Rotating Turbulent Dynamos Kannabiran Seshasayanan

Total Page:16

File Type:pdf, Size:1020Kb

Rotating Turbulent Dynamos Kannabiran Seshasayanan Rotating turbulent dynamos Kannabiran Seshasayanan To cite this version: Kannabiran Seshasayanan. Rotating turbulent dynamos. Physics [physics]. Université Pierre et Marie Curie - Paris VI, 2017. English. NNT : 2017PA066158. tel-01646437 HAL Id: tel-01646437 https://tel.archives-ouvertes.fr/tel-01646437 Submitted on 23 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Remerciements Avant d’arriver en France, je ne savais pas beaucoup la culture de ce beau pays. Quand même j’ai décidé de rester et apprendre la langue, la culture et faire une grosse partie de ma vie à Paris. J’ai la chance de sentir une partie de la culture. Je remercie tous ceux qui ont contribué à cela. Je remercie mon directeur de thèse, Alexandros Alexakis pour son soutien pendant toute la durée de ma thèse, sa confiance sur moi de m’accorder la liberté d’explorer les différents thèmes de recherche et surtout sa patience de me laisser prendre le temps nécessaire. Je le remercie pour avoir une vision long temps sur ma carrière et de me faire apprendre les fonctionnement de la communauté scientifique. Pour ses expressions courtes et fortes ! Je n’oublierai certainement pas son expression “What !!”. Je remercie Steve Tobias et Andreas Tilgner d’avoir accepté d’être rapporteurs pour ma thèse. Je remercie aussi Laurette Tuckerman et Dario Vincenzi pour accepter d’être les examinateurs à la soutenance. Maintenant, il faut que je parle de l’équipe Physique nonlinéaire. J’avais la grande plaisir de fait passé tout ce dernière trois ans avec cet équipe. J’avais la chance de travailler/discuter avec tout les membres. D’abord je remercie François Pétrélis de m’envoyer vers Alex quand j’avais demandé des conseils pour le stage de Master. Et aussi pour son cours de l’effet dynamo où j’avais appris beaucoup de chose et m’avait convaincu de faire une thèse sur ce sujet. J’avais travaillé avec lui sur l’intermittence ON-OFF. Je remercie Christophe Gissinger pour me laisser joué avec les gouttes de Couder pendant long temps. J’ai appris beaucoup de chose sur l’instabilité de Faraday et l’analyse des images avec la camera rapide. Je le remercie aussi pour les discussions sur l’instabilité dynamos, le manip de VKS, et ces conseils sur les films français !!. Je remercie le chef de l’équipe Stephan Fauve pour ses conseils, ses idées brillant et ses analyses critiques de ma recherche. Surtout pour ses blagues divers. Je remercie beaucoup Benoît Semin pour sa patience de corriger tous les fautes d’orthographe dans mes mails. Ces bonbons gratuit qu’il a ramené de l’Alsace/Lorraine. Ses réponses sur toutes les questions sur touts les sujets (vraiment tous les sujets !!). Après, je remercie les thésards. Guillaume Michel pour bien organiser les séminaires de groupe, ses réponses rapide pour toutes mes questions sur l’administration, l’École doctorale etc. Je remercie Michael Pereira pour son bon humeur, son énergie et pour les fêtes qu’on avait fait dans les conférences (surtout à BIFD !!). J’ai eu la chance de travailler avec Basile Gallet sur le sujet de saturation de l’effet dynamo. Je le remercie pour sa patience et sa vision claire sur le sujet. Je remercie les étudiants d’Alex, Vassili, Mira, Santiago pour les discussions. Je remercie encore Vassili pour la collaboration sur le travail de réduction du seuil de i ii dynamo. Je remercie également les postdocs de l’équipe, Gustavo, Paola, Sandeep, Vishy et Eric. Avec l’équipe, on avait beaucoup discuter et partager notre vie scientifique avec les membres du Laboratoire de Radio Astronomie (LRA). Je remercie les personnels de ce labo pour les discussions. Ludovic Petitdemange pour les discussions sur la politique, la science et d’autre choses. Florence Marcotte pour les informations intéressantes sur tout le monde. Raphael Raynaud pour son bon humeur. Alexandre Cameron pour les discussions et de me donner ses programmes de regriding. Je remercie les secrétaires du LPS, Annie Ribaudeau et Nora Sadaoui pour leur aide pendant ces trois ans. Je remercie mes amis à la Résidence Robert GARRIC (Maison Internationale) où j’avais habité pendant ces trois ans. J’ai eu la chance de rencontrer beaucoup de gens de cultures différentes. Je remercie l’administration de cette maison pour la facilité de séjour. Je remercie la Maison de l’Inde où j’ai célébré la plupart des festivals indiens. Tout les week-ends j’ai passé beaucoup de temps avec mes amis, Rajiv, Anirudh, Mafalda, Bade, Carolyna, Sviat. Ils ont eu la malchance d’écouter et faire semblant de rire de mes mauvaises blagues !! Je remercie aussi mes autre amis Shreyas, Chakri, Ganga, Anchal, Lawrence, Venkatesh pour les bon moments qu’on avait passé ensem- ble. கைட!"# எ% ெப(ேறா,க-./ ந%1 ெத3456.ெகா78ேற%. ச5:- யாேவா ெமா.ைக ேபா"ட6 ஒA ந#ல ெபாC6ேபா.காக இEத6. Contents Table of contents iii I Introduction 1 I.1 Rotating dynamos as a simple model .................... 2 I.2 Turbulence .................................. 4 I.3 Rotation .................................... 5 II Dynamo effect of quasi-twodimensional flows 9 II.1 Helical and Nonhelical flows ......................... 11 II.2 Dominant scales responsible for dynamo action . 15 II.3 Helical dynamo ................................ 16 II.3.1 Dependence on Re .......................... 18 II.4 Nonhelical dynamo .............................. 20 II.4.1 Dependence on Re .......................... 21 II.5 Critical magnetic Reynolds number Rmc . 21 II.6 Dependence on kf L ............................. 25 II.7 Conclusion - Part 1 .............................. 26 II.8 Saturation of the dynamo .......................... 27 II.8.1 Robert’s flow as an example ..................... 27 II.8.2 Different scaling laws ......................... 28 II.9 On experimental dynamos .......................... 30 II.10 On numerical models of dynamo ...................... 31 II.11 Saturation of the 2.5D dynamo ...................... 32 II.12 Joule dissipation and dissipation length scale . 37 II.13 Saturation in a thin layer .......................... 40 II.14 Conclusion - Part II ............................. 43 IIIKazantsev model for dynamo instability 45 III.1 Model development for 2.5D nonhelical flow . 47 III.2 Model flow .................................. 51 III.3 Growth rate .................................. 52 III.4 Different limits ................................ 54 III.4.1 Limits Rm ,D 0 ...................... 54 → ∞ r → III.4.2 Rm ,D 0 .......................... 54 → ∞ r → III.4.3 Rm ,D .......................... 56 → ∞ r → ∞ III.5 Correlation function and energy spectra . 57 III.6 Comparison with direct numerical simulations . 61 iii iv CONTENTS III.6.1 White noise flows ........................... 61 III.6.2 Freely evolving flows ......................... 63 III.7 Conclusion-Part 1 .............................. 64 III.8 Intermittent scaling of moments ....................... 65 III.9 α-dynamo for Kazantsev flow ........................ 67 III.10 Numerical results .............................. 72 III.10.1 Saturation/Nonlinear results .................... 73 III.11 Conclusion ................................. 78 IV 3D Rotating flows and dynamo instability 81 IV.1 Parameter space ............................... 85 IV.1.1 Transition to the condensate .................... 89 IV.2 Asymptotic limits ............................... 93 IV.3 Conclusion - Part 1 .............................. 98 IV.4 Rotating dynamos ..............................100 IV.4.1 Parameters of the study . 101 IV.4.2 Critical magnetic Reynolds number . 102 IV.4.3 Visualizations .............................105 IV.4.4 Helical forcing case . 107 IV.4.5 Structure of the unstable mode . 108 IV.5 Conclusion ..................................110 Perspectives and conclusions 113 Appendix A Derivation of Kazantsev model 117 B Matched Asymptotics for the Kazantsev model 119 B.0.1 Inner solution .............................119 B.0.2 Outer solution ............................120 B.0.3 Matching ...............................120 C Numerical algorithm for multiplicative noise 123 List of Figures 125 Bibliography 129 Chapter I Introduction Dynamo instability refers to the generation and sustenance of the magnetic field by a conducting fluid. It was one of the mechanism proposed by Larmor [1] for the existence of the Earth’s magnetic field. The growth or decay of an infinitesimal magnetic field in a conducting fluid is a competition between two different processes. The first process involves the stretching and folding of magnetic field lines by the velocity field. These field lines reinforce the existing magnetic field to give way for an instability. This pro- cess is in direct competition with joule dissipation (resistance against the movement of charged particles). When the stretching and folding is sufficiently stronger than the dissipation, dynamo instability occurs and infinitesimal perturbations of the magnetic field grow exponentially. The magnetic field of the Earth and Sun are shown in fig- ures I.1a, I.1b. Even though dynamo instability is given as the explanation for these observed magnetic fields, there are a lot of
Recommended publications
  • The Turbulent Dynamo
    Under consideration for publication in J. Fluid Mech. 1 The Turbulent Dynamo S. M. Tobias Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK (Received ?; revised ?; accepted ?. - To be entered by editorial office) The generation of magnetic field in an electrically conducting fluid generally involves the complicated nonlinear interaction of flow turbulence, rotation and field. This dynamo process is of great importance in geophysics, planetary science and astrophysics, since magnetic fields are known to play a key role in the dynamics of these systems. This paper gives an introduction to dynamo theory for the fluid dynamicist. It proceeds by laying the groundwork, introducing the equations and techniques that are at the heart of dynamo theory, before presenting some simple dynamo solutions. The problems currently exer- cising dynamo theorists are then introduced, along with the attempts to make progress. The paper concludes with the argument that progress in dynamo theory will be made in the future by utilising and advancing some of the current breakthroughs in neutral fluid turbulence such as those in transition, self-sustaining processes, turbulence/mean-flow interaction, statistical methods and maintenance and loss of balance. Key words: 1. Introduction 1.1. Dynamo Theory for the Fluid Dynamicist It's really just a matter of perspective. To the fluid dynamicist, dynamo theory may appear as a rather esoteric and niche branch of fluid mechanics | in dynamo theory much attention has focused on seeking solutions to the induction equation rather than those for the Navier-Stokes equation. Conversely to a practitioner dynamo theory is a field with myriad subtleties; in a severe interpretation the Navier-Stokes equations and the whole of neutral fluid mechanics may be regarded as forming a useful invariant subspace of the dynamo problem, with | it has to be said | non-trivial dynamics.
    [Show full text]
  • Planetary Magnetic Fields and Magnetospheres
    Planetary magnetic fields and magnetospheres Philippe Zarka LESIA, Observatoire de Paris - CNRS, France [email protected] • Planetary Magnetic Fields • Magnetospheric structure • Magnetospheric dynamics • Electromagnetic emissions • Exoplanets • Planetary Magnetic Fields • Magnetospheric structure • Magnetospheric dynamics • Electromagnetic emissions • Exoplanets • ∇ x B = 0 out of the sources (above the planetary surface) ⇒ B = -∇ψ (ψ = scalar potential) • Dipolar approximation : 3 2 ψ = M.r/r = M cosθ / r 3 ⇒ B : Br = -∂ψ/∂r = 2 M cosθ / r 3 Bθ = -1/r ∂ψ/∂θ = M sinθ / r Bϕ = 0 3 2 1/2 3 2 1/2 |B| = M/r (1+3cos θ) = Be/L (1+3cos θ) 3 with Be = M/RP = field intensity at the equatorial surface and r = L RP Equation of a dipolar field line : r = L sin2θ • Multipolar development in spherical harmonics : n+1 n n n ψ = RP Σn=1→∞ (RP/r) Si + (r/RP) Se n Si = internal sources (currents) n Se = external sources (magnetopause currents, equatorial current disc ...) with n m m m Si = Σm=0→n Pn (cosθ) [gn cosmφ + hn sinmφ] n m m m Se = Σm=0→n Pn (cosθ) [Gn cosmφ + Hn sinmφ] m Pn (cosθ) = orthogonal Legendre polynomials m m m m gn , hn , Gn , Hn = Schmidt coefficients (internal and external) This representation is valid out of the sources (currents). Specific currents (e.g. equatorial disc at Jupiter & Saturn) are described by an additional explicit model, not an external potential. Degree n=1 corresponds to the dipole, n=2 to quadrupole, n=3 to octupole, … • Origin of planetary magnetic fields : -2900 km - Dynamo : -5150 km Rotation + Convection (thermal, compositional) + • -6400 km Conducting fluid (Earth : liquid Fe-Ni in external core, Jupiter : metallic H) ⇒ sustained B field - Remanent / ancient dynamo (Mars, Moon...) - Induced (Jovian / Saturnian satellites) 1 G = 10-4 T = 105 nT [Stevenson, 2003] • In-situ measurements of Terrestrial magnetic field, up to order n=14.
    [Show full text]
  • Arxiv:1908.06042V4 [Astro-Ph.SR] 21 Jan 2020 Which Are Born on the Interface Between the Tachocline and the Overshoot Layer, Are Developed
    Thermomagnetic Ettingshausen-Nernst effect in tachocline, magnetic reconnection phenomenon in lower layers, axion mechanism of solar luminosity variations, coronal heating problem solution and mechanism of asymmetric dark matter variations around black hole V.D. Rusov1,∗ M.V. Eingorn2, I.V. Sharph1, V.P. Smolyar1, M.E. Beglaryan3 1Department of Theoretical and Experimental Nuclear Physics, Odessa National Polytechnic University, Odessa, Ukraine 2CREST and NASA Research Centers, North Carolina Central University, Durham, North Carolina, U.S.A. 3Department of Computer Technology and Applied Mathematics, Kuban State University, Krasnodar, Russia Abstract It is shown that the holographic principle of quantum gravity (in the hologram of the Uni- verse, and therefore in our Galaxy, and of course on the Sun!), in which the conflict between the theory of gravitation and quantum mechanics disappears, gives rise to the Babcock-Leighton holographic mechanism. Unlike the solar dynamo models, it generates a strong toroidal mag- netic field by means of the thermomagnetic Ettingshausen-Nernst (EN) effect in the tachocline. Hence, it can be shown that with the help of the thermomagnetic EN effect, a simple estimate of the magnetic pressure of an ideal gas in the tachocline of e.g. the Sun can indirectly prove that by using the holographic principle of quantum gravity, the repulsive toroidal magnetic field Sun 7 Sun of the tachocline (Btacho = 4:1 · 10 G = −Bcore) precisely \neutralizes" the magnetic field in the Sun core, since the projections of the magnetic fields in the tachocline and the core have equal values but opposite directions. The basic problem is a generalized problem of the antidy- namo model of magnetic flux tubes (MFTs), where the nature of both holographic effects (the thermomagnetic EN effect and Babcock-Leighton holographic mechanism), including magnetic cycles, manifests itself in the modulation of asymmetric dark matter (ADM) and, consequently, the solar axion in the Sun interior.
    [Show full text]
  • Cowling, Thomas George
    C 476 Cowling, Thomas George As such it was the second retrograde satellite — (1908). “The Orbit of Jupiter’s Eighth Satellite.” found after Phoebe, a satellite of Saturn. Monthly Notices of the Royal Astronomical Society of London 68: 576–581. In an effort to follow the motion of comet — (1910). “Investigation of the Motion of Halley’s 1P/Halley and predict its upcoming perihelion pas- Comet from 1759 to 1910.” Publikation der sage in 1910, Cowell and Crommelin applied Astronomischen Gesellschaft, no. 23. Cowell’s method to the motion of comet Halley Cowell, Philip H., Andrew C. D. Crommelin, and C. Davidson (1909). “On the Orbit of Jupiter’s Eighth and predicted its perihelion passage time as Satellite.” Monthly Notices of the Royal Astronomical 1910 April 17.1. This date turned out to be 3 days Society 69: 421. early, and in hindsight, this is what should have Jackson, J. (1949). “Dr. P. H. Cowell, F.R.S.” Nature 164: been expected since later work showed that the icy 133. Whittaker, Edmund T. (1949). “Philip Herbert Cowell.” comet’s rocket-like outgasing effects lengthen its Obituary Notices of Fellows of the Royal Society orbital period by an average of 4 days per period. 6: 375–384. In an earlier work published in 1907, Cowell and Crommelin made the first attempt to integrate the motion of comet Halley backward into the ancient era. Using a variation of elements method, rather Cowling, Thomas George than the direct numerical integration technique used later, they accurately carried the comet’s Virginia Trimble1 and Emmanuel Dormy2 motion back in time to 1301 by taking into account 1University of California, Irvine School of perturbations in the comet’s period from the Physical Sciences, Irvine, CA, USA effects of Venus, Earth, Jupiter, Saturn, Uranus, 2CNRS, Ecole Normale Supe´rieure, Paris, France and Neptune.
    [Show full text]
  • 10.07 Planetary Magnetism J
    10.07 Planetary Magnetism J. E. P. Connerney, NASA Goddard Space Flight Center, Greenbelt, MD, USA Published by Elsevier B.V. 10.07.1 Introduction 243 10.07.2 Tools 245 10.07.2.1 The Offset Tilted Dipole 245 10.07.2.2 Spherical Harmonic Models 246 10.07.3 Terrestrial Planets 248 10.07.3.1 Mercury 248 10.07.3.1.1 Observations 248 10.07.3.1.2 Models 249 10.07.3.2 Venus 250 10.07.3.2.1 Observations 251 10.07.3.2.2 Discussion 251 10.07.3.3 Mars 251 10.07.3.3.1 Observations 251 10.07.3.3.2 Models 254 10.07.3.3.3 Discussion 256 10.07.4 Gas Giants 256 10.07.4.1 Jupiter 256 10.07.4.2 Observations 257 10.07.4.3 Models 258 10.07.5 Discussion 262 10.07.5.1 Saturn 263 10.07.5.1.1 Observations 263 10.07.5.1.2 Models 264 10.07.5.1.3 Discussion 265 10.07.6 Ice Giants 267 10.07.6.1 Uranus 267 10.07.6.1.1 Models 267 10.07.6.2 Neptune 269 10.07.7 Satellites and Small Bodies 272 10.07.7.1 Moon 272 10.07.7.2 Ganymede 273 10.07.8 Discussion 274 10.07.9 Summary 275 References 275 10.07.1 Introduction nature and dipole geometry of the field and led to an association between magnetism and the interior of pla- Planetary magnetism, beginning with the study of the net Earth.
    [Show full text]
  • A Modified Equivalent Source Dipole Method to Model Partially
    Journal of Geophysical Research: Planets RESEARCH ARTICLE A modified Equivalent Source Dipole method to model 10.1002/2014JE004734 partially distributed magnetic field measurements, Key Points: with application to Mercury • A new method to model partially distributed magnetic field J. S. Oliveira1,2, B. Langlais1,M.A.Pais2,3, and H. Amit1 measurements • Method applied to Mercury’s field 1Laboratoire de Planétologie et Géodynamique, LPG Nantes, CNRS UMR6112, Université de Nantes, Nantes, France, observed by MESSENGER’s eccentric 2 3 orbit CITEUC, Geophysical and Astronomical Observatory, University of Coimbra, Coimbra, Portugal, Department of Physics, • We find a strongly axisymmetric University of Coimbra, Coimbra, Portugal internal field Abstract Hermean magnetic field measurements acquired over the northern hemisphere by the Supporting Information: • Supporting Information S1 MErcury Surface Space ENvironment GEochemistry, and Ranging (MESSENGER) spacecraft provide crucial • Software S1 information on the magnetic field of the planet. We develop a new method, the Time Dependent Equivalent Source Dipole, to model a planetary magnetic field and its secular variation over a limited spatial region. Correspondence to: Tests with synthetic data distributed on regular grids as well as at spacecraft positions show that our J. S. Oliveira, modeled magnetic field can be upward or downward continued in an altitude range of −300 to 1460 km [email protected] for regular grids and in a narrower range of 10 to 970 km for spacecraft positions. They also show that the method is not sensitive to a very weak secular variation along MESSENGER orbits. We then model the Citation: magnetic field of Mercury during the first four individual sidereal days as measured by MESSENGER using Oliveira, J.
    [Show full text]
  • DYNAMO THEORY Chris A. Jones
    DYNAMO THEORY Chris A. Jones Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK 1 jonesphoto.jpg Contents 1. Kinematic dynamo theory 5 1.1. Maxwell and Pre-Maxwell equations 5 1.2. Integral form of the MHD equations 7 1.2.1. Stokes’ theorem 7 1.2.2. Potential fields 7 1.2.3. Faraday’s law 8 1.3. Electromagnetic theory in a moving frame 8 1.4. Ohm’s law, induction equation and boundary conditions 10 1.4.1. Lorentz force 10 1.4.2. Induction equation 11 1.4.3. Boundary conditions 11 1.5. Nature of the induction equation: Magnetic Reynolds number 12 1.6. The kinematic dynamo problem 13 1.7. Vector potential, Toroidal and Poloidal decomposition. 14 1.7.1. Vector Potential 14 1.7.2. Toroidal-Poloidal decomposition 15 1.7.3. Axisymmetric field decomposition 16 1.7.4. Symmetry 16 1.7.5. Free decay modes 16 1.8. The Anti-Dynamo theorems 17 2. Working kinematic dynamos 19 2.1. Minimum Rm for dynamo action 19 2.1.1. Childress bound 20 2.1.2. Backus bound 20 2.2. Faraday disc dynamos 21 2.2.1. Original Faraday disc dynamo 21 2.2.2. Homopolar self-excited dynamo 22 2.2.3. Moffatt’s segmented homopolar dynamo 22 2.2.4. Hompolar disc equations 22 2.3. Ponomarenko dynamo 24 2.3.1. Ponomarenko dynamo results 26 2.3.2. Smooth Ponomarenko dynamo 27 2.4. G.O. Roberts dynamo 28 2.4.1. Large Rm G.O.
    [Show full text]
  • Planetary Magnetism
    Planetary Magnetism J. E. P. CONNERNEY Laboratory for Extraterrestrial Physics, Code 695 NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 [email protected] Phone: 301-286-5884 Fax: 301-286-1433 1 Keywords: Dynamos Ganymede Jupiter Magnetic fields Magnetism Magnetospheres Mars Mercury Moon Neptune Planets Saturn Tectonics Uranus Venus Synopsis: The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet’s interior) and/or remanent magnetic fields locked in the planet’s crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets. 2 Heading One: Introduction Planetary magnetism began with the study of the geomagnetic field, and is one of the oldest scientific disciplines. Magnetism was both a curiosity and a practical tool for navigation, the subject of myth and superstition as much as scientific study. With the publication of De Magnete in 1600, William Gilbert demonstrated that the Earth’s magnetic field was like that of a bar magnet. Gilbert’s treatise on magnetism established the global nature and dipole geometry of the field and led to an association between magnetism and the interior of planet Earth.
    [Show full text]
  • Magnetic Fields of the Outer Planets
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 98, NO. El0, PAGES 18,659-18,679, OCTOBER 25, 1993 Magnetic Fields of the Outer Planets J. E. P. CONNERNEY Laboratory for Extraterrestrial Physics,NASA Goddard Space Flight Center, Greenbelt, Maryland It is difficultto imaginea groupof planetarydynamos more diversethan thosevisited by the Pioneer and Voyager spacecraft.The magneticfield of Jupiteris largein magnitudeand hasa dipole axis within 10ø of its rotation axis, comfortably consistent with the paleomagnetic history of the geodynamo. Saturn's remarkable(zonal harmonic) magneticfield has an axis of symmetry that is indistinguishable from its rotation axis (<<1 ø angular separation);it is also highly antisymmetricwith respect to the equatorplane. Accordingto one hypothesis,the spin symmetrymay arisefrom the differentialrotation of an electrically conductingand stably stratified layer above the dynamo. The magnetic fields of Uranus and Neptune are very much alike, and equally unlike those of the other known magnetized planets. These two planets are characterized by a large dipole tilts (59ø and 47ø, respectively) and quadrupole moments (Schmidt-normalizedquadrupole/dipole ratio -•1.0). These properties may be characteristicof dynamo generationin the relatively poorly conducting"ice" interiors of Uranus and Neptune. Characteristicsof these planetary magneticfields are illustrated using contour maps of the field on the planet's surfaceand discussedin the context of planetary interiors and dynamo generation. INTRODUCTION Jupiter's magnetic field [Ness et al., 1979a, b]. Voyagers 1 and 2 would both continue onward to Saturn, obtaining The study of the geomagnetic field had progressed for additional observations of Saturn's magnetic field in Novem- many years before the landmark publication of De Magnete ber 1980 and August 1981 [Ness et al., 1981, 1982].
    [Show full text]
  • Magnetic Field Generation in Electrically Conducting Fluids Magnetic Field Generation in Electrically Conducting Fluids
    H.K.MOFFATT I’ 1 L L ‘G ;1II r r411 1 1 CAMBRIDGE MONOGRAPHS ON MECHANICS AND APPLIED MATHEMATICS GENERAL EDITORS G. K. BATCHELOR, PH.D., F.R.S. Professor of Applied Mathematics in the University of Cambridge J. W. MILES, PH.D. Professor of Applied Mathematics, Universityof California,La Jolla MAGNETIC FIELD GENERATION IN ELECTRICALLY CONDUCTING FLUIDS MAGNETIC FIELD GENERATION IN ELECTRICALLY CONDUCTING FLUIDS H. K. MOFFATT PROFESSOR OF APPLIED MATHEMATICS, UNIVERSITY OF BRISTOL CAMBRIDGE UNIVERSITY PRESS CAMBRIDGE LONDON. NEW YORK. MELBOURNE Published by the Syndicsof the Cambridge University Press The Pitt Building, Trumpington Street, Cambridge CB2 IRP BentleyHouse, 200 Euston Road, London NW12DB 32 East 57th Street, New York, NY 10022, USA 296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia @ Cambridge University Press 1978 First published 1978 Printed in Great Britain at the University Press, Cambridge Library of Congress Cataloguing in Publication Data Moffatt, Henry Keith, 1935- Magnetic field generation in electrically conducting fluids. (Cambridge monographs on mechanics and applied mathematics) Bibliography: p. 325 1. Dynamo theory (Cosmic physics) I. Title. QC809.M25M63 538 77-4398 ISBN 0 521 21640 0 CONTENTS Preface page ix 1 Introduction and historical background 1 2 Magnetokinematic preliminaries 13 2.1 Structural properties of the B-field 13 2.2 Magnetic field representations 17 2.3 Relations between electric current and magnetic field 23 2.4 Force-free fields 26 2.5 Lagrangian variables and magnetic field
    [Show full text]