Journal of Geophysical Research: Planets RESEARCH ARTICLE A modified Equivalent Source Dipole method to model 10.1002/2014JE004734 partially distributed magnetic field measurements, Key Points: with application to Mercury • A new method to model partially distributed magnetic field J. S. Oliveira1,2, B. Langlais1,M.A.Pais2,3, and H. Amit1 measurements • Method applied to Mercury’s field 1Laboratoire de Planétologie et Géodynamique, LPG Nantes, CNRS UMR6112, Université de Nantes, Nantes, France, observed by MESSENGER’s eccentric 2 3 orbit CITEUC, Geophysical and Astronomical Observatory, University of Coimbra, Coimbra, Portugal, Department of Physics, • We find a strongly axisymmetric University of Coimbra, Coimbra, Portugal internal field Abstract Hermean magnetic field measurements acquired over the northern hemisphere by the Supporting Information: • Supporting Information S1 MErcury Surface Space ENvironment GEochemistry, and Ranging (MESSENGER) spacecraft provide crucial • Software S1 information on the magnetic field of the planet. We develop a new method, the Time Dependent Equivalent Source Dipole, to model a planetary magnetic field and its secular variation over a limited spatial region. Correspondence to: Tests with synthetic data distributed on regular grids as well as at spacecraft positions show that our J. S. Oliveira, modeled magnetic field can be upward or downward continued in an altitude range of −300 to 1460 km
[email protected] for regular grids and in a narrower range of 10 to 970 km for spacecraft positions. They also show that the method is not sensitive to a very weak secular variation along MESSENGER orbits. We then model the Citation: magnetic field of Mercury during the first four individual sidereal days as measured by MESSENGER using Oliveira, J.