(12) Patent Application Publication (10) Pub. No.: US 2014/0155647 A1 Dubois (43) Pub

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2014/0155647 A1 Dubois (43) Pub US 2014O155647A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0155647 A1 Dubois (43) Pub. Date: Jun. 5, 2014 (54) METHOD FOR THE SYNTHESIS OF DIACIDS Publication Classification OR DESTERS FROMINATURAL FATTY ACDS AND/ORESTERS (51) Int. Cl. C07C 67/303 (2006.01) (71) Applicant: Arkema France, Colombes (FR) CD7C5L/36 (2006.01) (52) U.S. Cl. (72) Inventor: Jean-Luc Dubois, Millery (FR) CPC ............... C07C 67/303 (2013.01); C07C 51/36 (2013.01) (21) Appl. No.: 13/946,292 USPC ........................................... 560/190; 562/592 (57) ABSTRACT (22) Filed: Jul.19, 2013 Disclosed herein a process for the synthesis of diacids or diesters of general formula ROOC (CH)x-COOR, in O O which in represents an integer between 5 and 14 and R is either Related U.S. Application Data H or an alkyl radical of 1 to 4 carbon atoms, starting from (63) Continuation of application No. 12/664,182, filed on long-chain natural monounsaturated fatty acids or esters Apr. 21, 2010, now abandoned, filed as application No. comprising at least 10 adjacent carbonatoms per molecule, of PCT/FR2008/051038 on Jun. 11, 2008. formula CH (CH)n-CHR—CH2—CH=CH-(CH2)p- COOR, in which R represents Horan alkyl radical compris (30) Foreign Application Priority Data ing from 1 to 4 carbon atoms, R is either H or OH, and n and p, which are identical or different, are indices between 2 and Jun. 13, 2007 (FR) ....................................... O755733 11. US 2014/O 155647 A1 Jun. 5, 2014 METHOD FOR THE SYNTHESIS OF DACDS -continued OR DESTERS FROMINATURAL FATTY ACDS AND/ORESTERS 0001. The invention is targeted at a process for the synthe OH sis by metathesis of Saturated long-chain diacids or diesters OH starting from a monounsaturated fatty acid or fatty ester which is either natural or originates from the direct conver sion of a natural oil. 0002 Diacids are obtained industrially by various meth Adipic acid ods, all of which, however, exhibit some disadvantages. A great variety of these methods is enlarged upon in the Kirk Othmer Encyclopedia, Vol. A8, pages 523-539. 0003. It is possible to distinguish therein methods by deg radation, such as oZonolysis or oxidation, of vegetable fatty 0004. The ozonolysis of oleic acid, of petroselinic acid and acids. of erucic acid makes it possible to respectively produce the diacids comprising 9, 6 and 13 carbonatoms according to the OH above reaction process for petroselinic acid. 0005. Another example is the cleavage of ricinoleic acid -n-n-n-n-n-N---so by the action of sodium hydroxide at a temperature of greater Petroselinic acid than 180°C. This method, used industrially, makes it possible to obtain the diacid comprising 10 carbon atoms. The same method, as illustrated in the scheme below, can be OH applied to lesquerolic acid and results in the formation of a diacid comprising 12 carbon atoms. This method exhibits the advantage of using renewable start Lauric acid ing materials but is restricted essentially to the Co diacid, -- lesquerolic acid being still not very widespread, and thus this method is relatively little used. OH OH CH Ricinoleic acid OR OH OH N CH Lesquerolic acid NaOH, 180-250° / Not 2500 C. US 2014/O 155647 A1 Jun. 5, 2014 -continued O OH ~~~~~ O OH O OR OH O OR ~~~~. OH OH -- O O ~~~~ OH CH3 OH --~~~ CH 0006 Mention may also be made of the oxidative degra acids oleic (cis-9-octadecenoic) acid, elaidic (trans-9-octade dation of monocarboxylic acids by the action of NO. The cenoic) acid, petroselinic (cis-6-octadecenoic) acid, vaccenic oxidation of stearic acid makes it possible to obtain a mixture (cis-11-octadecenoic) acid and ricinoleic (12-hydroxy-cis-9- of sebacic acid and of caprylic acid; Suberic acid can be octadecenoic) acid, the Co acids gadoleic (cis-9-eicosenoic) obtained from palmitic acid. acid, gondoic (cis-11-eicosenoic) acid, cis-5-eicosenoic acid 0007. It is also possible to obtain diacids from smaller and lesquerolic (14-hydroxy-cis-11-eicosenoic) acid, and the molecules by using variant techniques of carbonylation. C. acids cetoleic (cis-11-docosenoic) acid and erucic (cis 0008 Finally, mention may be made of the bacterial fer 13-docosenoic) acid. mentation of paraffins, a well known method which makes it 0014. These various acids result from the vegetable oils possible to obtain numerous diacids of variable chain length. extracted from various plants, such as Sunflower, rape, castor However, this method does not make it possible to obtain oil plant, bladderpod, olive, soya, palm tree, coriander, celery, diacids with a length of greater than 16 carbon atoms as the dill, carrot, fennel or Limnanthes alba (meadowfoam). paraffins then have a melting point which is far too high for 0015 They also result from the terrestrial or marine ani conversion to be possible. Another major disadvantage is that mal world and, in the latter case, both in the form of fish or the bacteria consume a portion of the paraffins in order to mammals, on the one hand, and of algae, on the other hand. provide for their growth, resulting in low yields and in the They are in general fats originating from ruminants, from fish, need to purify the products. Such as the cod, or from marine mammals, such as whales or 0009. In the polymer industry, in particular for the produc dolphins. tion of polyamides of diacids/diamines type or of industrial polymers, it is necessary to have available a whole range of 0016. The invention is targeted at a process for the synthe diacids as starting materials, which diacids can in addition be sis of diacids or diesters of general formula ROOC (CH) converted to diamines of the same chain length by a simple COOR, in which X represents an integer between 5 and 24 chemical reaction. and R is either H or an alkyl radical of 1 to 4 carbon atoms, starting from long-chain natural monounsaturated fatty acids 0010. It is therefore necessary to find a type of process or esters comprising at least 10 adjacent carbon atoms per which makes it possible to obtain a virtually complete range molecule, of formula CH (CH), CHR CH of diacids and which, in addition, uses renewable materials of CH=CH-(CH2). COOR, in which R represents Horan natural origin. alkyl radical comprising from 1 to 4 carbonatoms, R is either 0011. The object of the invention is a process for the pro H or OH, and n and p, which are identical or different, are duction of a whole range of Saturated diacids or diesters of indices between 2 and 11, preferably between 3 and 11, which general formula ROOC (CH), COOR starting from fatty consists, in a first stage, in converting said natural fatty acid or acids of natural origin. ester, either by pyrolysis or by ethenolysis (ethylene cross 0012. The solution provided consists in carrying out the metathesis), into an W-monounsaturated fatty acid or ester of operation starting from long-chain natural monounsaturated general formula CH2=CH-(CH2), COOR, in which mis fatty acids. Long-chain natural fatty acid is understood to equal to p or p--1, depending on the nature of the fatty acid/ mean an acid resulting from plant or animal sources, includ ester treated and the conversion used, ethenolysis or pyroly ing algae, more generally from the plant kingdom, which are sis, then, in a second stage, in Subjecting the product thus thus renewable, comprising at least 10 and preferably at least obtained to a metathesis reaction, either homometathesis, in 14 carbon atoms per molecule. order to obtain a compound of formula ROOC (CH), 0013 Mention may be made, as examples of such acids, of CH=CH-(CH), COOR, or cross-metathesis with a the Co acids obtusilic (cis-4-decenoic) acid and caproleic compound of formula ROOC (CH), CH=CH-R, in (cis-9-decenoic) acid, the C acids lauroleic (cis-5-dode which R is either Horan alkyl radical comprising from 1 to cenoic) acid and linderic (cis-4-dodecenoic) acid, the Ca 4 carbon atoms, r is either 0 or 1 or 2 and R is H, CH or acids myristoleic (cis-9-tetradecenoic) acid, physeteric (cis COOR, in the last case forming a cyclic or noncyclic mol 5-tetradecenoic) acid and tsuZuic (cis-4-tetradecenoic) acid, ecule, in order to obtain an unsaturated compound of formula the C acid palmitoleic (cis-9-hexadecenoic) acid, the Cs ROOC (CH), CH=CH-(CH), COOR, and then, US 2014/O 155647 A1 Jun. 5, 2014 in a third stage, in finally converting, by hydrogenation of the acid, both oleic acid and linoleic acid; and rapeseed oil com double bond, the unsaturated compound to give a saturated prises, in addition to oleic acid, simultaneously linoleic acid, compound. linolenic acid and gadoleic acid. The presence of these diun 0017. The natural monounsaturated fatty acid or ester of saturated or polyunsaturated acids is not of major conse general formula CH (CH), CHOH-CH CH=CH-(CH2). COOR can be subjected to a pyrolysis quence with regard to the progression of the process insofar reaction. as, during the first stage, in the case of ethenolysis, linoleic 0018. The acid or the ester of formula CH=CH-(CH) acid will also form the w-monounsaturated fatty acid of gen —COOR resulting from the first stage can be subjected to eral formula CH2=CH (CH), COOR, with minor a homometathesis, the product of which, ROOC (CH.) amounts of short dienes and of C-olefins. In the case of 1 CH=CH-(CH2).
Recommended publications
  • Sustainable Synthesis of Omega-3 Fatty Acid Ethyl Esters from Monkfish Liver Oil
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 September 2020 doi:10.20944/preprints202009.0020.v1 Article Sustainable synthesis of omega-3 fatty acid ethyl esters from monkfish liver oil Johanna Aguilera-Oviedo 1,2, Edinson Yara-Varón 1,2, Mercè Torres 2,3, Ramon Canela-Garayoa 1,2,*and Mercè Balcells 1,2 1 Department of Chemistry, University of Lleida, Avda. Alcalde Rovira Roure 191, 25198 Lleida, Spain; [email protected] (J.A.-O.); [email protected] (E.Y.-V.); [email protected] (M.B.) 2 Centre for Biotechnological and Agrofood Developments (Centre DBA), University of Lleida, Avda. Alcalde Rovira Roure 191, 25198 Lleida, Spain; [email protected] 3 Department of Food Technology, University of Lleida, Avda. Alcalde Rovira Roure 191, 25198 Lleida, Spain. * Correspondence: [email protected];Tel.: (+34-973702841) Received: date; Accepted: date; Published: date Abstract: The search for economical and sustainable sources of PUFAs within the framework of the circular economy is encouraged by their proven beneficial effects on health. The extraction of monkfish liver oil (MLO) for the synthesis of omega-3 ethyl esters was performed evaluating two blending systems and four green solvents. Moreover, the potential solubility of the MLO in green solvents was studied using the predictive simulation software COSMO-RS. The production of the ethyl esters was performed by one or two step reactions. Novozym 435, two resting cells (Aspergillus flavus and Rhizopus oryzae) obtained in our laboratory and mix of them were used as biocatalysts in a solvent-free system. The yields for Novozym 435, R.
    [Show full text]
  • Fatty Acid Composition of Oil from Adapted Elite Corn Breeding Materials Francie G
    Food Science and Human Nutrition Publications Food Science and Human Nutrition 9-1995 Fatty Acid Composition of Oil from Adapted Elite Corn Breeding Materials Francie G. Dunlap Iowa State University Pamela J. White Iowa State University, [email protected] Linda M. Pollak United States Department of Agriculture Thomas J. Brumm MBS Incorporated, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/fshn_hs_pubs Part of the Agronomy and Crop Sciences Commons, Bioresource and Agricultural Engineering Commons, Food Science Commons, and the Nutrition Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ fshn_hs_pubs/2. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Food Science and Human Nutrition at Iowa State University Digital Repository. It has been accepted for inclusion in Food Science and Human Nutrition Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Fatty Acid Composition of Oil from Adapted Elite Corn Breeding Materials Abstract The fatty acid composition of corn oil can be altered to meet consumer demands for “healthful” fats (i.e., lower saturates and higher monounsaturates). To this end, a survey of 418 corn hybrids and 98 corn inbreds grown in Iowa was done to determine the fatty acid composition of readily-available, adapted, elite corn breeding materials. These materials are those used in commercial hybrid production. Eighty-seven hybrids grown in France (18 of which also were grown in lowa) were analyzed to determine environmental influence on fatty acid content.
    [Show full text]
  • The Occurrence of Very Long-Chain Fatty Acids in Oils from Wild Plant Species Originated from Kivu, Democratic Republic of the Congo
    JOURNAL OF ADVANCEMENT IN MEDICAL AND LIFE SCIENCES Journal homepage: http://scienceq.org/Journals/JALS.php Research Article Open Access The Occurrence of Very Long-Chain fatty acids in oils from Wild Plant species Originated from Kivu, Democratic Republic of the Congo M. Kazadi1, P.T. Mpiana2*, M.T. Bokota3, KN Ngbolua2, S. Baswira4 and P. Van Damme5 1Dapartement de Biologie, Centre de Recherches en Sciences Naturelles, Lwiro, Sud Kivu, D.R.Congo 2 Faculté des Sciences B.P. 190, Université de Kinshasa, Kinshasa XI, D.R. Congo 3Faculté des Sciences, Université de Kisangani, Kisangani, D.R. Congo 4Department de Chimie, Institut Supérieur Pédagogique de Bukavu, D.R. Congo 5Department of Plant Production, Tropical & Subtropical Agriculture & Ethno-botany, Gent University, Belgium. *Corresponding author: P.T. Mpiana, Contact no: +243818116019, E-mail: [email protected] Received: September 8, 2014, Accepted: October 28, 2014, Published: October 29, 2014. ABSTRACT Fatty acids C20-C26 are important for use in oleo-chemical industry whereas they also allow assessing chemotaxonomic relationships among plant taxa. There are however, comparatively few common vegetable fats which contain them in appreciable amounts.Using gas chromatography this type of very long-chain fatty acids was analyzed in oils from Pentaclethra macrophylla (Fabaceae), Millettia dura (Fabaceae), Tephrosia vogelii (Fabaceae),Cardiospermum halicacabum (Sapindaceae), Maesopsis eminii (Rhamnaceae), Podocarpus usambarensis (Podocarpaceae) and Myrianthus arboreus and M. holstii (Moraceae),wild plant species from Kahuzi-Biega National Park and adjacent areas in D.R. Congo. These plants are used by the local population mainly for nutrition and medical purposes.The percentage of very-long chain fatty acids in the analyzed oils ranged from 1.2 to 21.3%.
    [Show full text]
  • Carotenoid Composition of Strawberry Tree (Arbutus Unedo L.) Fruits
    Accepted Manuscript Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits Raúl Delgado-Pelayo, Lourdes Gallardo-Guerrero, Dámaso Hornero-Méndez PII: S0308-8146(15)30273-9 DOI: http://dx.doi.org/10.1016/j.foodchem.2015.11.135 Reference: FOCH 18476 To appear in: Food Chemistry Received Date: 25 May 2015 Revised Date: 21 November 2015 Accepted Date: 28 November 2015 Please cite this article as: Delgado-Pelayo, R., Gallardo-Guerrero, L., Hornero-Méndez, D., Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits, Food Chemistry (2015), doi: http://dx.doi.org/10.1016/j.foodchem. 2015.11.135 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits. Raúl Delgado-Pelayo, Lourdes Gallardo-Guerrero, Dámaso Hornero-Méndez* Group of Chemistry and Biochemistry of Pigments. Food Phytochemistry Department. Instituto de la Grasa (CSIC). Campus Universidad Pablo de Olavide, Ctra. de Utrera km. 1. 41013 - Sevilla (Spain). * Corresponding author. Telephone: +34 954611550; Fax: +34 954616790; e-mail: [email protected] 1 Abstract The carotenoid composition of strawberry tree (A. unedo) fruits has been characterised in detail and quantified for the first time. According to the total carotenoid content (over 340 µg/g dw), mature strawberry tree berries can be classified as fruits with very high carotenoid content (> 20 µg/g dw).
    [Show full text]
  • Fatty Acid Composition of Cosmetic Argan Oil: Provenience and Authenticity Criteria
    molecules Article Fatty Acid Composition of Cosmetic Argan Oil: Provenience and Authenticity Criteria Milena BuˇcarMiklavˇciˇc 1, Fouad Taous 2, Vasilij Valenˇciˇc 1, Tibari Elghali 2 , Maja Podgornik 1, Lidija Strojnik 3 and Nives Ogrinc 3,* 1 Science and Research Centre Koper, Institute for Olive Culture, 6000 Koper, Slovenia; [email protected] (M.B.M.); [email protected] (V.V.); [email protected] (M.P.) 2 Centre National De L’énergie, Des Sciences Et Techniques Nucleaires, Rabat 10001, Morocco; [email protected] (F.T.); [email protected] (T.E.) 3 Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; [email protected] * Correspondence: [email protected]; Tel.: +386-1588-5387 Academic Editor: George Kokotos Received: 17 July 2020; Accepted: 3 September 2020; Published: 7 September 2020 Abstract: In this work, fatty-acid profiles, including trans fatty acids, in combination with chemometric tools, were applied as a determinant of purity (i.e., adulteration) and provenance (i.e., geographical origin) of cosmetic grade argan oil collected from different regions of Morocco in 2017. The fatty acid profiles obtained by gas chromatography (GC) showed that oleic acid (C18:1) is the most abundant fatty acid, followed by linoleic acid (C18:2) and palmitic acid (C16:0). The content of trans-oleic and trans-linoleic isomers was between 0.02% and 0.03%, while trans-linolenic isomers were between 0.06% and 0.09%. Discriminant analysis (DA) and orthogonal projection to latent structure—discriminant analysis (OPLS-DA) were performed to discriminate between argan oils from Essaouira, Taroudant, Tiznit, Chtouka-Aït Baha and Sidi Ifni.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,023,626 B2 Dubois (45) Date of Patent: May 5, 2015
    USOO9023626B2 (12) United States Patent (10) Patent No.: US 9,023,626 B2 Dubois (45) Date of Patent: May 5, 2015 (54) METHODS FOR THE SYNTHESIS OF FATTY FOREIGN PATENT DOCUMENTS DACDS BY THE METATHESIS OF UNSATURATED DACDS OBTANED BY GB 2043052 10, 1980 FERMENTATION OF NATURAL FATTY OTHER PUBLICATIONS ACDS Eschenfeldt, W. H. et al., Transformation of Fatty Acids Catalyzed by Cytochrome P450 Monooxygenase Enzymes of Candida (75) Inventor: Jean-Luc Dubois, Millery (FR) tropicalis, Applied and Environmental Microbiology, Oct. 2003, pp. 5992-5999. (73) Assignee: Arkema France, Colombes (FR) Schaverien, C.J., et al., A Well-Characterized Highly Active Lewis Acid Free Olefin Metathesis Catalyst, J. Am. Chem. Soc., 1986, 108, (*) Notice: Subject to any disclaimer, the term of this pp. 2771-2773. patent is extended or adjusted under 35 Couturier, J.-L. et al., A Cyclometalated Arloxy(chloro) U.S.C. 154(b) by 667 days. neopentylidene-tungsten Complex: A Highly Active and Steroselec tive Catalyst for the Metathesis of cis- and trans-2-Pentene, Norborene, 1-Methyl-norborene, and Ethyl Pleate, Angew. Chem. (21) Appl. No.: 12/678,366 Int. Ed. Engl., 31. No. 5, 1992, pp. 628-631. Schwab, P. et al., A Seris of Well-Defined Metathesis Catalysts (22) PCT Filed: Sep. 17, 2008 Synthesis of RuCl2(=CHR)(PR3)2 and Its Reactions, Angew. Chem. Int. Ed. Engl., 34, No. 18, 1995, pp. 2039-2041. (86). PCT No.: PCT/FR2008/OS 1664 Scholl, M. et al., Synthesis and Activity of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1,3- S371 (c)(1), Dimestyl-4,5-dihydroimidazol-2-ylidene Lignads, Organic Letters, (2), (4) Date: Mar.
    [Show full text]
  • Caraway As Important Medicinal Plants in Management of Diseases
    Natural Products and Bioprospecting https://doi.org/10.1007/s13659-018-0190-x (012 3456789().,- volV)(0123456789().,-volV) REVIEW Caraway as Important Medicinal Plants in Management of Diseases Mohaddese Mahboubi1 Received: 2 August 2018 / Accepted: 19 October 2018 Ó The Author(s) 2018 Abstract Carum carvi or caraway is traditionally used for treatment of indigestion, pneumonia, and as appetizer, galactagogue, and carminative. Essential oil, fixed oil and many other valuable extractive compounds with industrial applications are prepared from caraway. This review article has new deep research on caraway as medicinal plant. For preparing the manuscript, the information was extracted from accessible international databases (Google scholar, PubMed, Science direct, Springer, and Wiley), electronic resources and traditional books by key word of caraway or Carum carvi. The results of traditional studies exhibited that the galactagogue and carminative effects of caraway fruits are superior to other effects. Although, the traditional scholars used it as appetizer, while caraway was the main ingredient of anti-obesity drugs in traditional medicine, which has been confirmed in two modern clinical trials of human studies. Caraway oil in combination with peppermint oil or menthol is used for treatment of functional dyspepsia in clinical studies. Caraway oil topically on abdomen relieves the IBS symptoms in patient. Although, the use of caraway oil is not recommended in adults under 18 years due to insufficient data, but it can topically use as anti-colic and carminative agent in children or infants. The anti- aflatoxigenic, antioxidant and antimicrobial effects of caraway oil along with its reputation as spice help the industries to use it as natural preservatives and antioxidant agents.
    [Show full text]
  • SOLUBILITIES CT FATTX ACIDS IX Ffi»SD
    SOLUBILITIES CT FATTX ACIDS IX f f i » S D OROAMIC SQLVKWT8 AT 209 W r B ITW M DISSERTATION Pr«i«at«d In Partial Polflllatnt of tho Rofolromato Per the Degree Doctor of Philosophy in the Gtradaate Seheel of the Ohio State University By- Dor la KolLhe B.So • 0 M»Se* It The Ohio State Baieerelty 1953 Approved hyt ACEHOVLEDGMEHT To Dr* J, B» Brown go my sincerest thank# for his helpful counsel and his constant smile of encouragement* 1 also wish to thank Dr* M* S. Bowman, who kindly consented to act as my co-adviser. I am grateful to the University for the fellowship which for the past three years has been granted to me from funds allocated by the Research Foundation for fundamental research* 11 A 16487 TABLE OP CONTENTS Fag* I* STATEMENT CEF PROBIEM 1 XI • HISTORICAL 2 A. Review of Methods for Separating Fatty AcI da and Their Compound* 2 B. Development of the Low Temperature Crystallization Technique 19 C. Review of Previous Work on Fatty A d d Solubilities 23 III. EXPERIMENTAL 38 A. Plan of Investigation 36 B. Preparation of Fatty Aolds 1^2 C. Analyses Used for Criteria of Purity 59 D. Purification of Solvents 62 E. Procedure for Measuring Solubilities 62 IV. SOLUBILITY DATA ?0 V. DISCUSSION 85 VI. SUGGESTIONS FOR FUTURE WORK 100 SUMMARY 101 BIBLIOGRAPHY 101*. 111 INDEX TO TABLES P*g» 1. Fatty Aold Solubilities as Complied by Brown In 1941 29 2. Solubilities of the Saturated Acids 31 3* Solubilities of the Unsaturated Acids 32 4* Solubility Ratios of Fatty Acids Under Various Conditions 33 5» Typical Data of Singleton 34 6* Solubilities of Hoerr and Harwood for Oleic Acid 36 7.
    [Show full text]
  • Research Article
    z Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 7, Issue, 08, pp.19355-19361, August, 2015 ISSN: 0975-833X RESEARCH ARTICLE A COMPREHENSIVE REVIEW OF THE VERSATILE PUMPKIN SEEDS (CUCURBITA MAXIMA) AS A VALUABLE NATURAL MEDICINE *Sohini Roy and Santa Datta Department of Home Science, University of Calcutta, Kolkata-700027, India ARTICLE INFO ABSTRACT Article History: The seeds of Cucurbita maxima (pumpkin seeds) have been generally considered as agro-wastes and Received 20th May, 2015 discarded inspite of having its high nutritional value as well as medicinal benefits. Pumpkin seeds Received in revised form contain high amount of protein, fatty acids, considerable amount of micronutrients like P, K, Mg, Mn 15th June, 2015 and Ca. It is a good source of choline, an essential component for brain development. Pumpkin seed Accepted 15th July, 2015 extracts and oils have been found useful in the treatment of Benign Prostatic Hyperplasia (BPH), Published online 31st August, 2015 parasite infestation, acrodermatitis enteropathica, hyperlipidemia, diabetes, depression to name a few. The observed benefits can attributed to the presence of bioactive components like phytosterols (eg, Key words: beta-sitosterol, stigmasterol), tocopherols, selenium (antioxidant), cucurbitin, squalene, lignan, and Pumpkin seeds, cardioprotective unsaturated fatty acids. Recent research has shone a light on the ever growing list of Phytosterol, Antioxidant, benefits of pumpkin seeds as a valuable food . Benign Prostatic Hyperplasia, Anthelmintic . Copyright © 2015 Sohini Roy and Santa Datta. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • FATTY ACID PROFILES of ALASKAN ARCTIC FORAGE FISHES: EVIDENCE of REGIONAL and TEMPORAL VARIATION by Julia Dissen Dr.Tcatrin I Ke
    Fatty acid profiles of Alaskan Arctic forage fishes: evidence of regional and temporal variation Item Type Thesis Authors Dissen, Julia Download date 07/10/2021 21:00:15 Link to Item http://hdl.handle.net/11122/6083 FATTY ACID PROFILES OF ALASKAN ARCTIC FORAGE FISHES: EVIDENCE OF REGIONAL AND TEMPORAL VARIATION By Julia Dissen Dr.TCatrin I ken Program Head, Marine Sciences and Limnology APPROVED: Qfrl/l/i/t Dr. Joan Braddock FATTY ACID PROFILES OF ALASKAN ARCTIC FORAGE FISHES: EVIDENCE OF REGIONAL AND TEMPORAL VARIATION A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE By Julia Dissen, B.S. Fairbanks, AK August 2015 ABSTRACT Fatty acids, the main components of lipids, are crucial for energy storage and other physiological functions in animals and plants. Dietary fatty acids are incorporated and conserved in consumer tissues in predictable patterns and can be analyzed in animal tissues to determine the composition of an individual’s diet. This study measured the variation in fatty acid profiles of three abundant Arctic forage fish species, Arctic Cod (Boreogadus saida), Canadian Eelpout (Lycodespolaris), and Longear Eelpout (Lycodes seminudus) across multiple years (2010-2013) and geographic locations (Beaufort and Chukchi seas). These fishes are important prey items of marine mammals, sea birds, and predatory fishes, and as such they serve as a critical trophic step connecting lower trophic-level production to higher level predators. Analyzing forage fish fatty acid profiles across multiple years and geographic locations can provide insight into system-level trends in lipid transfer through the Arctic ecosystem.
    [Show full text]
  • The Effects of Fish Oil (EPA+ DHA) on Chronic Ventilator Patients in A
    The Effects of Fish Oil (EPA+DHA) on Chronic Ventilator Patients in a Long Term Acute Care Setting: A Randomized Control Trial A thesis submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Master of Science in Nutrition in the Department of Nutritional Science of the College of Allied Health Sciences By: Jessica Harvey R.D., L.D. May 20, 2011 B.S.: The Ohio State University, 2008 Committee Chair: Sarah C. Couch, Ph.D., R.D. Abstract Purpose: The aim of this study was to determine whether patients in a long term acute care setting who received an enteral supplement containing EPA+DHA, would have a shorter weaning time from the ventilator, a decrease in length of hospital stay, decreased inflammatory markers, and number of infections from baseline to post-treatment compared to patients who received a placebo of normal saline solution. Methods: Nine participants who required mechanical ventilation and enteral nutrition support in a long term acute care hospital were randomized to either receive the treatment fish oil (n=5) or the placebo saline solution (n=4). Participants in the treatment group were given 8g fish oil per day through the enteral feeding tube for 14 days. Subjects randomized to the control group received a blinded saline solution for 14 days. All enteral supplement formulations were created by a certified pharmacist. Results: There were no significant differences between the treatment and control groups in regards to time to weaning, percent of days on the ventilator, or length of hospital stay.
    [Show full text]
  • Fatty Acids, Trivial and Systematic Names
    FATTY ACIDS, TRIVIAL AND SYSTEMATIC NAMES Trivial Name Systematic Name Abbreviation Formic Acid Methanoic Acid Acetic Acid Ethanoic Acid Propionic Acid Propanoic Acid Butyric Acid Butanoic Acid 4:0 Valerianic Acid Pentanoic Acid 5:0 Caproic Acid Hexanoic Acid 6:0 Enanthic Acid Heptanoic Acid 7:0 Caprylic Acid Octanoic Acid 8:0 Pelargonic Acid Nonanoic Acid 9:0 Capric Acid Decanoic Acid 10:0 Obtusilic Acid 4-Decenoic Acid 10:1(n-6) Caproleic Acid 9-Decenoic Acid 10:1(n-1) Undecylic Acid Undecanoic Acid 11:0 Lauric Acid Dodecanoic Acid 12:0 Linderic Acid 4-Dodecenoic Acid 12:1(n-8) Denticetic Acid 5-Dodecenoic Acid 12:1(n-7) Lauroleic Acid 9-Dodecenoic Acid 12:1(n-3) Tridecylic Acid Tridecanoic Acid 13:0 Myristic Acid Tetradecanoic Acid 14:0 Tsuzuic Acid 4-Tetradecenoic Acid 14:1(n-10) Physeteric Acid 5-Tetradecenoic Acid 14:1(n-9) Myristoleic Acid 9-Tetradecenoic Acid 14:1(n-5) Pentadecylic Acid Pentadecanoic Acid 15:0 Palmitic Acid Hexadecanoic Acid 16:0 Gaidic acid 2-Hexadecenoic Acid 16:1(n-14) Sapienic Acid 6-Hexadecenoic Acid 16:1(n-10) Hypogeic Acid trans-7-Hexadecenoic Acid t16:1(n-9) cis-Hypogeic Acid 7-Hexadecenoic Acid 16:1(n-9) Palmitoleic Acid 9-Hexadecenoic Acid 16:1(n-7) Palmitelaidic Acid trans-9-Hexadecenoic Acid t16:1(n-7) Palmitvaccenic Acid 11-Hexadecenoic Acid 16:1(n-5) Margaric Acid Heptadecanoic Acid 17:0 Civetic Acid 8-Heptadecenoic Acid 17:1 Stearic Acid Octadecanoic Acid 18:0 Petroselinic Acid 6-Octadecenoic Acid 18:1(n-12) Oleic Acid 9-Octadecenoic Acid 18:1(n-9) Elaidic Acid trans-9-Octadecenoic acid t18:1(n-9)
    [Show full text]