Sonographic Tracking of Trunk Nerves: Essential for Ultrasound-Guided Pain Management and Research

Total Page:16

File Type:pdf, Size:1020Kb

Sonographic Tracking of Trunk Nerves: Essential for Ultrasound-Guided Pain Management and Research Journal name: Journal of Pain Research Article Designation: Perspectives Year: 2017 Volume: 10 Journal of Pain Research Dovepress Running head verso: Chang et al Running head recto: Sonographic tracking of trunk nerve open access to scientific and medical research DOI: http://dx.doi.org/10.2147/JPR.S123828 Open Access Full Text Article PERSPECTIVES Sonographic tracking of trunk nerves: essential for ultrasound-guided pain management and research Ke-Vin Chang1,2 Abstract: Delineation of architecture of peripheral nerves can be successfully achieved by Chih-Peng Lin2,3 high-resolution ultrasound (US), which is essential for US-guided pain management. There Chia-Shiang Lin4,5 are numerous musculoskeletal pain syndromes involving the trunk nerves necessitating US for Wei-Ting Wu1 evaluation and guided interventions. The most common peripheral nerve disorders at the trunk Manoj K Karmakar6 region include thoracic outlet syndrome (brachial plexus), scapular winging (long thoracic nerve), interscapular pain (dorsal scapular nerve), and lumbar facet joint syndrome (medial branches Levent Özçakar7 of spinal nerves). Until now, there is no single article systematically summarizing the anatomy, 1 Department of Physical Medicine sonographic pictures, and video demonstration of scanning techniques regarding trunk nerves. and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, In this review, the authors have incorporated serial figures of transducer placement, US images, 2 For personal use only. Taipei, Taiwan; National Taiwan and videos for scanning the nerves in the trunk region and hope this paper helps physicians University College of Medicine, familiarize themselves with nerve sonoanatomy and further apply this technique for US-guided Taipei, Taiwan; 3Department of Anesthesiology, National Taiwan pain medicine and research. University Hospital, Taipei, Taiwan; Keywords: ultrasound, nerve, trunk, lumbar, pain 4Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan; 5Mackay Medicine, Nursing and Management College, Mackay Introduction Medical College, Taipei, Taiwan; Delineation of peripheral nerve architecture can be successfully achieved by high- 6Department of Anesthesia and resolution ultrasound (US), which is essential for US-guided pain management and Intensive Care, Chinese University of Hong Kong, Prince of Wales research. Recently, review articles incorporating US images and video demonstrations Hospital, New Territories, Hong have been published as regards neck and the upper/lower extremities.1–3 Also, there are Kong; 7Department of Physical and Journal of Pain Research downloaded from https://www.dovepress.com/ by 137.189.66.62 on 04-May-2017 Rehabilitation Medicine, Hacettepe numerous musculoskeletal pain syndromes related to nerve disorders necessitating US University Medical School, Ankara, imaging for evaluation and guided interventions in the trunk area. Turkey For instance, the costoclavicular junction is the narrowest portion of the brachial plexus passage, requiring delicate examination in patients presenting with thoracic outlet syndrome.4 Scapular winging indicates the scapulae protruding out of the rib cage and is caused by serratus anterior paralysis and needs assessment of the long thoracic nerve from its cervical origin to the lateral thoracic attachment.5 Treating interscapular pain is challenging, and injection to the dorsal scapular nerve over the upper back can be helpful for pain relief.6 Lumbar facet syndrome is a common cause of low back pain that can be effectively managed by blocking the medial branches of lumbar spinal nerves.7,8 Therefore, familiarization of scanning techniques over Correspondence: Chih-Peng Lin the trunk nerves is noteworthy for physicians concerning the diagnoses of several Department of Anesthesiology, National Taiwan University Hospital, No. 7, Chung neuromuscular problems and relevant therapeutic interventions. Accordingly, the Shan S Rd, Zhongzheng Dist, Taipei City present review incorporates serial figures of transducer placement, US images, and 10002, Taiwan Email [email protected] videos for scanning the nerves in the trunk region, and with this the authors hope submit your manuscript | www.dovepress.com Journal of Pain Research 2017:10 79–88 79 Dovepress © 2017 Chang et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work http://dx.doi.org/10.2147/JPR.S123828 you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). Powered by TCPDF (www.tcpdf.org) 1 / 1 Chang et al Dovepress to help physicians familiarize with nerve sonoanatomy and be pivoted to visualize the cords in their long axis view further apply this technique in US-guided pain medicine (Figure 1C and D). The brachial plexus usually gives off and research. their terminal branches at the lateral edge of the pectoralis minor muscle (Video S1). Infraclavicular brachial plexus Anatomy Long thoracic nerve The brachial plexus can be divided into five levels from its Anatomy proximal origins to distal ends including the roots, trunks, The long thoracic nerve arises from the ventral rami of the divisions, cords, and peripheral branches. The medial, fifth to seventh cervical nerves and then passes underneath posterior, and lateral cords, which are named according to the clavicle to reach the lateral aspect of the thoracic wall. their positions in relation to the axillary artery, are located It courses along the midaxillary line and above the serratus at the infraclavicular region. At its most lateral part is anterior muscle. It is accompanied by the lateral thoracic the retropectoralis minor space, which is bordered by the artery, a branch of the subclavian artery, and innervates the pectoralis minor muscle anteriorly, subscapularis muscle serratus anterior muscle.11 superior and posteriorly, and the anterior chest wall inferior and posteriorly.9,10 Technique During arm abduction, the transducer is placed on the midax- Technique illary line in the horizontal plane. The nerve is seen emerging The transducer is placed in the sagittal plane caudal to from the junction between the pectoralis major and serratus the clavicle (Figure 1A) and moved inferior and lateral to anterior muscles (Figure 2A). Using the power Doppler mode, align with the pectoralis minor muscle (Figure 1B). The the lateral thoracic artery can be localized. The long thoracic brachial plexus is seen surrounding the axillary artery nerve is seen as a hypoechoic ovoid structure near the artery. For personal use only. underneath the pectoralis minor muscle. The lateral, pos- Moving the transducer caudally, visualization of the nerve terior, and medial cords course lateral, deep, and medial coursing above the serratus anterior muscle can be possible to the axillary artery, respectively. The transducer can also (Figure 2B and Video S2). AB Journal of Pain Research downloaded from https://www.dovepress.com/ by 137.189.66.62 on 04-May-2017 A CD Figure 1 The short axis views of the brachial plexus just distal to the clavicle (A) and underneath the pectoralis minor muscle (B); the long axis views of the lateral and posterior cords (C) and the medial cord (D). Note: The red A indicates axillary artery. Abbreviations: BP, brachial plexus; LC, lateral cord; PC, posterior cord; MC, medial cord; PMA, pectoralis major; PMN, pectoralis minor; SC, subclavius; SEA, serratus anterior; V, axillary vein; CLA, clavicle. 80 submit your manuscript | www.dovepress.com Journal of Pain Research 2017:10 Dovepress Powered by TCPDF (www.tcpdf.org) 1 / 1 Dovepress Sonographic tracking of trunk nerve AB A A CD A Figure 2 The short axis view of the long thoracic nerve at the junction between pectoralis major and serratus anterior muscles (A) and overlying the serratus anterior muscle (B); the short axis (C) and long axis (D) views of the thoracodorsal nerve. Notes: Yellow arrows indicate long thoracic nerve; yellow arrowheads indicate thoracodorsal nerve. The red A in (A) and (B) indicates lateral thoracic artery and thoracodorsal artery in (C). Abbreviations: PMA, pectoralis major; LD, latissimus dorsi; SEA, serratus anterior; ICM, intercostal muscle. Thoracodorsal nerve cervical nerve roots. The nerve courses medial to the lateral Anatomy cord of the brachial plexus and descends in the fascia plane For personal use only. The thoracodorsal nerve originates from the posterior cord between the pectoralis major and pectoralis minor muscles. It of the brachial plexus with its fibers coming from the sixth is accompanied by the pectoral branch of the thoracoacromial 13 to eighth cervical nerve roots. The nerve descends along artery and innervates the pectoralis major muscle. the posterior lateral thoracic wall inside the fascia plane The medial pectoral nerve arises from the medial cord of between the latissimus dorsi and serratus anterior muscles. the brachial plexus with its fibers coming from the eighth cer- The nerve is accompanied by the thoracodorsal artery, a vical and first thoracic nerve roots. The nerve first descends branch of the subscapular
Recommended publications
  • The Structure and Function of Breathing
    CHAPTERCONTENTS The structure-function continuum 1 Multiple Influences: biomechanical, biochemical and psychological 1 The structure and Homeostasis and heterostasis 2 OBJECTIVE AND METHODS 4 function of breathing NORMAL BREATHING 5 Respiratory benefits 5 Leon Chaitow The upper airway 5 Dinah Bradley Thenose 5 The oropharynx 13 The larynx 13 Pathological states affecting the airways 13 Normal posture and other structural THE STRUCTURE-FUNCTION considerations 14 Further structural considerations 15 CONTINUUM Kapandji's model 16 Nowhere in the body is the axiom of structure Structural features of breathing 16 governing function more apparent than in its Lung volumes and capacities 19 relation to respiration. This is also a region in Fascla and resplrstory function 20 which prolonged modifications of function - Thoracic spine and ribs 21 Discs 22 such as the inappropriate breathing pattern dis- Structural features of the ribs 22 played during hyperventilation - inevitably intercostal musculature 23 induce structural changes, for example involving Structural features of the sternum 23 Posterior thorax 23 accessory breathing muscles as well as the tho- Palpation landmarks 23 racic articulations. Ultimately, the self-perpetuat- NEURAL REGULATION OF BREATHING 24 ing cycle of functional change creating structural Chemical control of breathing 25 modification leading to reinforced dysfunctional Voluntary control of breathing 25 tendencies can become complete, from The autonomic nervous system 26 whichever direction dysfunction arrives, for Sympathetic division 27 Parasympathetic division 27 example: structural adaptations can prevent NANC system 28 normal breathing function, and abnormal breath- THE MUSCLES OF RESPIRATION 30 ing function ensures continued structural adap- Additional soft tissue influences and tational stresses leading to decompensation.
    [Show full text]
  • Vertebral Column and Thorax
    Introduction to Human Osteology Chapter 4: Vertebral Column and Thorax Roberta Hall Kenneth Beals Holm Neumann Georg Neumann Gwyn Madden Revised in 1978, 1984, and 2008 The Vertebral Column and Thorax Sternum Manubrium – bone that is trapezoidal in shape, makes up the superior aspect of the sternum. Jugular notch – concave notches on either side of the superior aspect of the manubrium, for articulation with the clavicles. Corpus or body – flat, rectangular bone making up the major portion of the sternum. The lateral aspects contain the notches for the true ribs, called the costal notches. Xiphoid process – variably shaped bone found at the inferior aspect of the corpus. Process may fuse late in life to the corpus. Clavicle Sternal end – rounded end, articulates with manubrium. Acromial end – flat end, articulates with scapula. Conoid tuberosity – muscle attachment located on the inferior aspect of the shaft, pointing posteriorly. Ribs Scapulae Head Ventral surface Neck Dorsal surface Tubercle Spine Shaft Coracoid process Costal groove Acromion Glenoid fossa Axillary margin Medial angle Vertebral margin Manubrium. Left anterior aspect, right posterior aspect. Sternum and Xyphoid Process. Left anterior aspect, right posterior aspect. Clavicle. Left side. Top superior and bottom inferior. First Rib. Left superior and right inferior. Second Rib. Left inferior and right superior. Typical Rib. Left inferior and right superior. Eleventh Rib. Left posterior view and left superior view. Twelfth Rib. Top shows anterior view and bottom shows posterior view. Scapula. Left side. Top anterior and bottom posterior. Scapula. Top lateral and bottom superior. Clavicle Sternum Scapula Ribs Vertebrae Body - Development of the vertebrae can be used in aging of individuals.
    [Show full text]
  • Netter's Musculoskeletal Flash Cards, 1E
    Netter’s Musculoskeletal Flash Cards Jennifer Hart, PA-C, ATC Mark D. Miller, MD University of Virginia This page intentionally left blank Preface In a world dominated by electronics and gadgetry, learning from fl ash cards remains a reassuringly “tried and true” method of building knowledge. They taught us subtraction and multiplication tables when we were young, and here we use them to navigate the basics of musculoskeletal medicine. Netter illustrations are supplemented with clinical, radiographic, and arthroscopic images to review the most common musculoskeletal diseases. These cards provide the user with a steadfast tool for the very best kind of learning—that which is self directed. “Learning is not attained by chance, it must be sought for with ardor and attended to with diligence.” —Abigail Adams (1744–1818) “It’s that moment of dawning comprehension I live for!” —Calvin (Calvin and Hobbes) Jennifer Hart, PA-C, ATC Mark D. Miller, MD Netter’s Musculoskeletal Flash Cards 1600 John F. Kennedy Blvd. Ste 1800 Philadelphia, PA 19103-2899 NETTER’S MUSCULOSKELETAL FLASH CARDS ISBN: 978-1-4160-4630-1 Copyright © 2008 by Saunders, an imprint of Elsevier Inc. All rights reserved. No part of this book may be produced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from the publishers. Permissions for Netter Art figures may be sought directly from Elsevier’s Health Science Licensing Department in Philadelphia PA, USA: phone 1-800-523-1649, ext. 3276 or (215) 239-3276; or e-mail [email protected].
    [Show full text]
  • Part 1 the Thorax ECA1 7/18/06 6:30 PM Page 2 ECA1 7/18/06 6:30 PM Page 3
    ECA1 7/18/06 6:30 PM Page 1 Part 1 The Thorax ECA1 7/18/06 6:30 PM Page 2 ECA1 7/18/06 6:30 PM Page 3 Surface anatomy and surface markings The experienced clinician spends much of his working life relating the surface anatomy of his patients to their deep structures (Fig. 1; see also Figs. 11 and 22). The following bony prominences can usually be palpated in the living subject (corresponding vertebral levels are given in brackets): •◊◊superior angle of the scapula (T2); •◊◊upper border of the manubrium sterni, the suprasternal notch (T2/3); •◊◊spine of the scapula (T3); •◊◊sternal angle (of Louis) — the transverse ridge at the manubrio-sternal junction (T4/5); •◊◊inferior angle of scapula (T8); •◊◊xiphisternal joint (T9); •◊◊lowest part of costal margin—10th rib (the subcostal line passes through L3). Note from Fig. 1 that the manubrium corresponds to the 3rd and 4th thoracic vertebrae and overlies the aortic arch, and that the sternum corre- sponds to the 5th to 8th vertebrae and neatly overlies the heart. Since the 1st and 12th ribs are difficult to feel, the ribs should be enu- merated from the 2nd costal cartilage, which articulates with the sternum at the angle of Louis. The spinous processes of all the thoracic vertebrae can be palpated in the midline posteriorly, but it should be remembered that the first spinous process that can be felt is that of C7 (the vertebra prominens). The position of the nipple varies considerably in the female, but in the male it usually lies in the 4th intercostal space about 4in (10cm) from the midline.
    [Show full text]
  • Scapular Winging Is a Rare Disorder Often Caused by Neuromuscular Imbalance in the Scapulothoracic Stabilizer Muscles
    SCAPULAR WINGING Scapular winging is a rare disorder often caused by neuromuscular imbalance in the scapulothoracic stabilizer muscles. Lesions of the long thoracic nerve and spinal accessory nerves are the most common cause. Patients report diffuse neck, shoulder girdle, and upper back pain, which may be debilitating, associated with abduction and overhead activities. Accurate diagnosis and detection depend on appreciation on comprehensive physical examination. Although most cases resolve nonsurgically, surgical treatment of scapular winging has been met with success. True incidence is largely unknown because of under diagnosis. Most commonly it is categorized anatomically as medial or lateral shift of the inferior angle of the scapula. Primary winging occurs when muscular weakness disrupts the normal balance of the scapulothoracic complex. Secondary winging occurs when pathology of the shoulder joint pathology. Delay in diagnosis may lead to traction brachial plexopathy, periscapular muscle spasm, frozen shoulder, subacromial impingement, and thoracic outlet syndrome. Anatomy and Biomechanics Scapula is rotated 30° anterior on the chest wall; 20° forward in the sagittal plane; the inferior angle is tilted 3° upward. It serves as the attachment site for 17 muscles. The trapezius muscle accomplishes elevation of the scapula in the cranio-caudal axis and upward rotation. The serratus anterior and pectoralis major and minor muscles produce anterior and lateral motion, described as scapular protraction. Normal Scapulothoracic abduction: As the limb is elevated, the effect is an upward and lateral rotation of the inferior pole of scapula. Periscapular weakness resulting from overuse may manifest as scapular dysfunction (ie, winging). Serratus Anterior Muscle Origin From the first 9 ribs Insert The medial border of the scapula.
    [Show full text]
  • Chapter 21 Fractures of the Upper Thoracic Spine: Approaches and Surgical Management
    Chapter 21 Fractures of the Upper Thoracic Spine: Approaches and Surgical Management Sean D Christie, M.D., John Song, M.D., and Richard G Fessler, M.D., Ph.D. INTRODUCTION Fractures occurring in the thoracic region account for approximately 17 to 23% of all traumatic spinal fractures (1), with 22% of traumatic spinal fractures occurring between T1 and T4 (16). More than half of these fractures result in neurological injury, and almost three-quarters of those impaired suffer from complete paralysis. Obtaining surgical access to the anterior vertebral elements of the upper thoracic vertebrae (T1–T6) presents a unique anatomic challenge. The thoracic cage, which narrows significantly as it approaches the thoracic inlet, has an intimate association between the vertebral column and the superior mediastinal structures. The supraclavicular, transmanubrial, transthoracic, and lateral parascapular extrapleural approaches each provide access to the anterior vertebral elements of the upper thoracic vertebrae. However, each of these approaches has distinct advantages and disadvantages and their use should be tailored to each individual patient’s situation. This chapter reviews these surgical approaches. Traditional posterior approaches are illustrated in Figure 21.1, but will not be discussed in depth here. ANATOMIC CONSIDERATIONS AND STABILITY The upper thoracic spine possesses unique anatomic and biomechanical properties. The anterior aspects of the vertebral bodies are smaller than the posterior aspects, which contribute to the physiological kyphosis present in this region of the spine. Furthermore, this orientation results in a ventrally positioned axis of rotation, predisposing this region to compression injuries. The combination and interaction of the vertebral bodies, ribs, and sternum increase the inherent biomechanical stability of this segment of the spine to 2 to 3 times that of the thoracolumbar junction.
    [Show full text]
  • Thoracic Cage EDU - Module 2 > Thorax & Spine > Thorax & Spine
    Thoracic Cage EDU - Module 2 > Thorax & Spine > Thorax & Spine Thoracic cage • Protects the chest organs (the heart and lungs). Main Structures: The sternum (aka, breastbone) lies anteriorly. 12 thoracic vertebrae lie posteriorly. 12 ribs articulate with the thoracic vertebrae. Sternum • Manubrium (superiorly) • Body (long and flat, middle portion) • Xiphoid process - Easily injured during chest compression (for CPR). • Sternal angle - Where manubrium and body meet - Easily palpated to find rib 2 • Sternal indentations: - Jugular notch (aka, suprasternal notch) is on the superior border of the manubrium. - Clavicular notches are to the sides of the jugular notch; these are where the clavicles (aka, collarbones), articulate with the sternum. - Costal notches articulate with the costal cartilages of the ribs ("costal" refers to the ribs). Rib Types • True ribs - Ribs 1-7; articulate with the sternum directly via their costal cartilages. • False ribs - Ribs 8-12; do not articulate directly with the sternum. - Ribs 11 and 12 are "floating ribs," do not articulate at all with the sternum. 1 / 2 Rib Features • Head - Articulates with the vertebral body; typically comprises two articular surfaces separated by a bony crest. • Neck - Extends from the head, and terminates at the tubercle. • Tubercle - Comprises an articular facet, which is where the rib articulates with the transverse process of the vertebra. • Shaft - Longest portion of the rib, extends from tubercle to rib end. • Angle - Bend in rib, just lateral to tubercle. Rib/vertebra articulation • Head and tubercle of rib articulate with body and thoracic process of vertebrae. Intercostal spaces • The spaces between the ribs • House muscles and neurovascular structures.
    [Show full text]
  • Relationship Between Shoulder Muscle Strength and Functional Independence Measure (FIM) Score Among C6 Tetraplegics
    Spinal Cord (1999) 37, 58 ± 61 ã 1999 International Medical Society of Paraplegia All rights reserved 1362 ± 4393/99 $12.00 http://www.stockton-press.co.uk/sc Relationship between shoulder muscle strength and functional independence measure (FIM) score among C6 tetraplegics Toshiyuki Fujiwara1, Yukihiro Hara2, Kazuto Akaboshi2 and Naoichi Chino2 1Keio University Tsukigase Rehabilitation Center, 380-2 Tsukigase, Amagiyugashima, Tagata, Shizuoka, 410-3215; 2Department of Rehablitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-0016, Japan The degree of disability varies widely among C6 tetraplegic patients in comparison with that at other neurological levels. Shoulder muscle strength is thought to be one factor that aects functional outcome. The aim of this study was to examine the relationship between shoulder muscle strength and the Functional Independence Measure (FIM) motor score among 14 complete C6 tetraplegic patients. The FIM motor score and American Spinal Injury Association (ASIA) motor score of these patients were assessed upon discharge. We evaluated muscle strength of bilateral scapular abduction and upward rotation, shoulder vertical adduction and shoulder extension by manual muscle testing (MMT). The total shoulder strength score was calculated from the summation of those six MMT scores. The relationships among ASIA motor score, total shoulder strength score and FIM motor score were analyzed. The total shoulder strength score was signi®cantly correlated with the FIM motor score and the score of the transfer item in the FIM. In the transfer item of the FIM, the total shoulder strength score showed a statistically signi®cant dierence between the Independent and Dependent Group.
    [Show full text]
  • The Levator Scapulae Muscle – Morphological Variations K
    International Journal of Anatomy and Research, Int J Anat Res 2019, Vol 7(4.3):7169-75. ISSN 2321-4287 Original Research Article DOI: https://dx.doi.org/10.16965/ijar.2019.335 THE LEVATOR SCAPULAE MUSCLE – MORPHOLOGICAL VARIATIONS K. Satheesh Naik 1, Sadhu Lokanadham 2. *1 Assistant Professor, Department of Anatomy, Viswabharathi Medical College & General Hospital, Penchikalapadu, Kurnool, Andhrapradesh, India. 2 Associate Professor, Department of Anatomy, Santhiram Medical College and General Hospital, Nandyal, Andhrapradesh, India. ABSTRACT Introduction: Anatomical variations of the levator scapulae are important and therefore clinically relevant. The levator scapulae are now believed to be the leading cause of discomfort in patients with chronic tension-type neck and shoulder pain and a link between anatomical variants of the muscle and increased risk of developing pain has been speculated. The results obtained were compared with previous studies. Materials and methods: The study was conducted on 32 levator scapulae muscle of 16 cadavers over a period of 3 years. The dissection of head and neck was done carefully to preserve all minute details, observing the morphological variations of the muscle in the department of Anatomy, Viswabharathi Medical College, Penchikalapadu, and Kurnool. Results: Total 32 levator scapulae muscles were used. All the sample values were measured to 2 decimal places. The average age of the cadavers in the sample was 82.87 years. The oldest cadaver in the sample was 100 years old and the youngest 61 years. Measurements of the proximal and distal attachments and the total length of the muscles were taken. Between 3 and 6 muscle slips were reported at the proximal attachment.
    [Show full text]
  • Trapezius Origin: Occipital Bone, Ligamentum Nuchae & Spinous Processes of Thoracic Vertebrae Insertion: Clavicle and Scapul
    Origin: occipital bone, ligamentum nuchae & spinous processes of thoracic vertebrae Insertion: clavicle and scapula (acromion Trapezius and scapular spine) Action: elevate, retract, depress, or rotate scapula upward and/or elevate clavicle; extend neck Origin: spinous process of vertebrae C7-T1 Rhomboideus Insertion: vertebral border of scapula Minor Action: adducts & performs downward rotation of scapula Origin: spinous process of superior thoracic vertebrae Rhomboideus Insertion: vertebral border of scapula from Major spine to inferior angle Action: adducts and downward rotation of scapula Origin: transverse precesses of C1-C4 vertebrae Levator Scapulae Insertion: vertebral border of scapula near superior angle Action: elevates scapula Origin: anterior and superior margins of ribs 1-8 or 1-9 Insertion: anterior surface of vertebral Serratus Anterior border of scapula Action: protracts shoulder: rotates scapula so glenoid cavity moves upward rotation Origin: anterior surfaces and superior margins of ribs 3-5 Insertion: coracoid process of scapula Pectoralis Minor Action: depresses & protracts shoulder, rotates scapula (glenoid cavity rotates downward), elevates ribs Origin: supraspinous fossa of scapula Supraspinatus Insertion: greater tuberacle of humerus Action: abduction at the shoulder Origin: infraspinous fossa of scapula Infraspinatus Insertion: greater tubercle of humerus Action: lateral rotation at shoulder Origin: clavicle and scapula (acromion and adjacent scapular spine) Insertion: deltoid tuberosity of humerus Deltoid Action:
    [Show full text]
  • Required List of Bones and Markings
    REQUIRED LIST OF BONES AND MARKINGS Axial Skeleton Skull Cranial Bones (8) Frontal Bone (1) Supraorbital foramina Supraorbital ridges or margins Parietal Bones (2) Temporal Bones (2) External auditory meatus Mastoid process Styloid process Zygomatic process Mandibular fossa Foramen lacerum Carotid foramen Jugular foramen Stylomastoid foramen Internal auditory meatus Occipital Bone (1) Foramen magnum Occipital condyles Ethmoid Bone (1) Cribriform plate Olfactory foramina in cribriform plate Crista galli Perpendicular plate (forms superior part of nasal septum) Middle nasal concha Superior nasal concha Sphenoid Bone (1) Foramen ovale Foramen rotundum Sella turcica Greater wing Lesser wing Optic foramen Inferior orbital fissure Superior orbital fissure Pterygoid processes Skull (cont’d) Facial Bones (14) Lacrimal Bones (2) Lacrimal fossa Nasal Bones (2) Inferior Nasal Conchae (2) Vomer (1) (forms inferior portion of nasal septum) Zygomatic Bones (2) Temporal process (forms zygomatic arch with zygomatic process of temporal bone) Maxillae (2) Alveoli Palatine process (forms anterior part of hard palate) Palatine Bones (2) (form posterior part of hard palate) Mandible (1) Alveoli Body Mental foramen Ramus Condylar process (mandibular condyle) Coronoid process Miscellaneous (Skull) Paranasal sinuses are located in the ethmoid bone, sphenoid bone, frontal bone, and maxillae Zygomatic arch (“cheekbone”) is composed of the zygomatic process of the temporal bone and the temporal process of the zygomatic bone 2 pairs of nasal conchae (superior and middle) are part of the ethmoid bone. 1 pair (inferior) are separate facial bones. All the scroll-like conchae project into the lateral walls of the nasal cavity. Hard palate (“roof of mouth”) is composed of 2 palatine processes of the maxillae and the 2 palatine bones (total of 4 fused bones).
    [Show full text]
  • Congenital Bilateral Absence of Levator Scapulae Muscles: a Case Report Stephanie Klinesmith, Randy Kuleszat
    CASE REPORT Congenital bilateral absence of levator scapulae muscles: A case report Stephanie Klinesmith, Randy Kuleszat Klinesmith S, Kulesza R. Congenital bilateral absence of levator we report dissection of a cadaveric specimen where the levator scapulae muscles: A case report. Int J Anat Var. 2020;13(1): 66-67. scapulae muscle was absent bilaterally. While bilateral congenital absence of the levator scapular appears to be an extremely rare The levator scapulae muscle is a thin, four-bellied muscle occurrence, the absence of this muscle might put neurovascular spanning the posterior neck and scapular region. Previous case bundles in the posterior neck and scapular region at increased risk reports have documented highly variable origins and insertions of this muscle, with the most common variations being from penetrating trauma or surgical procedures. additional slips and bellies. However, there are no previous Key Words: Levator scapulae; Anatomical variation; Congenital reports demonstrating congenital absence of this muscle. Herein, absence INTRODUCTION he levator scapulae muscle (LSM) is a bilaterally symmetric muscle that Toriginates from the transverse processes of the first through fourth cervical vertebrae and inserts onto the superior angle of medial border of the scapula [1]. The LSM is in contact anteriorly with the middle scalene muscle, laterally with the sternocleidomastoid and trapezius muscles, posteriorly with the splenius cervicis muscle and medially with the posterior scalene muscle [2]. The LSM is innervated by the dorsal scapular nerve, as well as the anterior rami of the C3 and C4 spinal nerves. The primary function of the levator scapulae is elevating the scapula [1], however it has been suggested that it also assists in downward rotation of the scapula [2].
    [Show full text]