B COMMISSION REGULATION (EU) No 10/2011 of 14
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) Patent Application Publication (10) Pub. No.: US 2014/0155647 A1 Dubois (43) Pub
US 2014O155647A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0155647 A1 Dubois (43) Pub. Date: Jun. 5, 2014 (54) METHOD FOR THE SYNTHESIS OF DIACIDS Publication Classification OR DESTERS FROMINATURAL FATTY ACDS AND/ORESTERS (51) Int. Cl. C07C 67/303 (2006.01) (71) Applicant: Arkema France, Colombes (FR) CD7C5L/36 (2006.01) (52) U.S. Cl. (72) Inventor: Jean-Luc Dubois, Millery (FR) CPC ............... C07C 67/303 (2013.01); C07C 51/36 (2013.01) (21) Appl. No.: 13/946,292 USPC ........................................... 560/190; 562/592 (57) ABSTRACT (22) Filed: Jul.19, 2013 Disclosed herein a process for the synthesis of diacids or diesters of general formula ROOC (CH)x-COOR, in O O which in represents an integer between 5 and 14 and R is either Related U.S. Application Data H or an alkyl radical of 1 to 4 carbon atoms, starting from (63) Continuation of application No. 12/664,182, filed on long-chain natural monounsaturated fatty acids or esters Apr. 21, 2010, now abandoned, filed as application No. comprising at least 10 adjacent carbonatoms per molecule, of PCT/FR2008/051038 on Jun. 11, 2008. formula CH (CH)n-CHR—CH2—CH=CH-(CH2)p- COOR, in which R represents Horan alkyl radical compris (30) Foreign Application Priority Data ing from 1 to 4 carbon atoms, R is either H or OH, and n and p, which are identical or different, are indices between 2 and Jun. 13, 2007 (FR) ....................................... O755733 11. US 2014/O 155647 A1 Jun. 5, 2014 METHOD FOR THE SYNTHESIS OF DACDS -continued OR DESTERS FROMINATURAL FATTY ACDS AND/ORESTERS 0001. -
(12) Patent Application Publication (10) Pub. No.: US 2015/0337275 A1 Pearlman Et Al
US 20150337275A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0337275 A1 Pearlman et al. (43) Pub. Date: Nov. 26, 2015 (54) BOCONVERSION PROCESS FOR Publication Classification PRODUCING NYLON-7, NYLON-7.7 AND POLYESTERS (51) Int. C. CI2N 9/10 (2006.01) (71) Applicant: INVISTATECHNOLOGIES S.a.r.l., CI2P 7/40 (2006.01) St. Gallen (CH) CI2PI3/00 (2006.01) CI2PI3/04 (2006.01) (72) Inventors: Paul S. Pearlman, Thornton, PA (US); CI2P 13/02 (2006.01) Changlin Chen, Cleveland (GB); CI2N 9/16 (2006.01) Adriana L. Botes, Cleveland (GB); Alex CI2N 9/02 (2006.01) Van Eck Conradie, Cleveland (GB); CI2N 9/00 (2006.01) Benjamin D. Herzog, Wichita, KS (US) CI2P 7/44 (2006.01) CI2P I 7/10 (2006.01) (73) Assignee: INVISTATECHNOLOGIES S.a.r.l., (52) U.S. C. St. Gallen (CH) CPC. CI2N 9/13 (2013.01); C12P 7/44 (2013.01); CI2P 7/40 (2013.01); CI2P 13/005 (2013.01); (21) Appl. No.: 14/367,484 CI2P 17/10 (2013.01); CI2P 13/02 (2013.01); CI2N 9/16 (2013.01); CI2N 9/0008 (2013.01); (22) PCT Fled: Dec. 21, 2012 CI2N 9/93 (2013.01); CI2P I3/04 (2013.01); PCT NO.: PCT/US2012/071.472 CI2P 13/001 (2013.01); C12Y 102/0105 (86) (2013.01) S371 (c)(1), (2) Date: Jun. 20, 2014 (57) ABSTRACT Embodiments of the present invention relate to methods for Related U.S. Application Data the biosynthesis of di- or trifunctional C7 alkanes in the (60) Provisional application No. -
Sustainable Synthesis of Omega-3 Fatty Acid Ethyl Esters from Monkfish Liver Oil
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 September 2020 doi:10.20944/preprints202009.0020.v1 Article Sustainable synthesis of omega-3 fatty acid ethyl esters from monkfish liver oil Johanna Aguilera-Oviedo 1,2, Edinson Yara-Varón 1,2, Mercè Torres 2,3, Ramon Canela-Garayoa 1,2,*and Mercè Balcells 1,2 1 Department of Chemistry, University of Lleida, Avda. Alcalde Rovira Roure 191, 25198 Lleida, Spain; [email protected] (J.A.-O.); [email protected] (E.Y.-V.); [email protected] (M.B.) 2 Centre for Biotechnological and Agrofood Developments (Centre DBA), University of Lleida, Avda. Alcalde Rovira Roure 191, 25198 Lleida, Spain; [email protected] 3 Department of Food Technology, University of Lleida, Avda. Alcalde Rovira Roure 191, 25198 Lleida, Spain. * Correspondence: [email protected];Tel.: (+34-973702841) Received: date; Accepted: date; Published: date Abstract: The search for economical and sustainable sources of PUFAs within the framework of the circular economy is encouraged by their proven beneficial effects on health. The extraction of monkfish liver oil (MLO) for the synthesis of omega-3 ethyl esters was performed evaluating two blending systems and four green solvents. Moreover, the potential solubility of the MLO in green solvents was studied using the predictive simulation software COSMO-RS. The production of the ethyl esters was performed by one or two step reactions. Novozym 435, two resting cells (Aspergillus flavus and Rhizopus oryzae) obtained in our laboratory and mix of them were used as biocatalysts in a solvent-free system. The yields for Novozym 435, R. -
Fatty Acid Composition of Oil from Adapted Elite Corn Breeding Materials Francie G
Food Science and Human Nutrition Publications Food Science and Human Nutrition 9-1995 Fatty Acid Composition of Oil from Adapted Elite Corn Breeding Materials Francie G. Dunlap Iowa State University Pamela J. White Iowa State University, [email protected] Linda M. Pollak United States Department of Agriculture Thomas J. Brumm MBS Incorporated, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/fshn_hs_pubs Part of the Agronomy and Crop Sciences Commons, Bioresource and Agricultural Engineering Commons, Food Science Commons, and the Nutrition Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ fshn_hs_pubs/2. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Food Science and Human Nutrition at Iowa State University Digital Repository. It has been accepted for inclusion in Food Science and Human Nutrition Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Fatty Acid Composition of Oil from Adapted Elite Corn Breeding Materials Abstract The fatty acid composition of corn oil can be altered to meet consumer demands for “healthful” fats (i.e., lower saturates and higher monounsaturates). To this end, a survey of 418 corn hybrids and 98 corn inbreds grown in Iowa was done to determine the fatty acid composition of readily-available, adapted, elite corn breeding materials. These materials are those used in commercial hybrid production. Eighty-seven hybrids grown in France (18 of which also were grown in lowa) were analyzed to determine environmental influence on fatty acid content. -
The Occurrence of Very Long-Chain Fatty Acids in Oils from Wild Plant Species Originated from Kivu, Democratic Republic of the Congo
JOURNAL OF ADVANCEMENT IN MEDICAL AND LIFE SCIENCES Journal homepage: http://scienceq.org/Journals/JALS.php Research Article Open Access The Occurrence of Very Long-Chain fatty acids in oils from Wild Plant species Originated from Kivu, Democratic Republic of the Congo M. Kazadi1, P.T. Mpiana2*, M.T. Bokota3, KN Ngbolua2, S. Baswira4 and P. Van Damme5 1Dapartement de Biologie, Centre de Recherches en Sciences Naturelles, Lwiro, Sud Kivu, D.R.Congo 2 Faculté des Sciences B.P. 190, Université de Kinshasa, Kinshasa XI, D.R. Congo 3Faculté des Sciences, Université de Kisangani, Kisangani, D.R. Congo 4Department de Chimie, Institut Supérieur Pédagogique de Bukavu, D.R. Congo 5Department of Plant Production, Tropical & Subtropical Agriculture & Ethno-botany, Gent University, Belgium. *Corresponding author: P.T. Mpiana, Contact no: +243818116019, E-mail: [email protected] Received: September 8, 2014, Accepted: October 28, 2014, Published: October 29, 2014. ABSTRACT Fatty acids C20-C26 are important for use in oleo-chemical industry whereas they also allow assessing chemotaxonomic relationships among plant taxa. There are however, comparatively few common vegetable fats which contain them in appreciable amounts.Using gas chromatography this type of very long-chain fatty acids was analyzed in oils from Pentaclethra macrophylla (Fabaceae), Millettia dura (Fabaceae), Tephrosia vogelii (Fabaceae),Cardiospermum halicacabum (Sapindaceae), Maesopsis eminii (Rhamnaceae), Podocarpus usambarensis (Podocarpaceae) and Myrianthus arboreus and M. holstii (Moraceae),wild plant species from Kahuzi-Biega National Park and adjacent areas in D.R. Congo. These plants are used by the local population mainly for nutrition and medical purposes.The percentage of very-long chain fatty acids in the analyzed oils ranged from 1.2 to 21.3%. -
Carotenoid Composition of Strawberry Tree (Arbutus Unedo L.) Fruits
Accepted Manuscript Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits Raúl Delgado-Pelayo, Lourdes Gallardo-Guerrero, Dámaso Hornero-Méndez PII: S0308-8146(15)30273-9 DOI: http://dx.doi.org/10.1016/j.foodchem.2015.11.135 Reference: FOCH 18476 To appear in: Food Chemistry Received Date: 25 May 2015 Revised Date: 21 November 2015 Accepted Date: 28 November 2015 Please cite this article as: Delgado-Pelayo, R., Gallardo-Guerrero, L., Hornero-Méndez, D., Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits, Food Chemistry (2015), doi: http://dx.doi.org/10.1016/j.foodchem. 2015.11.135 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits. Raúl Delgado-Pelayo, Lourdes Gallardo-Guerrero, Dámaso Hornero-Méndez* Group of Chemistry and Biochemistry of Pigments. Food Phytochemistry Department. Instituto de la Grasa (CSIC). Campus Universidad Pablo de Olavide, Ctra. de Utrera km. 1. 41013 - Sevilla (Spain). * Corresponding author. Telephone: +34 954611550; Fax: +34 954616790; e-mail: [email protected] 1 Abstract The carotenoid composition of strawberry tree (A. unedo) fruits has been characterised in detail and quantified for the first time. According to the total carotenoid content (over 340 µg/g dw), mature strawberry tree berries can be classified as fruits with very high carotenoid content (> 20 µg/g dw). -
Fatty Acid Composition of Cosmetic Argan Oil: Provenience and Authenticity Criteria
molecules Article Fatty Acid Composition of Cosmetic Argan Oil: Provenience and Authenticity Criteria Milena BuˇcarMiklavˇciˇc 1, Fouad Taous 2, Vasilij Valenˇciˇc 1, Tibari Elghali 2 , Maja Podgornik 1, Lidija Strojnik 3 and Nives Ogrinc 3,* 1 Science and Research Centre Koper, Institute for Olive Culture, 6000 Koper, Slovenia; [email protected] (M.B.M.); [email protected] (V.V.); [email protected] (M.P.) 2 Centre National De L’énergie, Des Sciences Et Techniques Nucleaires, Rabat 10001, Morocco; [email protected] (F.T.); [email protected] (T.E.) 3 Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; [email protected] * Correspondence: [email protected]; Tel.: +386-1588-5387 Academic Editor: George Kokotos Received: 17 July 2020; Accepted: 3 September 2020; Published: 7 September 2020 Abstract: In this work, fatty-acid profiles, including trans fatty acids, in combination with chemometric tools, were applied as a determinant of purity (i.e., adulteration) and provenance (i.e., geographical origin) of cosmetic grade argan oil collected from different regions of Morocco in 2017. The fatty acid profiles obtained by gas chromatography (GC) showed that oleic acid (C18:1) is the most abundant fatty acid, followed by linoleic acid (C18:2) and palmitic acid (C16:0). The content of trans-oleic and trans-linoleic isomers was between 0.02% and 0.03%, while trans-linolenic isomers were between 0.06% and 0.09%. Discriminant analysis (DA) and orthogonal projection to latent structure—discriminant analysis (OPLS-DA) were performed to discriminate between argan oils from Essaouira, Taroudant, Tiznit, Chtouka-Aït Baha and Sidi Ifni. -
Amt-10-1373-2017-Supplement.Pdf
Supplement of Atmos. Meas. Tech., 10, 1373–1386, 2017 http://www.atmos-meas-tech.net/10/1373/2017/ doi:10.5194/amt-10-1373-2017-supplement © Author(s) 2017. CC Attribution 3.0 License. Supplement of New insights into atmospherically relevant reaction systems using direct analysis in real-time mass spectrometry (DART-MS) Yue Zhao et al. Correspondence to: Barbara J. Finlayson-Pitts (bjfi[email protected]) The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence. 31 1. Particle size distributions for amine-reacted diacids and -cedrene secondary organic 32 aerosol (SOA) particles. 33 1.1 Amine-reacted diacid particles. 34 At the exit of the flow reactor, size distributions of the amine-reacted diacid particles were 35 collected using a scanning mobility particle sizer (SMPS, TSI) consisting of an electrostatic 36 classifier (model 3080), a long differential mobility analyzer (DMA, model 3081) and a 37 condensation particle counter (model 3025A or 3776). Typical surface weighted size 38 distributions for (a) malonic acid (C3), (b) glutaric acid (C5), and (c) pimelic acid (C7) reacted 39 particles are presented in Fig. S1, with size distribution statistics given in Table S1. To reflect 40 the ~10% loss of amine-diacid particles in the denuder, a correction factor, Cf, of 1.1 was applied 41 when calculating the fraction of amine in the particles, fp. 3 (a) Malonic acid particles 1.6 (b) Glutaric acid particles ) ) w/o denuder -3 w/o denuder -3 w/ denuder w/ denuder cm cm 1.2 2 2 2 cm cm -4 -4 0.8 (10 (10 p p 1 0.4 dS/dlogD dS/dlogD 0 0.0 100 1000 100 1000 D (nm) D (nm) 42 p p 3 (c) Pimelic acid particles w/o denuder ) -3 w/ denuder Figure S1. -
(12) United States Patent (10) Patent No.: US 9,023,626 B2 Dubois (45) Date of Patent: May 5, 2015
USOO9023626B2 (12) United States Patent (10) Patent No.: US 9,023,626 B2 Dubois (45) Date of Patent: May 5, 2015 (54) METHODS FOR THE SYNTHESIS OF FATTY FOREIGN PATENT DOCUMENTS DACDS BY THE METATHESIS OF UNSATURATED DACDS OBTANED BY GB 2043052 10, 1980 FERMENTATION OF NATURAL FATTY OTHER PUBLICATIONS ACDS Eschenfeldt, W. H. et al., Transformation of Fatty Acids Catalyzed by Cytochrome P450 Monooxygenase Enzymes of Candida (75) Inventor: Jean-Luc Dubois, Millery (FR) tropicalis, Applied and Environmental Microbiology, Oct. 2003, pp. 5992-5999. (73) Assignee: Arkema France, Colombes (FR) Schaverien, C.J., et al., A Well-Characterized Highly Active Lewis Acid Free Olefin Metathesis Catalyst, J. Am. Chem. Soc., 1986, 108, (*) Notice: Subject to any disclaimer, the term of this pp. 2771-2773. patent is extended or adjusted under 35 Couturier, J.-L. et al., A Cyclometalated Arloxy(chloro) U.S.C. 154(b) by 667 days. neopentylidene-tungsten Complex: A Highly Active and Steroselec tive Catalyst for the Metathesis of cis- and trans-2-Pentene, Norborene, 1-Methyl-norborene, and Ethyl Pleate, Angew. Chem. (21) Appl. No.: 12/678,366 Int. Ed. Engl., 31. No. 5, 1992, pp. 628-631. Schwab, P. et al., A Seris of Well-Defined Metathesis Catalysts (22) PCT Filed: Sep. 17, 2008 Synthesis of RuCl2(=CHR)(PR3)2 and Its Reactions, Angew. Chem. Int. Ed. Engl., 34, No. 18, 1995, pp. 2039-2041. (86). PCT No.: PCT/FR2008/OS 1664 Scholl, M. et al., Synthesis and Activity of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1,3- S371 (c)(1), Dimestyl-4,5-dihydroimidazol-2-ylidene Lignads, Organic Letters, (2), (4) Date: Mar. -
Production of Malonic Acid Through the Fermentation of Glucose
University of Pennsylvania ScholarlyCommons Department of Chemical & Biomolecular Senior Design Reports (CBE) Engineering 4-20-2018 Production of Malonic Acid through the Fermentation of Glucose Emily P. Peters University of Pennsylvania, [email protected] Gabrielle J. Schlakman University of Pennsylvania, [email protected] Elise N. Yang University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/cbe_sdr Part of the Biochemical and Biomolecular Engineering Commons Peters, Emily P.; Schlakman, Gabrielle J.; and Yang, Elise N., "Production of Malonic Acid through the Fermentation of Glucose" (2018). Senior Design Reports (CBE). 107. https://repository.upenn.edu/cbe_sdr/107 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cbe_sdr/107 For more information, please contact [email protected]. Production of Malonic Acid through the Fermentation of Glucose Abstract The overall process to produce malonic acid has not drastically changed in the past 50 years. The current process is damaging to the environment and costly, requiring high market prices. Lygos, Inc., a lab in Berkeley, California, has published a patent describing a way to produce malonic acid through the biological fermentation of genetically modified easty cells. This proposed technology is appealing as it is both better for the environment and economically friendly. For the process discussed in this report, genetically modified Pichia Kudriavzevii yeast cells will be purchased from the Lygos lab along with the negotiation of exclusive licensing rights to the technology. The cells will be grown in fermentation vessels, while being constantly fed oxygen, glucose and fermentation media. The cells will excrete malonic acid in the 101 hour fermentation process. -
Research Article
z Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 7, Issue, 08, pp.19355-19361, August, 2015 ISSN: 0975-833X RESEARCH ARTICLE A COMPREHENSIVE REVIEW OF THE VERSATILE PUMPKIN SEEDS (CUCURBITA MAXIMA) AS A VALUABLE NATURAL MEDICINE *Sohini Roy and Santa Datta Department of Home Science, University of Calcutta, Kolkata-700027, India ARTICLE INFO ABSTRACT Article History: The seeds of Cucurbita maxima (pumpkin seeds) have been generally considered as agro-wastes and Received 20th May, 2015 discarded inspite of having its high nutritional value as well as medicinal benefits. Pumpkin seeds Received in revised form contain high amount of protein, fatty acids, considerable amount of micronutrients like P, K, Mg, Mn 15th June, 2015 and Ca. It is a good source of choline, an essential component for brain development. Pumpkin seed Accepted 15th July, 2015 extracts and oils have been found useful in the treatment of Benign Prostatic Hyperplasia (BPH), Published online 31st August, 2015 parasite infestation, acrodermatitis enteropathica, hyperlipidemia, diabetes, depression to name a few. The observed benefits can attributed to the presence of bioactive components like phytosterols (eg, Key words: beta-sitosterol, stigmasterol), tocopherols, selenium (antioxidant), cucurbitin, squalene, lignan, and Pumpkin seeds, cardioprotective unsaturated fatty acids. Recent research has shone a light on the ever growing list of Phytosterol, Antioxidant, benefits of pumpkin seeds as a valuable food . Benign Prostatic Hyperplasia, Anthelmintic . Copyright © 2015 Sohini Roy and Santa Datta. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -
Author's Response
We thank the referees for their additional comments. We have revised the manuscript following the referees’ suggestions. You can find answers to the referee comments (in italics) below with additions to the manuscript and supplement text (in bold). Referee #1 The authors have provided responses to the questions, comments and issues pointed out by both referees. They have carried out 5 additional calculations and have modified the manuscript to account for suggested changes, where applicable. For this second round of reviews of this technical note, I will focus on the replies and manuscript sections with changes. Most of the issues raised in the first round have been addressed well. I have found a few issues to be further addressed before this manuscript is finalized for publication. The line numbers used in the following comments are those from the revised manuscript (ms version 3). 10 line 300: Regarding the acid dissociation reaction (R2) notation for oxalic acid, it is a bit odd that you write the reaction − + using HA for the acid, given that oxalic acid is a diacid. It would be better to write the reaction as H2A+H2O = HA +H3O and perhaps also list the second dissociation reaction involving HA− (even if not considered by COSMO-RS-DARE). Further along these lines, from the main text alone it remains unclear whether both acid dissociation reactions were considered in the 15 model or not; should be clarified. Author’s response: Thank you for this suggestion. We have added the second deprotonation reaction to the equilibrium reaction (R2). We also mention in the text why only the first deprotonation was considered.