Cowling, Thomas George
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arthur S. Eddington the Nature of the Physical World
Arthur S. Eddington The Nature of the Physical World Arthur S. Eddington The Nature of the Physical World Gifford Lectures of 1927: An Annotated Edition Annotated and Introduced By H. G. Callaway Arthur S. Eddington, The Nature of the Physical World: Gifford Lectures of 1927: An Annotated Edition, by H. G. Callaway This book first published 2014 Cambridge Scholars Publishing 12 Back Chapman Street, Newcastle upon Tyne, NE6 2XX, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2014 by H. G. Callaway All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-4438-6386-6, ISBN (13): 978-1-4438-6386-5 CONTENTS Note to the Text ............................................................................... vii Eddington’s Preface ......................................................................... ix A. S. Eddington, Physics and Philosophy .......................................xiii Eddington’s Introduction ................................................................... 1 Chapter I .......................................................................................... 11 The Downfall of Classical Physics Chapter II ......................................................................................... 31 Relativity Chapter III -
Jeremy Shakerley (1626-1655?) Astronomy, Astrology and Patronage in Civil War Lancashire
JEREMY SHAKERLEY (1626-1655?) ASTRONOMY, ASTROLOGY AND PATRONAGE IN CIVIL WAR LANCASHIRE A. Chapman, M.A., D. Phil., F.R.A.S. The civil war period witnessed a remarkable activity in the pursuit of astronomy and allied subjects in the northern counties of England, and well over half a dozen mathematical practitioners were active between 1635 and 1650. Perhaps the best known of these men was Jeremiah Horrocks and his circle, including William Gascoigne and William Crabtree who were active around 1640, and made contributions of international importance in celestial mechanics and instrument design. 1 Though working some years later, Jeremy Shakerley was deeply influence by the work of Horrocks, and in many ways, saw himself as continuing in the same tradition. While Shakerley worked in greater isolation in many respects, he did maintain an active London correspondence, and often made reference to fellow astronomers in the Pendle district, where he originally resided. Shakerely's historical importance lies in the nine substantial letters which he exchanged with the London astrologer, William Lilly between 1648 and 1650, along with others to Henry Osborne and John Matteson. Most of these letters, now preserved in the Ashmole manuscripts in the Bodleian Library, are rich in information about the aspirations and problems of a provincial mathematical practitioner. He was an admirer of the theories of Copernicus and Kepler and argued for strictly natural causes in celestial phenomena. Yet he also perceived a hierarchy of correspondences and astrological demonstrations behind the physical laws, whereby man could interpret God's design, as a guide to conduct. -
New Reports1
2004: the year of the transit by Valerie & Andrew White The highlight of 2004 was the transit of far from Much Hoole, as we Venus in June. To prepare ourselves for knew it has a painting of the event, in April we visited Much Horrocks observing the Hoole in Lancashire, to see the church transit, but it was closed where Jeremiah Horrocks was clerk, and that day, so we just took a nearby Carr House where it is assumed photo of their adverts for he was a tutor to the children of the observing the transit on June house, and from where he was the first 8 and their play ‘Much to view a transit of Venus in 1639. The Hoole about Nothing’. east window of the church has a stained Unfortunately the play was glass depiction of Horrocks viewing the already fully booked, so we Roundels in Much Hoole Church to commemorate the Venus transit and also, in another window in were unable to see it. transits. Left, erected in 1874; right, added in 2004. For the transit itself we flew to Egypt (Sinai) with Explorers some interesting photos of the present Tours and had a perfectly clear sky to interior and garden of the cottage. An view the event, although it was very hot. additional point of interest was that the We took a Meade ETX90 and a Coronado nearby road was called Priory Grove but Maxscope 40 H-alpha telescope with us. its road sign said ‘Priory Grove − late Val viewed through the ETX with a solar Crabtree Croft’. -
Zirker J.B. the Magnetic Universe (JHUP, 2009)(ISBN 080189302X
THE MAGNETIC UNIVERSE This page intentionally left blank J. B. ZIRKER THE MAGNETIC THE ELUSIVE TRACES OF AN INVISIBLE FORCE UNIVERSE THE JOHNS HOPKINS UNIVERSITY PRESS BALTIMORE © 2009 The Johns Hopkins University Press All rights reserved. Published 2009 Printed in the United States of America on acid- free paper 2 4 6 8 9 7 5 3 1 The Johns Hopkins University Press 2715 North Charles Street Baltimore, Mary land 21218- 4363 www .press .jhu .edu Library of Congress Cataloging- in- Publication Data Zirker, Jack B. The magnetic universe : the elusive traces of an invisible force / J.B. Zirker. p. cm. Includes bibliographical references and index. ISBN- 13: 978- 0- 8018- 9301- 8 (hardcover : alk. paper) ISBN- 10: 0- 8018- 9301- 1 (hardcover : alk. paper) ISBN- 13: 978- 0- 8018- 9302- 5 (pbk. : alk. paper) ISBN- 10: 0- 8018- 9302- X (pbk. : alk. paper) 1. Magnetic fi elds. 2. Cosmic magnetic fi elds. 3. Magnetism. 4. Magnetosphere. 5. Heliosphere (Ionosphere) 6. Gravity. I. Title. QC754.2.M3Z57 2009 538—dc22 2008054593 A cata log record for this book is available from the British Library. The last printed pages of the book are an extension of this copyright page. Special discounts are available for bulk purchases of this book. For more information, please contact Special Sales at 410- 516- 6936 or [email protected]. The Johns Hopkins University Press uses environmentally friendly book materials, including recycled text paper that is composed of at least 30 percent post- consumer waste, whenever possible. All of our book papers are acid- free, and our jackets and covers are printed on paper with recycled content. -
Nineteenth Century Space Race
Nineteenth Century Space Race A transit is the crossing of the Sun by a planet. This is visible from the Earth only for Mercury and Venus. The 1874 transit of Venus was studied by 56 expeditions from six countries – and the eight expeditions from the U.S. eventually spent $375,000. This led Laurence Marshall of Gettysburg College to subtitle his lecture on "The Transit of Venus" to the Amateur Astronomers Association of New York at the Kauffman Auditorium of the American Museum of Natural History on 6 October 2006 "The Space Race of the 19th Century." Marshall pointed out that transits are useful in determining relative distances in the solar system. Earlier estimates imagined the solar system to be much smaller, he noted: Copernicus' values, based on results from Ancient Greece, were about a twentieth of the presently-known values. When Pierre Gassendi saw the 7 November 1631 transit of Mercury, predicted in Kepler's Rudolphine Tables published that year, he was surprised how small Mercury's disk appeared. Marshall observed that Kepler missed a transit of Venus in 1639 but added that Jeremiah Horrocks both predicted and observed it. William Crabtree also observed it. Both projected the image of the transited Sun onto a wall. Edmund Halley proposed a way, based on parallax, to use transits to determine the actual distance from the Sun, accurately to one part in 500. But this required two simultaneous measurements, not an easy feat in those days, although it could be compensated for by measuring the time duration of transit. Marshall reported that people sought to employ Halley's method with the transits of Venus in 1761 and 1769. -
The Transit of Venus, 1639 Jeremiah Horrocks and William Crabtree
THE TRANSIT OF VENUS, 1639 JEREMIAH HORROCKS AND WILLIAM CRABTREE A Selected Bibliography Primary Sources Horrox, Jeremiah., Venus in Sole Visa, reproduced (in English) in Memoir of the Life and Labours of the Reverend Jeremiah Horrox, by Rev. Arundell Blount Whatton, pub. Wertheim, Macintosh and Hunt, 1859, pp.109-216 Secondary Sources Papers and Articles AMC, Horrocks, Jeremiah (1617?-1641), National Dictionary of Biography, pp.1267-1269 Applebaum, W., and Hatch, R.A., Boulliau, Mercator and Horrocks's "Venus in Sole Venus": Three unpublished letters, Journal for the History of Astronomy, Vol.14, part 3, No. 41, pp.174-175 […], October 1983 Applebaum, Wilbur, Horrocks, Jeremiah, Dictionary of Scientific Biography, Vol.6 (1972), pp.514- 516 Bailey, John E., Jeremiah Horrox, The Observatory, 1883, No.79, pp.318-328 Barocas, V., A Country Curate, Quarterly Journal of the Royal Astronomical Society, Vol. 12, 1971, pp.179-182 Bulpit, W.T., Misconceptions concerning Jeremiah Horrocks, the Astronomer, The Observatory, Vol.27, September 1911, No.478, pp.335-337 (illustrations: plate facing p.335 showing Hoole Church, Carr House and stained glass memorial window at Hoole Church) Chapman, Allan, Jeremiah Horrocks, the Transit of Venus, and the 'New Astronomy' in early seventeenth-century England, Quarterly Journal of the Royal Astronomical Society, Vol. 31, 1996, p.333-357 Clark, G.Napier, Sketch of the Life and Works of Rev.Jeremiah Horrox, Journal of the Royal Astronomical Society of Canada, Vol.10, No.10, December 1916, pp.523-536 (illustrations: -
The Turbulent Dynamo
Under consideration for publication in J. Fluid Mech. 1 The Turbulent Dynamo S. M. Tobias Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK (Received ?; revised ?; accepted ?. - To be entered by editorial office) The generation of magnetic field in an electrically conducting fluid generally involves the complicated nonlinear interaction of flow turbulence, rotation and field. This dynamo process is of great importance in geophysics, planetary science and astrophysics, since magnetic fields are known to play a key role in the dynamics of these systems. This paper gives an introduction to dynamo theory for the fluid dynamicist. It proceeds by laying the groundwork, introducing the equations and techniques that are at the heart of dynamo theory, before presenting some simple dynamo solutions. The problems currently exer- cising dynamo theorists are then introduced, along with the attempts to make progress. The paper concludes with the argument that progress in dynamo theory will be made in the future by utilising and advancing some of the current breakthroughs in neutral fluid turbulence such as those in transition, self-sustaining processes, turbulence/mean-flow interaction, statistical methods and maintenance and loss of balance. Key words: 1. Introduction 1.1. Dynamo Theory for the Fluid Dynamicist It's really just a matter of perspective. To the fluid dynamicist, dynamo theory may appear as a rather esoteric and niche branch of fluid mechanics | in dynamo theory much attention has focused on seeking solutions to the induction equation rather than those for the Navier-Stokes equation. Conversely to a practitioner dynamo theory is a field with myriad subtleties; in a severe interpretation the Navier-Stokes equations and the whole of neutral fluid mechanics may be regarded as forming a useful invariant subspace of the dynamo problem, with | it has to be said | non-trivial dynamics. -
Planetary Magnetic Fields and Magnetospheres
Planetary magnetic fields and magnetospheres Philippe Zarka LESIA, Observatoire de Paris - CNRS, France [email protected] • Planetary Magnetic Fields • Magnetospheric structure • Magnetospheric dynamics • Electromagnetic emissions • Exoplanets • Planetary Magnetic Fields • Magnetospheric structure • Magnetospheric dynamics • Electromagnetic emissions • Exoplanets • ∇ x B = 0 out of the sources (above the planetary surface) ⇒ B = -∇ψ (ψ = scalar potential) • Dipolar approximation : 3 2 ψ = M.r/r = M cosθ / r 3 ⇒ B : Br = -∂ψ/∂r = 2 M cosθ / r 3 Bθ = -1/r ∂ψ/∂θ = M sinθ / r Bϕ = 0 3 2 1/2 3 2 1/2 |B| = M/r (1+3cos θ) = Be/L (1+3cos θ) 3 with Be = M/RP = field intensity at the equatorial surface and r = L RP Equation of a dipolar field line : r = L sin2θ • Multipolar development in spherical harmonics : n+1 n n n ψ = RP Σn=1→∞ (RP/r) Si + (r/RP) Se n Si = internal sources (currents) n Se = external sources (magnetopause currents, equatorial current disc ...) with n m m m Si = Σm=0→n Pn (cosθ) [gn cosmφ + hn sinmφ] n m m m Se = Σm=0→n Pn (cosθ) [Gn cosmφ + Hn sinmφ] m Pn (cosθ) = orthogonal Legendre polynomials m m m m gn , hn , Gn , Hn = Schmidt coefficients (internal and external) This representation is valid out of the sources (currents). Specific currents (e.g. equatorial disc at Jupiter & Saturn) are described by an additional explicit model, not an external potential. Degree n=1 corresponds to the dipole, n=2 to quadrupole, n=3 to octupole, … • Origin of planetary magnetic fields : -2900 km - Dynamo : -5150 km Rotation + Convection (thermal, compositional) + • -6400 km Conducting fluid (Earth : liquid Fe-Ni in external core, Jupiter : metallic H) ⇒ sustained B field - Remanent / ancient dynamo (Mars, Moon...) - Induced (Jovian / Saturnian satellites) 1 G = 10-4 T = 105 nT [Stevenson, 2003] • In-situ measurements of Terrestrial magnetic field, up to order n=14. -
Cosmical Magnetism NATO ASI Series Advanced Science Institutes Series
Cosmical Magnetism NATO ASI Series Advanced Science Institutes Series A Series presenting the results of activities sponsored by the NATO Science Committee, which aims at the dissemination of advanced scientific and technological knowledge, with a view to strengthening links between scientific communities. The Series is published by an international board of publishers in conjunction with the NATO Scientific Affairs Division A Life Sciences Plenum Publishing Corporation B Physics London and New York C Mathematical Kluwer Academic Publishers and Physical Sciences Dordrecht, Boston and London D Behavioural and Social Sciences E Applied Sciences F Computer and Systems Sciences Springer-Verlag G Ecological Sciences Berlin, Heidelberg, New York, London, H Cell Biology Paris and Tokyo I Global Environmental Change NATO-PCO-DATA BASE The electronic index to the NATO ASI Series provides full bibliographical references (with keywords and/or abstracts) to more than 30000 contributions from international scientists published in all sections of the NATO ASI Series. Access to the NATO-PCO-DATA BASE is possible in two ways: - via online FILE 128 (NATO-PCO-DATA BASE) hosted by ESRIN, Via Galileo Galilei, 1-00044 Frascati, Italy. - via CD-ROM "NATO-PCO-DATA BASE" with user-friendly retrieval software in English, French and German (© WTV GmbH and DATAWARE Technologies Inc. 1989). The CD-ROM can be ordered through any member of the Board of Publishers or through NATO-PCO, Overijse, Belgium. Series C: Mathematical and Physical Sciences - Vol. 422 Cosmical Magnetism edited by D. Lynden-Bell Institute of Astronomy & Clare College, Cambridge, U.K. Springer Science+Business Media, B.V. Proceedings of the NATO Advanced Research Workshop on Cosmlcal Magnetlsm Cambridge, U.K. -
Arxiv:1908.06042V4 [Astro-Ph.SR] 21 Jan 2020 Which Are Born on the Interface Between the Tachocline and the Overshoot Layer, Are Developed
Thermomagnetic Ettingshausen-Nernst effect in tachocline, magnetic reconnection phenomenon in lower layers, axion mechanism of solar luminosity variations, coronal heating problem solution and mechanism of asymmetric dark matter variations around black hole V.D. Rusov1,∗ M.V. Eingorn2, I.V. Sharph1, V.P. Smolyar1, M.E. Beglaryan3 1Department of Theoretical and Experimental Nuclear Physics, Odessa National Polytechnic University, Odessa, Ukraine 2CREST and NASA Research Centers, North Carolina Central University, Durham, North Carolina, U.S.A. 3Department of Computer Technology and Applied Mathematics, Kuban State University, Krasnodar, Russia Abstract It is shown that the holographic principle of quantum gravity (in the hologram of the Uni- verse, and therefore in our Galaxy, and of course on the Sun!), in which the conflict between the theory of gravitation and quantum mechanics disappears, gives rise to the Babcock-Leighton holographic mechanism. Unlike the solar dynamo models, it generates a strong toroidal mag- netic field by means of the thermomagnetic Ettingshausen-Nernst (EN) effect in the tachocline. Hence, it can be shown that with the help of the thermomagnetic EN effect, a simple estimate of the magnetic pressure of an ideal gas in the tachocline of e.g. the Sun can indirectly prove that by using the holographic principle of quantum gravity, the repulsive toroidal magnetic field Sun 7 Sun of the tachocline (Btacho = 4:1 · 10 G = −Bcore) precisely \neutralizes" the magnetic field in the Sun core, since the projections of the magnetic fields in the tachocline and the core have equal values but opposite directions. The basic problem is a generalized problem of the antidy- namo model of magnetic flux tubes (MFTs), where the nature of both holographic effects (the thermomagnetic EN effect and Babcock-Leighton holographic mechanism), including magnetic cycles, manifests itself in the modulation of asymmetric dark matter (ADM) and, consequently, the solar axion in the Sun interior. -
Spring 2018 (Pdf)
Spring 2018 The biology of being sedentary Marginal Voices: A quest to improve mental health diagnosis among the deaf community Clinical pharmacists in Primary Care: A safe solution to the workforce crisis? Should doctors be criminalised? Building a coaching culture across the medical school and beyond Spring 2018 In 2018, the National Health Service (NHS) celebrates its 70th anniversary. With the creation of the NHS in 1948, universal health coverage was finally implemented in the UK, with the NHS replacing the previous patchy health coverage schemes that had left many people with limited access to health services. Although the NHS has achieved much since 1948, in recent years we have seen the NHS facing new challenges such as the very slow real-terms per capita increase in NHS spending since the global financial crisis in 2008. In this edition of our newsletter, you can read about the work we are doing to help the NHS continue to deliver comprehensive and high-quality healthcare to the residents of the UK. This includes our work on the use of video-consultations and on using professional groups such as pharmacists to take on some of the work currently carried out by doctors. Professor Azeem Majeed Head of Department of Primary Care and Public Health Imperial College London We welcome feedback on the newsletter and are taking submissions for future issues. ARCHIVE Email your news, events, achievements and stories to us. [email protected] PCPH eMagazine Team Subscribe Unsubscribe Javier Gallego Mehrosa Memood Copyright © 2018 Department of Primary Care & Public Health, Imperial College London In the News Photo: Doctor by MIKI Yoshihito - Creative Commons A study published in the journal BMJ Quality and Safety concluded that extending GP opening hours will not ease the rising burden on Accident and Emergency departments. -
Donald Lynden-Bell (1935–2018)
RETROSPECTIVE RETROSPECTIVE Donald Lynden-Bell (1935–2018) Martin J. Reesa,1 Donald Lynden-Bell was lucky in his heredity and his film-maker, Alison Rose, accompanied them and created environment. His great-grandfather knew the famous a movie called Star Men,inwhichtheprotagonists(all astronomer John Herschel. His father, an army Colo- elderly) reminisced about life, the universe, and every- nel, inherited a telescope and introduced Donald to thing. Donald, a keen mountaineer in his youth, enjoyed the wonders of the sky. At his school, Marlborough making this movie and spoke at several special showings. College, Donald was exceedingly well taught. He came But the most important event for Donald in his up to Clare College to read mathematics. In his second postdoctorate years was his marriage to Ruth in 1961. year, he was supervised by the great physicist Abdus She moved to California to finish her chemistry doctor- Salam, who advised him to divert for a year to study ate, but they both returned to Cambridge in 1962. physics, which Donald did before returning to mathe- Donald then became an assistant lecturer in matics for his fourth year. He thereby had a superb mathematics and a Fellow of Clare College. I attended launching-pad for research. his course on statistical mechanics. It was one of his Donald’s doctoral supervisor was Leon Mestel, a favorite subjects and he gave spirited performances. world expert on cosmic magnetism. But Donald found But Donald felt his teaching obligations didn’t leave Leon’sproblems“too intractable,” so instead he began to enough time for research, so he soon moved to the forge his lifetime interest in stel- Royal Observatory at Herstmonceux in Sussex.