been estimated through multi-regression models combined with inventorial traffic and CH4 consumption data, revealing that heating accounts for more than 80% of observed CO2 fluxes. Those two Keywords: components are instead responsible for only 14% of observed CH4 fluxes, while the major residual part is Eddy covariance fl Methane fluxes likely dominated by gas network leakages. CH4 uxes expressed as CO2 equivalent represent about 8% of Gas network leakages CO2 emissions, ranging from 16% in summer to 4% in winter, and cannot therefore be neglected when assessing greenhouse impact of cities.
    [Show full text]
  • Uts Marine Biology Fact Sheet
    UTS MARINE BIOLOGY FACT SHEET Topic: Phytoplankton and Cloud Formation 1.The CLAW Hypothesis Background: In 1987 four people (Charlson, Lovelock, Andrea, & Warren) introduced a theory that a natural gas called Dimethylsulfide (DMS), produced by microscopic plants in the ocean (phytoplankton), was a major contributor to the formation of clouds in the atmosphere. This theory was named the CLAW Hypothesis (from the first letter of each of their surnames). Fast facts: . Phytoplankton produce DMSP (dimethylsulphoniopropionate), an organic sulphur compound, which is converted to DMS in the ocean. The majority of this DMS is consumed by bacteria but around 10% escapes into the atmosphere. When DMS is released into the air, a chemical reaction takes place (called an oxidation reaction) and sulphate aerosols are formed – a gas which acts as cloud condensation nuclei (CCN). This means it combines with water droplets in the atmosphere to form clouds. As a result, more clouds increase the reflectivity of the sun’s rays (earth albedo) which decreases the amount of light reaching the earth’s surface, and contributes to cooling the overall climate. A decrease in light causes a decrease in phytoplankton productivity of DMS. (Phytoplankton are primary producers which rely on light to function). This sequence of events is called a Negative Feedback Loop, because phytoplankton increase DMS production but DMS forms clouds which lowers the amount of light reaching the earth, resulting in less phytoplankton and less DMS. DMS emissions are a key step in the global sulphur cycle, which circulates sulphur throughout the earth, oceans, and atmosphere. It is an essential component in the growth of all living things.
    [Show full text]
  • Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics
    CHAPTER SEVEN Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics Frans J. JorissenÃ, Christophe Fontanier and Ellen Thomas Contents 1. Introduction 263 1.1. General introduction 263 1.2. Historical overview of the use of benthic foraminiferal assemblages 266 1.3. Recent advances in benthic foraminiferal ecology 267 2. Benthic Foraminiferal Proxies: A State of the Art 271 2.1. Overview of proxy methods based on benthic foraminiferal assemblage data 271 2.2. Proxies of bottom water oxygenation 273 2.3. Paleoproductivity proxies 285 2.4. The water mass concept 301 2.5. Benthic foraminiferal faunas as indicators of current velocity 304 3. Conclusions 306 Acknowledgements 308 4. Appendix 1 308 References 313 1. Introduction 1.1. General Introduction The most popular proxies based on microfossil assemblage data produce a quanti- tative estimate of a physico-chemical target parameter, usually by applying a transfer function, calibrated on the basis of a large dataset of recent or core-top samples. Examples are planktonic foraminiferal estimates of sea surface temperature (Imbrie & Kipp, 1971) and reconstructions of sea ice coverage based on radiolarian (Lozano & Hays, 1976) or diatom assemblages (Crosta, Pichon, & Burckle, 1998). These à Corresponding author. Developments in Marine Geology, Volume 1 r 2007 Elsevier B.V. ISSN 1572-5480, DOI 10.1016/S1572-5480(07)01012-3 All rights reserved. 263 264 Frans J. Jorissen et al. methods are easy to use, apply empirical relationships that do not require a precise knowledge of the ecology of the organisms, and produce quantitative estimates that can be directly applied to reconstruct paleo-environments, and to test and tune global climate models.
    [Show full text]
  • Soares, R. Et Al
    Original Article DOI: 10.7860/JCDR/2017/23594.9758 Assessment of Enamel Remineralisation After Treatment with Four Different Dentistry Section Remineralising Agents: A Scanning Electron Microscopy (SEM) Study RENITA SOARES1, IDA DE NORONHA DE ATAIDE2, MARINA FERNANDES3, RAJAN LAMBOR4 ABSTRACT these groups were remineralised using the four remineralising Introduction: Decades of research has helped to increase our agents. The treated groups were subjected to pH cycling over a knowledge of dental caries and reduce its prevalence. However, period of 30 days. This was followed by assessment of surface according to World Oral Health report, dental caries still remains microhardness and SEM for qualitative evaluation of surface a major dental disease. Fluoride therapy has been utilised in changes. The results were analysed by One-Way Analysis Of a big way to halt caries progression, but has been met with Variance (ANOVA). Multiple comparisons between groups were limitations. This has paved the way for the development of performed by paired t-test and post-hoc Tukey test. newer preventive agents that can function as an adjunct to Results: The results of the study revealed that remineralisation of fluoride or independent of it. enamel was the highest in samples of Group E (Self assembling Aim: The purpose of the present study was to evaluate the ability peptide P11-4) followed by Group B (CPP-ACPF), Group C (BAG) of Casein Phosphopeptide-Amorphous Calcium Phosphate and Group D (fluoride enhanced HA gel). There was a significant Fluoride (CPP ACPF), Bioactive Glass (BAG), fluoride enhanced difference (p<0.05) in the remineralising ability between the self assembling peptide P -4 group and BAG and fluoride Hydroxyapatite (HA) gel and self-assembling peptide P11-4 to 11 remineralise artificial carious lesions in enamel in vitro using enhanced HA gel group.
    [Show full text]
  • M1 Project: Climate - Biosphere Interactions Using ODE Models
    M1 Project: Climate - Biosphere interactions using ODE models Jan Rombouts Erasmus Mundus Master in Complex Systems Science Ecole´ Polytechnique, Paris Supervisors: Michael Ghil, Regis Ferri`ere Ecole´ Normal Sup´erieure,Paris June 30, 2014 Abstract There are many examples of the complex interactions of climate and vegetation through various feedback mechanisms. Climatic models have begun to take into ac- count vegetation as an important player in the evolution of the climate. Climate models range from complicated, large scale GCMs to simple conceptual models. It is this last type of modeling that I looked at in my project. Conceptual models usually use differential equations and techniques from dynamical systems theory to investi- gate basic mechanisms in the climate system. They have in particular been applied to investigate glacial-interglacial cycles. These models have not often included vege- tation as one of their variables, and this is what I've looked at in the project. First I investigate a simple, two equation model, and show that even in such a simple model, interesting oscillatory behaviour can be observed. Then I go on to study models with three equations, based on an existing model for temperature and ice sheet evolution. I extend this model in two ways: by adding a vegetation variable, and by adding a carbon dioxide variable. Again, oscillations are observed, but the existence depends on parameters that are linked to the vegetation. Finally I put it all together in a model with four equations. These models show that vegetation is an important factor, and can account for some specific features of glacial-interglacial cycles.
    [Show full text]
  • Biomineralization and Global Biogeochemical Cycles Philippe Van Cappellen Faculty of Geosciences, Utrecht University P.O
    1122 Biomineralization and Global Biogeochemical Cycles Philippe Van Cappellen Faculty of Geosciences, Utrecht University P.O. Box 80021 3508 TA Utrecht, The Netherlands INTRODUCTION Biological activity is a dominant force shaping the chemical structure and evolution of the earth surface environment. The presence of an oxygenated atmosphere- hydrosphere surrounding an otherwise highly reducing solid earth is the most striking consequence of the rise of life on earth. Biological evolution and the functioning of ecosystems, in turn, are to a large degree conditioned by geophysical and geological processes. Understanding the interactions between organisms and their abiotic environment, and the resulting coupled evolution of the biosphere and geosphere is a central theme of research in biogeology. Biogeochemists contribute to this understanding by studying the transformations and transport of chemical substrates and products of biological activity in the environment. Biogeochemical cycles provide a general framework in which geochemists organize their knowledge and interpret their data. The cycle of a given element or substance maps out the rates of transformation in, and transport fluxes between, adjoining environmental reservoirs. The temporal and spatial scales of interest dictate the selection of reservoirs and processes included in the cycle. Typically, the need for a detailed representation of biological process rates and ecosystem structure decreases as the spatial and temporal time scales considered increase. Much progress has been made in the development of global-scale models of biogeochemical cycles. Although these models are based on fairly simple representations of the biosphere and hydrosphere, they account for the large-scale changes in the composition, redox state and biological productivity of the earth surface environment that have occurred over geological time.
    [Show full text]
  • Design of OCMIP-2 Simulations of Chlorofluorocarbons, the Solubility
    Design of OCMIP-2 simulations of chlorofluorocarbons, the solubility pump and common biogeochemistry Raymond Najjar and James Orr July 27, 1998 OUTLINE 1. Introduction 2. Air-sea gas transfer 2.1. Gas saturation concentrations 2.2. Gas transfer velocity 3. Carbon dioxide system computations 3.1. Choice of CO2 dissociation constants 3.2. Governing equations 3.2.1. Equilibrium expressions 3.2.2. Total inorganic species 3.2.3. Definition of alkalinity 3.3. Computational scheme 4. Direct impact of fresh water fluxes 5. CFC-11 and CFC-12 simulation design 6. Solubility pump design 7. Common biogeochemical model design 7.1. Phosphorus 7.2. Oxygen 7.3. Calcium carbonate 7.4. Dissolved inorganic carbon and alkalinity 7.5. Initial conditions and spin up Appendix: Computation of monthly climatology of u2 1. Introduction The success of OCMIP-2 depends critically upon carefully designed and coordinated sim- ulations of the carbon cycle and related processes. Two important criteria must be met. First, the biogeochemical parameterizations chosen should be the most appropriate to meet the goals of the simulation. These parameterizations should be based upon a careful survey of the literature and modeling experience. The purpose of this document is to describe and justify the parameteriza- tions chosen for OCMIP-2 simulations of chlorofluorocarbons, the solubility pump and common biogeochemistry. This document will be revised or amended at a later date to include designs of simulations of radiocarbon, anthropogenic CO2 uptake and “pulse” inputs of CO2 to the ocean. The second important criterion to be met is that individual modeling groups use the exact same biogeochemical parameterizations.
    [Show full text]
  • An Updated Synthesis of the Impacts of Ocean Acidification on Marine Biodiversity 2 3 ACKNOWLEDGEMENTS
    P a g e | 1 DRAFT FOR CBD PEER-REVIEW ONLY; NOT TO QUOTE; NOT TO CIRCULATE 1 An updated synthesis of the impacts of ocean acidification on marine biodiversity 2 3 ACKNOWLEDGEMENTS ....................................................................................................... 3 4 5 EXECUTIVE SUMMARY ....................................................................................................... 4 6 7 1. Background and introduction ............................................................................................... 8 8 1.1. Mandate of this review .......................................................................................................... 8 9 1.2. What is ocean acidification? ........................................................................................ 9 10 1.3. Re-visiting key knowledge gaps identified in the previous CBD review ................... 14 11 12 2. Scientific and policy framework ........................................................................................ 17 13 2.1. Steps towards global recognition and international science collaboration ................. 17 14 2.2. Intergovernmental interest in ocean acidification and actions to date ........................ 19 15 16 3. Global status and future trends of ocean acidification ....................................................... 23 17 3.1. Variability .................................................................................................................. 23 18 3.2. Modelled simulations of future ocean
    [Show full text]
  • The Case Against Climate Regulation Via Oceanic Phytoplankton Sulphur Emissions P
    REVIEW doi:10.1038/nature10580 The case against climate regulation via oceanic phytoplankton sulphur emissions P. K. Quinn1 & T. S. Bates1 More than twenty years ago, a biological regulation of climate was proposed whereby emissions of dimethyl sulphide from oceanic phytoplankton resulted in the formation of aerosol particles that acted as cloud condensation nuclei in the marine boundary layer. In this hypothesis—referred to as CLAW—the increase in cloud condensation nuclei led to an increase in cloud albedo with the resulting changes in temperature and radiation initiating a climate feedback altering dimethyl sulphide emissions from phytoplankton. Over the past two decades, observations in the marine boundary layer, laboratory studies and modelling efforts have been conducted seeking evidence for the CLAW hypothesis. The results indicate that a dimethyl sulphide biological control over cloud condensation nuclei probably does not exist and that sources of these nuclei to the marine boundary layer and the response of clouds to changes in aerosol are much more complex than was recognized twenty years ago. These results indicate that it is time to retire the CLAW hypothesis. loud condensation nuclei (CCN) can affect the amount of solar The CLAW hypothesis further postulated that an increase in DMS radiation reaching Earth’s surface by altering cloud droplet emissions from the ocean would result in an increase in CCN, cloud number concentration and size and, as a result, cloud reflectivity droplet concentrations, and cloud albedo, and a decrease in the amount C 1 or albedo . CCN are atmospheric particles that are sufficiently soluble of solar radiation reaching Earth’s surface.
    [Show full text]
  • Improved Efficiency of the Biological Pump As a Trigger for the Late Ordovician Glaciation
    ARTICLES https://doi.org/10.1038/s41561-018-0141-5 Improved efficiency of the biological pump as a trigger for the Late Ordovician glaciation Jiaheng Shen1,2*, Ann Pearson1*, Gregory A. Henkes1,3, Yi Ge Zhang1,4, Kefan Chen5, Dandan Li5, Scott D. Wankel 6, Stanley C. Finney7 and Yanan Shen 5 The first of the ‘Big Five’ Phanerozoic mass extinctions occurred in tandem with an episode of glaciation during the Hirnantian Age of the Late Ordovician. The mechanism or change in the carbon cycle that promoted this glaciation, thereby resulting in the extinction, is still debated. Here we report new, coupled nitrogen isotope analyses of bulk sediments and chlorophyll degrada- tion products (porphyrins) from the Vinini Creek section (Vinini Formation, Nevada, USA) to show that eukaryotes increas- ingly dominated marine export production in the lead-up to the Hirnantian extinction. We then use these findings to evaluate changes in the carbon cycle by incorporating them into a biogeochemical model in which production is increased in response to an elevated phosphorus inventory, potentially caused by enhanced continental weathering in response to the activity of land plants and/or an episode of volcanism. The results suggest that expanded eukaryotic algal production may have increased the community average cell size, leading to higher export efficiency during the Late Katian. The coincidence of this community shift with a large-scale marine transgression increased organic carbon burial, drawing down CO2 and triggering the Hirnantian glaciation. This episode may mark an early Palaeozoic strengthening of the biological pump, which, for a short while, may have made eukaryotic algae indirect killers.
    [Show full text]